JP2004288985A - Solar cell - Google Patents

Solar cell Download PDF

Info

Publication number
JP2004288985A
JP2004288985A JP2003080919A JP2003080919A JP2004288985A JP 2004288985 A JP2004288985 A JP 2004288985A JP 2003080919 A JP2003080919 A JP 2003080919A JP 2003080919 A JP2003080919 A JP 2003080919A JP 2004288985 A JP2004288985 A JP 2004288985A
Authority
JP
Japan
Prior art keywords
electrode
solar cell
charge storage
photoanode
storage electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003080919A
Other languages
Japanese (ja)
Other versions
JP4757433B2 (en
Inventor
Koji Segawa
浩司 瀬川
Hiroyoshi Nagai
裕喜 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003080919A priority Critical patent/JP4757433B2/en
Publication of JP2004288985A publication Critical patent/JP2004288985A/en
Application granted granted Critical
Publication of JP4757433B2 publication Critical patent/JP4757433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell which supplies stable power by suppressing output variation by light intensity even when dark. <P>SOLUTION: The solar cell can be charged. The solar cell has an electrolytic solution 5 of a photoanode side and an electrolytic solution 6 of a charge storage electrode side via a cation exchange membrane 4. In the electrolytic solution 5, a photoanode 1 and a counter electrode 2 are included. In the electrolytic solution 6, a charge storage electrode 3 is included. In this case, photoanode 1 preferably has a sensitization pigment, and the charge storage electrode 3 preferably has a conductive polymer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、腕時計用電池、携帯電話用電池、携帯ラジオ用電池、電卓用電池、携帯端末用電池、カメラ用電池、非常用予備電池などに利用できる太陽電池に関する。
【0002】
【従来の技術】
石油などの化石燃料は地球上の蓄積分をただ消耗するのみである。そこで、この地球上に無尽蔵にあり、かつ、地球上に平均的に存在する自然エネルギーが優位である。特に太陽エネルギーでは、地球上に降り注ぐ、太陽の放射エネルギーは巨大であり、注目に値する。
【0003】
この太陽エネルギーの利用方法としては、太陽電池が考えられ、近年急速に発達している。特に、低コストの太陽電池として色素増感太陽電池が開発されている(例えば、特許文献1参照。)。
【0004】
一方、充電ができる二次電池が開発されている。特に、電気的化学的に安定した導電性ポリマーを正極材料に利用した二次電池が注目されている(例えば、特許文献2参照。)。
【0005】
【特許文献1】
特開平5−504023号
【特許文献2】
特開平10−261418号
【0006】
【発明が解決しようとする課題】
しかしながら、上述した従来の太陽電池では、光強度に依存した出力変動があり、日中の日が差し込んでいる時間しか利用することができず、電源としての用途は必ずしも広くない。つまり、暗時においても、光強度による出力変動を抑制し、安定した電力を供給するような太陽電池の開発は重要な解決すべき課題である。
【0007】
太陽電池と二次電池を回路で電気的に接続することにより、太陽電池で発生した電気エネルギーを二次電池に充電することもできるが、構造が複雑になりスペースをとることや、重量が増えること、また、コストの面からも実現性が困難である。
【0008】
本発明は、このような課題に鑑みてなされたものであり、新規な太陽電池を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の太陽電池は、充電ができる。
本発明の太陽電池は、カチオン交換膜を介して、第1の電解質溶液と第2の電解質溶液が存在し、第1の電解質溶液の中には光アノードと対極が存在し、第2の電解質溶液の中には電荷蓄積電極が存在する。
【0010】
ここで、光アノードが増感色素を有することが好ましい。また、光アノードがN3Dyeを有することが好ましい。また、電荷蓄積電極が導電性ポリマーを有することが好ましい。また、電荷蓄積電極がポリピロールを有することが好ましい。また、電荷蓄積電極がヨウ化銀を有することが好ましい。
【0011】
【発明の実施の形態】
以下、太陽電池にかかる発明の実施の形態について説明する。
図1は、本発明の太陽電池の原理を示すものである。太陽電池は、カチオン交換膜4を介して、光アノード側電解質溶液5と電荷蓄積電極側電解質溶液6が存在し、光アノード側電解質溶液5の中には、光アノード1と対極2が存在し、電荷蓄積電極側電解質溶液6の中には、電荷蓄積電極3が存在している。
【0012】
光アノード1の基板は、表面積の大きな多孔性の電極である。具体的には、多孔性酸化チタン電極(FTO上に酸化チタンを焼結させたもの)が使用できる。光アノード1は、この多孔性酸化チタン電極に限定されない。このほか、酸化スズ、酸化亜鉛、酸化ニオブ、酸化タングステン、酸化インジウム、酸化ジルコニウム、酸化タンタル、あるいはこれらの混合物などを採用することができる。
【0013】
光アノード1は、増感色素を有する電極である。具体的には、多孔性酸化チタン電極(FTO上に酸化チタンを焼結させたもの)に、N3Dyeを吸着させたものが使用できる。光アノード1は、この多孔性酸化チタン電極に、N3Dyeを吸着させたものに限定されない。このほか、ルテニウム系色素、ポルフィリン系色素、フタロシアニン系色素、ローダミン系色素、キサンテン系色素、クロロフィル系色素、トリフェニルメタン系色素、アクリジン系色素、クマリン系色素、オキサジン系色素、インジゴ系色素、シアニン系色素、メロシアニン系色素、ロダシアニン系色素、エオシン系色素、マーキュロクロム系色素などを採用することができる。
【0014】
対極2としては、白金メッシュ電極を使用することができる。対極2は、この白金メッシュ電極に限定されない。このほか、金メッシュ電極、銀メッシュ電極、カーボンメッシュ電極、パラジウムメッシュ電極、多孔性ダイヤモンド電極などを採用することができる。
【0015】
光アノード側電解質溶液5は、ヨウ化リチウム、ヨウ素を含むプロピレンカーボネート溶液、または、ヨウ化リチウム、ヨウ素を含むアセトニトリル溶液、または、テトラ−n−ブチルアンモニウムヨージド、ヨウ化リチウム、ヨウ素を含むアセトニトリル溶液などを使用できる。光アノード側電解質溶液5は、これらの溶液に限定されない。このほか、メトキシプロピオニトリル、N−メチルオキサゾリジノン、N−メチルホルムアミド、スルホラン、メトキシアセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ニトロメタンなどの溶媒に、テトラ−n−ブチルアンモニウムヨージドやヨウ化リチウムとヨウ素を含む電解質溶液などを採用することができる。また、これらの電解質溶液を適当な割合で混合したものなどを採用することが出来る。また、イミダゾリウム、ピリジニウム、アンモニウム、スルホニウムなどのカチオンと四塩化アルミニウムアニオン、四フッ化ホウ素アニオン、六フッ化リンアニオン、などを組み合わせた常温溶融塩にテトラ−n−ブチルアンモニウムヨージドやヨウ化リチウムとヨウ素を加えた溶液などを採用することが出来る。
【0016】
カチオン交換膜4は、セレミオンなどを使用することができる。カチオン交換膜4は、このセレミオンに限定されない。このほか、フレミオン、ナフィオン、ゴアテックスなどを採用することができる。
【0017】
カチオン交換膜4は、光アノード側電解質溶液5にカチオン性酸化還元対を用いた場合にはアニオン交換膜などを採用することができる。
【0018】
電荷蓄積電極3は、導電性ポリマーを有している。電荷蓄積電極3は、具体的には、ピロールの電解酸化重合によりITO上にポリピロール膜を析出させたものなどを使用することができる。電荷蓄積電極3は、この電極に限定されない。このほか、ポリアニリン、ポリチオフェン、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリビオロゲン、ポリポルフィリン、ポリフタロシアニン、ポリフェロセン、ポリアミンなどを採用することができる。
【0019】
また、電荷蓄積電極3は、FTO上にヨウ化銀を電析させたものなどを使用することができる。電荷蓄積電極3は、この電極に限定されない。このほか、無機化合物では硫化銀、シアン化銀、 臭化銀、塩化銀、酸化タングステンなどを採用することができる。また、有機化合物ではビオロゲン、テトラシアノエチレン、ポルフィリン、フタロシアニン、フラーレン、カーボンナノチューブなどを採用することができる。
【0020】
電荷蓄積電極側電解質溶液6は、過塩素酸リチウムを含むプロピレンカーボネート溶液、または、過塩素酸リチウムを含むアセトニトリル溶液、または、テトラフルオロホウ酸テトラ−n−ブチルアンモニウムを含むアセトニトリル溶液、または、過塩素酸テトラ−n−ブチルアンモニウムを含むアセトニトリル溶液などを使用することができる。電荷蓄積電極側電解質溶液6は、これらの溶液に限定されない。このほか、メトキシプロピオニトリル、N−メチルオキサゾリジノン、N−メチルホルムアミド、スルホラン、メトキシアセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ニトロメタンなどの溶媒に、過塩素酸リチウム、テトラフルオロホウ酸テトラ−n−ブチルアンモニウム、過塩素酸テトラ−n−ブチルアンモニウム、テトラ−n−ブチルアンモニウムヘキサフルオロホスフェートなどを含む電解質溶液などを採用することができる。また、これらの電解質溶液を適当な割合で混合したものなどを採用することが出来る。また、イミダゾリウム、ピリジニウム、アンモニウム、スルホニウムなどのカチオンと四塩化アルミニウムアニオン、四フッ化ホウ素アニオン、六フッ化リンアニオン、などを組み合わせた常温溶融塩などを採用することができる。
【0021】
光照射により、光アノードで生じた電子は酸化チタンを通って電荷蓄積電極に存在する酸化還元種を還元する必要がある。これを達成するためには、電荷蓄積電極の酸化還元電位が半導体のフラットバンド電位より高い(正側である)ことが必要な条件となる。この条件が満たされれば、光エネルギーを使って電荷蓄積電極の還元が行われ化学エネルギーの変換貯蔵が達成できる。
【0022】
一方、蓄えた化学エネルギーを電気として取り出すには、対極側に存在する酸化還元対の酸化還元電位より電荷蓄積電極の酸化還元電位が低い(負側である)ことが必要である。この条件が満たされれば電荷蓄積電極上に存在する酸化還元種は、対極側に存在する酸化還元種を還元することができ、化学エネルギーを電気に変換し、使用することができる。
【0023】
以上のことから、電荷蓄積電極の酸化還元電位は、半導体のフラットバンド電位より高く対極側の酸化還元電位より低いことが必要である。これによって、光照射時には光エネルギーを電荷蓄積電極において化学エネルギーとして蓄積し、暗時には電荷蓄積電極と対極間において貯蔵された化学エネルギーを電気へと変換し使用できる。
【0024】
以上のことから、本実施の形態では、色素増感太陽電池が湿式太陽電池の一つであり、その主要な過程が光エネルギーの化学エネルギーへの変換反応であるという湿式太陽電池の特徴を活かし、光強度による出力変動が小さく、充放電が可能で暗所でも使用できるエネルギー貯蔵型色素増感太陽電池の開発を目的として、色素増感太陽電池の光アノードとカソードの他に電荷蓄積電極を加えた三極式太陽電池を作製し、この太陽電池で実際に光エネルギー貯蔵が行えることを明らかにした。
【0025】
本発明の太陽電池は、カチオン交換膜を介して、第1の電解質溶液と第2の電解質溶液が存在し、第1の電解質溶液の中には光アノードと対極が存在し、第2の電解質溶液の中には電荷蓄積電極が存在するので、充電ができる新規な太陽電池を提供することができる。
本発明の太陽電池は、従来のシリコン系太陽電池やリチウム二次電池に比べ、作製プロセスは極めて簡単である。このため、コスト的にも安価に作製できる。
【0026】
なお、本発明は上述の実施の形態に限らず本発明の要旨を逸脱することなくその他種々の構成を採り得ることはもちろんである。
【0027】
【実施例】
つぎに、本発明にかかる実施例について具体的に説明する。ただし、本発明はこれら実施例に限定されるものではないことはもちろんである。
【0028】
[実施例1]
最初に、図2を参照しながら、太陽電池の作製方法について説明する。
光アノードには、多孔性酸化チタン電極(FTO上に酸化チタンを焼結させたもの)(西野田電工製、他の実施例でも同様)に、N3Dye(岸本産業製、他の実施例でも同様)を吸着させたものを作製し使用した。色素の吸着は、多孔性酸化チタン電極をホットプレートで450℃にて30分熱し、常温になるまで冷まし、これを0.3mM N3Dyeを含むエタノール溶液中に浸し、1日静置することにより行った。
【0029】
電荷蓄積電極には、ピロールの電解酸化重合により、ITO上にポリピロール膜を析出させたものを用いた。作製条件は、0.1M過塩素酸リチウム、0.1Mピロールのプロピレンカーボネート溶液中にITOを浸漬し、対極にはPt電極、参照電極をSCEに用いた3極法で作用極の電流を50μA/cmに保ち、50mCの電気量での定電流電解重合とし、ともに電位経時変化を観察した。
【0030】
光アノード部分での電解質溶液には0.5Mヨウ化リチウム、0.05Mヨウ素を含むプロピレンカーボネート溶液を用い、電荷蓄積電極部分での電解質溶液には0.5M過塩素酸リチウムを含むプロピレンカーボネート溶液を用いた。
【0031】
太陽電池は、上で作製した酸化チタン電極を幅3mmのシリコンゴムにて有効電極面積が1cmになるように覆い、またこれをセパレーターとして用い、白金メッシュ電極を挿入し、カチオン交換膜(セレミオン、株式会社旭硝子製)を介し、同じように3mm幅シリコンゴムで有効電極面積が1cmになるようにポリピロール膜電極を覆い、これらをコックで挟みこみセルを作製した。
【0032】
つぎに、上記のように作製した太陽電池の特性について説明する。
光アノードから供給されうる電子数が対極での酸化還元反応速度を越え電流値が対極で制限される場合や、電流出力をせずに光照射を行った場合には、電荷蓄積電極に電子が流れ光充電が行われる。電荷蓄積電極にホールドープした導電性ポリマーを用いた場合には、電子は脱ドープによって蓄積される。一方、こうした状況を除けば、本実施例の三極式の太陽電池であってもBC間(図1参照)に負荷をかけた場合には通常の太陽電池と同様の光電流電圧曲線が得られるはずである。本実施例の太陽電池のAM1.5の光照射下の光電流電圧曲線を図3に示す。本実施例の太陽電池では、短絡電流と起電力のわずかな減少があるものの、基本的な特性は通常の二極式の色素増感太陽電池(グレッツェルセル)とほぼ同等の性質を示すことがわかる。
【0033】
光照射を所定時間行うと、一部の電子は貯蔵部分に流れ、ここでエネルギーが蓄えられる。光照射後のセルの開回路電圧の経時変化(図4)から、光照射時間が増加するにつれてセルの開回路電圧とその保持時間はより大きくなることが確認された。
【0034】
図5は、色素増感太陽電池部分の光アノードと電荷蓄積電極とをつないで光照射し、いろいろな時間(1分から30分)の光照射終了後光アノードと電荷蓄積電極を遮断し、同時にポテンショスタット(北斗電工製)により対極と電荷蓄積電極の電位差が0Vになるようにし、電流値(閉回路電流値)の経時変化を測定したものである。1分の光照射においても電流が得られ、また光照射時間が長くなるとともに電流値が大きくなることから、光エネルギーが電荷蓄積電極において化学エネルギーに変換され、エネルギー貯蔵が行われていることが確認された。この結果から、太陽電池として、光照射により、エネルギー貯蔵を行うことができ、夜間などでも利用することができる利点が明らかになった。
【0035】
図6は、図5の結果から、各測定データをもとに電流値が0.3μA・cm−2になる時間まで電流値を積分した電気量を縦軸にとり、光照射時間によって充電電気量がどのように増加するかを示している。この結果から、光照射により充電された電気量は、光照射時間に従い増大し、光エネルギーが電荷蓄積電極において化学エネルギーに変換され、エネルギー貯蔵が行われていることが、定量的に確認された。
【0036】
本実施例の太陽電池は、電流を出力せずに光照射を行った場合には光充電が行われる。図7に示すように、光充電時間を1分から30分まで変化させた場合の放電特性から、光照射時間に従って受電電気量が増大していることが明らかになった。この測定では、色素増感太陽電池部分の光アノードと電荷蓄積電極とをつないで所定の時間光照射を行い、光照射終了後に光アノードと電荷蓄積電極を遮断し、同時に、対極と電荷蓄積電極間に10kΩの抵抗を挟み込みポテンショスタット(北斗電工製)により、対極と電荷蓄積電極の二極間の電圧を測定したものである。この結果から、本太陽電池が光照射充電によってエネルギー貯蔵を行うことができ、光が遮断された後も電池として利用することができる利点がわかる。
【0037】
光照射30分後のポリピロール膜電極の吸収スペクトル(図8)からポリピロール膜は光照射により還元され脱ドープされていることが確認された。この実験では、色素増感太陽電池部分の光アノードと電荷蓄積電極とをつなぎ、光照射を30分間行い、その後セルから電荷蓄積電極であるポリピロール膜電極を取り出し、アセトンで洗浄後乾燥させ、即座にUV−Visにおいて吸収スペクトルを測定したものを、光照射前の同様に処理したポリピロール膜電極と比較したものである。光照射後のポリピロール膜電極の吸収スペクトルから、ポリピロール膜電極は、電荷の蓄積によってほとんど脱ドープされてエネルギー貯蔵が行われることが確認された。この結果から、充電はポリピロールに対して定量的に進行し、充電電気量はポリピロール膜の量に依存するためポリピロールの重量を増やせば容量を増大できることがわかる。
【0038】
以上の結果から、本実施例の太陽電池の充放電の機構について、図2を参照しながら説明する。
光が照射されているときは、図2に示すように、色素増感太陽電池部分の光アノード上の色素が励起されることにより生じた電子の一部が電荷蓄積電極へ流れ、電荷蓄積電極である導電性高分子膜電極は脱ドープされ、光エネルギーを化学エネルギーとして変換貯蔵し、光充電が行われる。残りの電子は、対極と電荷蓄積電極との間にある外部抵抗(抵抗間の電圧値と電荷蓄積電極の酸化還元電位との兼ね合いにより、太陽電池の電流電圧特性から計算された抵抗値)を通り対極へと流れる。すなわち、図2のような、太陽電池を組立てることで、光照射時においては、光により充電を行い、それと同時に電気も取り出すことができる。
【0039】
光照射が遮断されたときは、電荷蓄積電極の酸化還元電位は、対極側の酸化還元電位より低いことことから、光照射時とは逆に、電荷蓄積電極の導電性高分子膜電極でドープが起こり、対極に電子が流れ外部抵抗を経由して電流が流れる。
【0040】
[実施例2]
光アノードには、多孔性酸化チタン電極(FTO上に酸化チタンを焼結させたもの)に、N3Dyeを吸着させたものを作製し使用した。色素の吸着は、多孔性酸化チタン電極をホットプレートで450℃にて30分熱し、常温になるまで冷まし、これを0.3mM N3Dyeを含むエタノール溶液中に浸し、1日静置することにより行った。
【0041】
電荷蓄積電極には、ピロールの電解酸化重合により、ITO上にポリピロール膜を析出させたものを用いた。作製条件は、0.1M過塩素酸リチウム、0.1Mピロールのプロピレンカーボネート溶液中にITOを浸漬し、対極にはPt電極、参照電極をSCEに用いた3極法で作用極の電流を100μA/cm2に保ち、50mCの電気量での定電流電解重合とし、ともに電位経時変化を観察した。
【0042】
光アノード部分での電解質溶液には0.5Mヨウ化リチウム、0.05Mヨウ素を含むプロピレンカーボネート溶液を用い、電荷蓄積電極部分での電解質溶液には0.5M過塩素酸リチウムを含むプロピレンカーボネート溶液を用いた。
【0043】
太陽電池は、上で作製した酸化チタン電極を幅3mmのシリコンゴムにて有効電極面積が1cm2になるように覆い、またこれをセパレーターとして用い、白金メッシュ電極を挿入し、カチオン交換膜(セレミオン)を介し、同じように3mm幅シリコンゴムで有効電極面積が1cm2になるようにポリピロール膜電極を覆い、これらをコックで挟みこみセルを作製した。
【0044】
これに光照射を15分、30分、1時間行い、セル電圧の経時変化を観察した結果、電圧安定化効果、電圧の光照射時間依存性が認められた。
【0045】
[実施例3]
光アノードには、多孔性酸化チタン電極(FTO上に酸化チタンを焼結させたもの)に、N3Dyeを吸着させたものを作製し使用した。色素の吸着は、購入した多孔性酸化チタン電極をホットプレートで450℃にて30分熱し、常温になるまで冷まし、これを0.3mM N3Dyeを含むエタノール溶液中に浸し、1日静置することにより行った。
【0046】
電荷蓄積電極には、ピロールの電解酸化重合により、ITO上にポリピロール膜を析出させたものを用いた。作製条件は、0.1Mテトラフルオロホウ酸テトラ−n−ブチルアンモニウム、0.1Mピロールのアセトニトリル溶液中にITOを浸漬し、対極にはPt電極、参照電極をSCEに用いた3極法で作用極の電位を1V/SCEに保ち、500mCの電気量での定電位電解重合とした。
【0047】
光アノード部分での電解質溶液には0.5Mテトラ−n−ブチルアンモニウムヨージド、0.02Mヨウ化リチウム、0.04Mヨウ素を含むアセトニトリル溶液を用い、電荷蓄積電極部分での電解質溶液には0.5Mテトラフルオロホウ酸テトラ−n−ブチルアンモニウムを含むアセトニトリル溶液を用いた。
【0048】
太陽電池は、上で作製した酸化チタン電極を幅3mmのシリコンゴムにて有効電極面積が1cmになるように覆い、またこれをセパレーターとして用い、白金メッシュ電極を挿入し、カチオン交換膜(セレミオン)を介し、同じように3mm幅シリコンゴムで有効電極面積が1cmになるようにポリピロール膜電極を覆い、これらをコックで挟みこみセルを作製した。
【0049】
これに光照射を1時間行い、セル電圧の経時変化を観察した結果、電圧安定化効果が認められた。
【0050】
[実施例4]
光アノードには、多孔性酸化チタン電極(FTO上に酸化チタンを焼結させたもの)に、N3Dyeを吸着させたものを作製し使用した。色素の吸着は、多孔性酸化チタン電極をホットプレートで450℃にて30分熱し、常温になるまで冷まし、これを0.3mM N3Dyeを含むエタノール溶液中に浸し、1日静置することにより行った。
【0051】
電荷蓄積電極には、ピロールの電解酸化重合により、ITO上にポリピロール膜を析出させたものを用いた。作製条件は、0.1M過塩素酸テトラ−n−ブチルアンモニウム、0.1Mピロールのアセトニトリル溶液中にITOを浸漬し、対極にはPt電極、参照電極をSCEに用いた3極法で作用極の電位を1V/SCEに保ち、500mCの電気量での定電位電解重合とした。
【0052】
光アノード部分での電解質溶液には0.5Mテトラ−n−ブチルアンモニウムヨージド、0.02Mヨウ化リチウム、0.04Mヨウ素を含むアセトニトリル溶液を用い、電荷蓄積電極部分での電解質溶液には0.5M過塩素酸テトラ−n−ブチルアンモニウムを含むアセトニトリル溶液を用いた。
【0053】
太陽電池は、上で作製した酸化チタン電極を幅3mmのシリコンゴムにて有効電極面積が1cmになるように覆い、またこれをセパレーターとして用い、白金メッシュ電極を挿入し、カチオン交換膜(セレミオン)を介し、同じように3mm幅シリコンゴムで有効電極面積が1cmになるようにポリピロール膜電極を覆い、これらをコックで挟みこみセルを作製した。
【0054】
これに光照射を1時間行い、セル電圧の経時変化を観察した結果、電圧安定化効果が認められた。
【0055】
[実施例5]
光アノードには、多孔性酸化チタン電極(FTO上に酸化チタンを焼結させたもの)に、N3Dyeを吸着させたものを作製し使用した。色素の吸着は、多孔性酸化チタン電極をホットプレートで450℃にて30分熱し、常温になるまで冷まし、これを0.3mM N3Dyeを含むエタノール溶液中に浸し、1日静置することにより行った。
【0056】
電荷蓄積電極には、ピロールの電解酸化重合により、ITO上にポリピロール膜を析出させたものを用いた。作製条件は、0.1M過塩素酸リチウム、0.1Mピロールのアセトニトリル溶液中にITOを浸漬し、対極にはPt電極、参照電極をSCEに用いた3極法で作用極の電流を100μA/cmに保ち、50mCの電気量での定電流電解重合とし、ともに電位経時変化を観察した。
【0057】
光アノード部分での電解質溶液には0.5Mヨウ化リチウム、0.05Mヨウ素を含むアセトニトリル溶液を用い、電荷蓄積電極部分での電解質溶液には0.5M過塩素酸リチウムを含むアセトニトリル溶液を用いた。
【0058】
太陽電池は、上で作製した酸化チタン電極を幅3mmのシリコンゴムにて有効電極面積が1cmになるように覆い、またこれをセパレーターとして用い、白金メッシュ電極を挿入し、カチオン交換膜(セレミオン)を介し、同じように3mm幅シリコンゴムで有効電極面積が1cmになるようにポリピロール膜電極を覆い、これらをコックで挟みこみセルを作製した。
【0059】
これに光照射を15分、30分、1時間行い、セル電圧の経時変化を観察した結果、電圧安定化効果、電圧の光照射時間依存性が認められた。
【0060】
[実施例6]
光アノードには、多孔性酸化チタン電極(FTO上に酸化チタンを焼結させたもの)に、N3Dyeを吸着させたものを作製し使用した。色素の吸着は、多孔性酸化チタン電極をホットプレートで450℃にて30分熱し、常温になるまで冷まし、これを、0.3mM N3Dyeを含むエタノール溶液中に浸し、1日静置することにより行った。
【0061】
電荷蓄積電極には、ピロールの電解酸化重合により、ITO上にポリピロール膜を析出させたものを用いた。作製条件は、0.1M過塩素酸リチウム、0.1Mピロールのプロピレンカーボネート溶液中にITOを浸漬し、対極にはPt電極、参照電極をSCEに用いた3極法で作用極の電流を100μA/cm2に保ち、50mCの電気量での定電流電解重合とし、ともに電位経時変化を観察した。
【0062】
光アノード部分での電解質溶液には0.5Mヨウ化リチウム、0.05Mヨウ素を含むプロピレンカーボネート溶液を用い、電荷蓄積電極部分での電解質溶液には0.5M過塩素酸リチウムを含むプロピレンカーボネート溶液を用いた。
【0063】
太陽電池は、上で作製した酸化チタン電極を幅3mmのシリコンゴムにて有効電極面積が1cmになるように覆い、またこれをセパレーターとして用い、白金メッシュ電極を挿入し、カチオン交換膜(セレミオン)を介し、同じように3mm幅シリコンゴムで有効電極面積が1cmになるようにポリピロール電極を覆い、これらをコックで挟みこみセルを作製した。
【0064】
これに光照射を15分、30分、1時間行い、セル電圧の経時変化を観察した結果、電圧安定化効果、電圧の光照射時間依存性が認められた。
【0065】
[実施例7]
光アノードには、多孔質酸化チタン(FTO上に酸化チタン粒子を焼結させたもの)に、N3Dyeを吸着させたものを作製し使用した。色素の吸着には、多孔製酸化チタン電極をホットプレートで450℃にて30分熱し、常温になるまで冷まし、これを0.3mM N3Dyeを含むエタノール溶液中に浸し、1日静置することにより行った。
【0066】
電荷蓄積電極にはFTO上にヨウ化銀を電析させた電極を作製し、対極には白金メッシュ電極を用いた。太陽電池は、上で作製した光アノードを幅3mmのシリコンゴムにて有効電極面積を1cmに規定するように覆い、またこれをセパレーターとして用いた、ここに上で作製したヨウ化銀電極で挟み込み、この2つの電極の間に白金メッシュ電極を入れた。セルの電解質溶液には、0.5Mテトラ−n−ブチルアンモニウムヨージド、0.02Mヨウ化カリウム、0.04Mヨウ素を含むプロピレンカーボネートとアセトニトリルを4対1で混合した溶液を作製し、用いた。セル作製後光照射を適当時間行った。
セル電圧安定性が示された。
【0067】
【発明の効果】
本発明は、以下に記載されるような効果を奏する。
カチオン交換膜を介して、第1の電解質溶液と第2の電解質溶液が存在し、第1の電解質溶液の中には光アノードと対極が存在し、第2の電解質溶液の中には電荷蓄積電極が存在する太陽電池とすることにより、新規な太陽電池を提供することができる。
【図面の簡単な説明】
【図1】本発明の太陽電池の原理を示す図である。
【図2】本発明の太陽電池の一例を示す図である。
【図3】AM1.5光照射下でのDSSCとES−DSSCの光電流電圧特性を示す図である。
【図4】セル電圧の光照射時間依存性を示す図である。
【図5】開回路電流密度値と光照射時間依存性を示す図である。
【図6】充電電気量と光照射時間の関係を示す図である。
【図7】ES−DSSCの放電特性の光充電時間依存性(外部抵抗に10kΩを用いた)を示す図である。
【図8】光照射前、光照射30分後のポリピロール膜電極の吸収スペクトルを示す図である。
【符号の説明】
1‥‥光アノード、2‥‥対極、3‥‥電荷蓄積電極、4‥‥カチオン交換膜、5‥‥光アノード側電解質溶液、6‥‥電荷蓄積電極側電解質溶液
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solar battery that can be used as a battery for a watch, a battery for a mobile phone, a battery for a portable radio, a battery for a calculator, a battery for a portable terminal, a battery for a camera, an emergency spare battery, and the like.
[0002]
[Prior art]
Fossil fuels, such as petroleum, simply deplete the Earth's reserves. Therefore, natural energy which is inexhaustible on the earth and which exists on the earth on average is dominant. Especially in the case of solar energy, the radiant energy of the sun, which falls on the earth, is huge and is noteworthy.
[0003]
As a method of using this solar energy, a solar cell is conceivable, and is rapidly developing in recent years. In particular, a dye-sensitized solar cell has been developed as a low-cost solar cell (for example, see Patent Document 1).
[0004]
On the other hand, rechargeable secondary batteries have been developed. In particular, a secondary battery using an electrochemically stable conductive polymer as a positive electrode material has attracted attention (for example, see Patent Document 2).
[0005]
[Patent Document 1]
JP-A-5-504033
[Patent Document 2]
JP-A-10-261418
[0006]
[Problems to be solved by the invention]
However, the conventional solar cell described above has an output fluctuation depending on the light intensity, and can be used only during the daytime during the day, and is not necessarily widely used as a power source. That is, even in the dark, the development of a solar cell that suppresses output fluctuations due to light intensity and supplies stable power is an important issue to be solved.
[0007]
By electrically connecting the solar battery and the secondary battery with a circuit, the electrical energy generated by the solar battery can be charged to the secondary battery, but the structure becomes complicated and takes up space and increases the weight In addition, it is difficult to realize this from the viewpoint of cost.
[0008]
The present invention has been made in view of such a problem, and has as its object to provide a novel solar cell.
[0009]
[Means for Solving the Problems]
The solar cell of the present invention can be charged.
In the solar cell of the present invention, a first electrolyte solution and a second electrolyte solution are present via a cation exchange membrane, and a photoanode and a counter electrode are present in the first electrolyte solution. A charge storage electrode is present in the solution.
[0010]
Here, the photoanode preferably has a sensitizing dye. Preferably, the photoanode has N3Dye. Preferably, the charge storage electrode has a conductive polymer. Preferably, the charge storage electrode has polypyrrole. Further, it is preferable that the charge storage electrode contains silver iodide.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the invention relating to a solar cell will be described.
FIG. 1 shows the principle of the solar cell of the present invention. In the solar cell, a photoanode-side electrolyte solution 5 and a charge-storage-electrode-side electrolyte solution 6 are present via a cation exchange membrane 4, and a photoanode 1 and a counter electrode 2 are present in the photoanode-side electrolyte solution 5. The charge storage electrode 3 exists in the charge storage electrode side electrolyte solution 6.
[0012]
The substrate of the photoanode 1 is a porous electrode having a large surface area. Specifically, a porous titanium oxide electrode (a product obtained by sintering titanium oxide on FTO) can be used. The photoanode 1 is not limited to this porous titanium oxide electrode. In addition, tin oxide, zinc oxide, niobium oxide, tungsten oxide, indium oxide, zirconium oxide, tantalum oxide, a mixture thereof, or the like can be used.
[0013]
The photoanode 1 is an electrode having a sensitizing dye. Specifically, a material in which N3Dye is adsorbed on a porous titanium oxide electrode (a product obtained by sintering titanium oxide on FTO) can be used. The photoanode 1 is not limited to the porous titanium oxide electrode having N3Dye adsorbed thereon. In addition, ruthenium dye, porphyrin dye, phthalocyanine dye, rhodamine dye, xanthene dye, chlorophyll dye, triphenylmethane dye, acridine dye, coumarin dye, oxazine dye, indigo dye, cyanine dye Dyes, merocyanine dyes, rhodacyanine dyes, eosin dyes, mercurochrome dyes, and the like can be used.
[0014]
As the counter electrode 2, a platinum mesh electrode can be used. The counter electrode 2 is not limited to this platinum mesh electrode. In addition, a gold mesh electrode, a silver mesh electrode, a carbon mesh electrode, a palladium mesh electrode, a porous diamond electrode, and the like can be used.
[0015]
The photoanode-side electrolyte solution 5 is lithium iodide, a propylene carbonate solution containing iodine, or an acetonitrile solution containing lithium iodide or iodine, or acetonitrile containing tetra-n-butylammonium iodide, lithium iodide, or iodine. A solution or the like can be used. The photoanode-side electrolyte solution 5 is not limited to these solutions. In addition, tetra-n-butylammonium iodide, lithium iodide and iodine are added to a solvent such as methoxypropionitrile, N-methyloxazolidinone, N-methylformamide, sulfolane, methoxyacetonitrile, dimethylsulfoxide, dimethylformamide, and nitromethane. And an electrolyte solution containing the same. In addition, a mixture of these electrolyte solutions at an appropriate ratio can be employed. Further, tetra-n-butylammonium iodide or iodide is added to a room-temperature molten salt obtained by combining cations such as imidazolium, pyridinium, ammonium and sulfonium with aluminum tetrachloride anion, boron tetrafluoride anion and phosphorus hexafluoride anion. A solution in which lithium and iodine are added can be used.
[0016]
For the cation exchange membrane 4, selemion or the like can be used. The cation exchange membrane 4 is not limited to this selemion. In addition, Flemion, Nafion, Gore-Tex, etc. can be adopted.
[0017]
When a cationic redox couple is used for the photoanode-side electrolyte solution 5, an anion exchange membrane or the like can be used as the cation exchange membrane 4.
[0018]
The charge storage electrode 3 has a conductive polymer. As the charge storage electrode 3, specifically, one obtained by depositing a polypyrrole film on ITO by electrolytic oxidation polymerization of pyrrole or the like can be used. The charge storage electrode 3 is not limited to this electrode. In addition, polyaniline, polythiophene, polyacetylene, polyphenylene, polyphenylenevinylene, polyviologen, polyporphyrin, polyphthalocyanine, polyferrocene, polyamine, and the like can be used.
[0019]
Further, as the charge storage electrode 3, a material obtained by depositing silver iodide on FTO can be used. The charge storage electrode 3 is not limited to this electrode. In addition, as the inorganic compound, silver sulfide, silver cyanide, silver bromide, silver chloride, tungsten oxide, and the like can be used. Further, as the organic compound, viologen, tetracyanoethylene, porphyrin, phthalocyanine, fullerene, carbon nanotube, or the like can be used.
[0020]
The charge storage electrode side electrolyte solution 6 is a propylene carbonate solution containing lithium perchlorate, an acetonitrile solution containing lithium perchlorate, an acetonitrile solution containing tetra-n-butylammonium tetrafluoroborate, or An acetonitrile solution containing tetra-n-butylammonium chlorate can be used. The charge storage electrode side electrolyte solution 6 is not limited to these solutions. In addition, in a solvent such as methoxypropionitrile, N-methyloxazolidinone, N-methylformamide, sulfolane, methoxyacetonitrile, dimethylsulfoxide, dimethylformamide, nitromethane, lithium perchlorate, tetra-n-butylammonium tetrafluoroborate, etc. And an electrolyte solution containing tetra-n-butylammonium perchlorate, tetra-n-butylammonium hexafluorophosphate, or the like. In addition, a mixture of these electrolyte solutions at an appropriate ratio can be employed. Further, a room-temperature molten salt obtained by combining a cation such as imidazolium, pyridinium, ammonium, or sulfonium with an aluminum tetrachloride anion, a boron tetrafluoride anion, or a phosphorus hexafluoride anion can be used.
[0021]
The electrons generated at the photoanode by the light irradiation must pass through the titanium oxide to reduce the redox species present at the charge storage electrode. In order to achieve this, it is necessary that the oxidation-reduction potential of the charge storage electrode be higher (positive side) than the flat band potential of the semiconductor. When this condition is satisfied, the charge storage electrode is reduced using light energy, and conversion and storage of chemical energy can be achieved.
[0022]
On the other hand, in order to extract the stored chemical energy as electricity, it is necessary that the oxidation-reduction potential of the charge storage electrode is lower (negative) than the oxidation-reduction potential of the oxidation-reduction pair existing on the counter electrode side. If this condition is satisfied, the redox species present on the charge storage electrode can reduce the redox species present on the counter electrode side, and can convert chemical energy into electricity and use it.
[0023]
From the above, the redox potential of the charge storage electrode needs to be higher than the flat band potential of the semiconductor and lower than the redox potential on the counter electrode side. Thus, the light energy can be stored as chemical energy in the charge storage electrode at the time of light irradiation, and the chemical energy stored between the charge storage electrode and the counter electrode can be converted to electricity and used in the dark.
[0024]
From the above, in the present embodiment, the dye-sensitized solar cell is one of the wet type solar cells, and takes advantage of the feature of the wet type solar cell that the main process is a conversion reaction of light energy into chemical energy. With the aim of developing an energy storage type dye-sensitized solar cell that is small in output fluctuation due to light intensity, chargeable and dischargeable, and can be used in dark places, a charge storage electrode is used in addition to the photoanode and cathode of the dye-sensitized solar cell. We fabricated a tri-polar solar cell and demonstrated that the solar cell can actually store light energy.
[0025]
In the solar cell of the present invention, a first electrolyte solution and a second electrolyte solution are present via a cation exchange membrane, and a photoanode and a counter electrode are present in the first electrolyte solution. Since the charge storage electrode exists in the solution, a novel solar cell that can be charged can be provided.
The manufacturing process of the solar cell of the present invention is extremely simple as compared with conventional silicon-based solar cells and lithium secondary batteries. Therefore, it can be manufactured at low cost.
[0026]
Note that the present invention is not limited to the above-described embodiment, but can adopt various other configurations without departing from the gist of the present invention.
[0027]
【Example】
Next, examples according to the present invention will be specifically described. However, needless to say, the present invention is not limited to these examples.
[0028]
[Example 1]
First, a method for manufacturing a solar cell will be described with reference to FIGS.
The photoanode includes a porous titanium oxide electrode (a product obtained by sintering titanium oxide on FTO) (manufactured by Nishinoda Electric Works, the same applies to other examples), and N3Dye (manufactured by Kishimoto Sangyo, the same applies to other examples). ) Was prepared and used. The dye was adsorbed by heating the porous titanium oxide electrode on a hot plate at 450 ° C. for 30 minutes, cooling to room temperature, immersing this in an ethanol solution containing 0.3 mM N3Dye, and allowing it to stand for one day. Was.
[0029]
As the charge storage electrode, one obtained by depositing a polypyrrole film on ITO by electrolytic oxidation polymerization of pyrrole was used. The production conditions were as follows: ITO was immersed in a propylene carbonate solution of 0.1 M lithium perchlorate and 0.1 M pyrrole, and the current of the working electrode was set to 50 μA by a three-electrode method using a Pt electrode as a counter electrode and a reference electrode for SCE. / Cm 2 , And constant-current electrolytic polymerization was performed at an electric quantity of 50 mC, and changes with time in the potential were observed.
[0030]
A propylene carbonate solution containing 0.5 M lithium iodide and 0.05 M iodine is used as an electrolyte solution at the photoanode portion, and a propylene carbonate solution containing 0.5 M lithium perchlorate is used as an electrolyte solution at the charge storage electrode portion. Was used.
[0031]
In the solar cell, the titanium oxide electrode prepared above was made of silicon rubber having a width of 3 mm and the effective electrode area was 1 cm. 2 And using this as a separator, inserting a platinum mesh electrode, and passing through a cation exchange membrane (Selemion, manufactured by Asahi Glass Co., Ltd.) in the same manner with silicon rubber having a width of 3 mm and an effective electrode area of 1 cm. 2 Was covered with a polypyrrole membrane electrode, and these were sandwiched between cocks to produce a cell.
[0032]
Next, characteristics of the solar cell manufactured as described above will be described.
When the number of electrons that can be supplied from the photoanode exceeds the oxidation-reduction reaction rate at the counter electrode and the current value is limited at the counter electrode, or when light irradiation is performed without outputting current, electrons are charged to the charge storage electrode. Flow light charging is performed. When a hole-doped conductive polymer is used for the charge storage electrode, electrons are accumulated by undoping. On the other hand, except for such a situation, even with the tripolar solar cell of this embodiment, when a load is applied between the BCs (see FIG. 1), a photocurrent-voltage curve similar to that of a normal solar cell is obtained. Should be done. FIG. 3 shows a photocurrent-voltage curve of the solar cell of this example under AM1.5 light irradiation. In the solar cell of this example, although the short-circuit current and the electromotive force are slightly reduced, the basic characteristics are almost the same as those of a normal bipolar dye-sensitized solar cell (Gretzel cell). Understand.
[0033]
When the light irradiation is performed for a predetermined time, some electrons flow to the storage portion, where energy is stored. From the change over time of the open circuit voltage of the cell after light irradiation (FIG. 4), it was confirmed that as the light irradiation time increases, the open circuit voltage of the cell and the holding time thereof become larger.
[0034]
FIG. 5 shows that the photoanode and the charge storage electrode of the dye-sensitized solar cell portion are connected and irradiated with light, and after completion of the light irradiation for various times (1 to 30 minutes), the photoanode and the charge storage electrode are shut off. The potential difference between the counter electrode and the charge storage electrode was set to 0 V using a potentiostat (manufactured by Hokuto Denko), and the change over time in the current value (closed circuit current value) was measured. Since a current can be obtained even with light irradiation for one minute, and the current value increases as the light irradiation time increases, the light energy is converted to chemical energy at the charge storage electrode, and energy storage is performed. confirmed. From these results, it has become clear that the solar cell can store energy by light irradiation and can be used even at night.
[0035]
FIG. 6 shows that the current value was 0.3 μA · cm based on each measurement data from the results of FIG. -2 The vertical axis indicates the amount of electricity obtained by integrating the current value until the time becomes, and shows how the amount of charged electricity increases with the light irradiation time. From these results, it was quantitatively confirmed that the amount of electricity charged by light irradiation increased with light irradiation time, that light energy was converted to chemical energy at the charge storage electrode, and that energy storage was performed. .
[0036]
In the solar cell according to the present embodiment, when light irradiation is performed without outputting current, light charging is performed. As shown in FIG. 7, from the discharge characteristics when the light charging time was changed from 1 minute to 30 minutes, it became clear that the amount of received electricity increased with the light irradiation time. In this measurement, the photoanode of the dye-sensitized solar cell portion and the charge storage electrode were connected to perform light irradiation for a predetermined time, and after the light irradiation was completed, the photoanode and the charge storage electrode were shut off. The voltage between the counter electrode and the charge storage electrode was measured by a potentiostat (manufactured by Hokuto Denko) with a resistance of 10 kΩ interposed therebetween. From this result, it is understood that the solar cell can store energy by light irradiation charging and can be used as a battery even after light is shut off.
[0037]
From the absorption spectrum of the polypyrrole film electrode 30 minutes after the light irradiation (FIG. 8), it was confirmed that the polypyrrole film was reduced and undoped by the light irradiation. In this experiment, the photoanode of the dye-sensitized solar cell was connected to the charge storage electrode, and light irradiation was performed for 30 minutes. The absorption spectrum measured in UV-Vis is compared with a similarly treated polypyrrole membrane electrode before light irradiation. From the absorption spectrum of the polypyrrole film electrode after the light irradiation, it was confirmed that the polypyrrole film electrode was almost undoped due to the accumulation of electric charge and energy was stored. From this result, it is understood that charging proceeds quantitatively with respect to polypyrrole, and the amount of charged electricity depends on the amount of the polypyrrole film, so that the capacity can be increased by increasing the weight of polypyrrole.
[0038]
Based on the above results, the charging and discharging mechanism of the solar cell of this embodiment will be described with reference to FIG.
When light is applied, as shown in FIG. 2, a part of the electrons generated by the excitation of the dye on the photoanode of the dye-sensitized solar cell part flow to the charge storage electrode, The conductive polymer film electrode is de-doped, converts light energy into chemical energy and stores it, and performs light charging. The remaining electrons form an external resistance between the counter electrode and the charge storage electrode (the resistance calculated from the current-voltage characteristics of the solar cell based on the balance between the voltage between the resistors and the oxidation-reduction potential of the charge storage electrode). It flows to the opposite pole. That is, by assembling a solar cell as shown in FIG. 2, at the time of light irradiation, charging can be performed by light, and at the same time, electricity can be extracted.
[0039]
When the light irradiation is cut off, the oxidation-reduction potential of the charge storage electrode is lower than the oxidation-reduction potential on the counter electrode side. Occurs, causing electrons to flow to the counter electrode and current to flow through the external resistance.
[0040]
[Example 2]
For the photoanode, a material prepared by adsorbing N3Dye on a porous titanium oxide electrode (a product obtained by sintering titanium oxide on FTO) was prepared and used. The dye was adsorbed by heating the porous titanium oxide electrode on a hot plate at 450 ° C. for 30 minutes, cooling to room temperature, immersing this in an ethanol solution containing 0.3 mM N3Dye, and allowing it to stand for one day. Was.
[0041]
As the charge storage electrode, one obtained by depositing a polypyrrole film on ITO by electrolytic oxidation polymerization of pyrrole was used. The production conditions were as follows: ITO was immersed in a propylene carbonate solution of 0.1 M lithium perchlorate and 0.1 M pyrrole, and the current of the working electrode was 100 μA by a three-electrode method using a Pt electrode as a counter electrode and a reference electrode for SCE. / Cm 2 and constant current electrolytic polymerization with an amount of electricity of 50 mC.
[0042]
A propylene carbonate solution containing 0.5 M lithium iodide and 0.05 M iodine is used as an electrolyte solution at the photoanode portion, and a propylene carbonate solution containing 0.5 M lithium perchlorate is used as an electrolyte solution at the charge storage electrode portion. Was used.
[0043]
In the solar cell, the titanium oxide electrode prepared above was covered with silicon rubber having a width of 3 mm so that the effective electrode area became 1 cm2, and this was used as a separator, a platinum mesh electrode was inserted, and a cation exchange membrane (Selemion) was used. Similarly, the polypyrrole membrane electrode was covered with silicon rubber of 3 mm width so that the effective electrode area was 1 cm 2, and these were sandwiched by a cock to produce a cell.
[0044]
This was irradiated with light for 15 minutes, 30 minutes, and 1 hour, and the change over time in the cell voltage was observed. As a result, a voltage stabilizing effect and the dependency of the voltage on the light irradiation time were recognized.
[0045]
[Example 3]
For the photoanode, a material prepared by adsorbing N3Dye on a porous titanium oxide electrode (a product obtained by sintering titanium oxide on FTO) was prepared and used. For the adsorption of the dye, the purchased porous titanium oxide electrode is heated on a hot plate at 450 ° C. for 30 minutes, cooled to room temperature, immersed in an ethanol solution containing 0.3 mM N3Dye, and allowed to stand for one day. It was performed by.
[0046]
As the charge storage electrode, one obtained by depositing a polypyrrole film on ITO by electrolytic oxidation polymerization of pyrrole was used. The fabrication conditions were as follows: ITO was immersed in an acetonitrile solution of 0.1 M tetra-n-butylammonium tetrafluoroborate and 0.1 M pyrrole, and a triode method using a Pt electrode as a counter electrode and a reference electrode for SCE was used. The potential of the electrode was maintained at 1 V / SCE, and constant potential electropolymerization was performed at an electric quantity of 500 mC.
[0047]
An acetonitrile solution containing 0.5 M tetra-n-butylammonium iodide, 0.02 M lithium iodide, and 0.04 M iodine was used for the electrolyte solution at the photoanode portion, and 0% for the electrolyte solution at the charge storage electrode portion. An acetonitrile solution containing 0.5 M tetra-n-butylammonium tetrafluoroborate was used.
[0048]
In the solar cell, the titanium oxide electrode prepared above was made of silicon rubber having a width of 3 mm and the effective electrode area was 1 cm. 2 And using this as a separator, inserting a platinum mesh electrode, through a cation exchange membrane (Selemion), and similarly using a 3 mm wide silicon rubber to obtain an effective electrode area of 1 cm. 2 Was covered with a polypyrrole membrane electrode, and these were sandwiched between cocks to produce a cell.
[0049]
This was irradiated with light for one hour, and as a result of observing the change over time in the cell voltage, a voltage stabilizing effect was observed.
[0050]
[Example 4]
For the photoanode, a material prepared by adsorbing N3Dye on a porous titanium oxide electrode (a product obtained by sintering titanium oxide on FTO) was prepared and used. The dye was adsorbed by heating the porous titanium oxide electrode on a hot plate at 450 ° C. for 30 minutes, cooling to room temperature, immersing this in an ethanol solution containing 0.3 mM N3Dye, and allowing it to stand for one day. Was.
[0051]
As the charge storage electrode, one obtained by depositing a polypyrrole film on ITO by electrolytic oxidation polymerization of pyrrole was used. The preparation conditions were as follows: ITO was immersed in acetonitrile solution of 0.1 M tetra-n-butylammonium perchlorate and 0.1 M pyrrole; Was maintained at 1 V / SCE, and constant-potential electrolytic polymerization was performed at an electric quantity of 500 mC.
[0052]
An acetonitrile solution containing 0.5 M tetra-n-butylammonium iodide, 0.02 M lithium iodide, and 0.04 M iodine was used for the electrolyte solution at the photoanode portion, and 0% for the electrolyte solution at the charge storage electrode portion. An acetonitrile solution containing 0.5 M tetra-n-butylammonium perchlorate was used.
[0053]
In the solar cell, the titanium oxide electrode prepared above was made of silicon rubber having a width of 3 mm and the effective electrode area was 1 cm. 2 And using this as a separator, inserting a platinum mesh electrode, through a cation exchange membrane (Selemion), and similarly using a 3 mm wide silicon rubber to obtain an effective electrode area of 1 cm. 2 Was covered with a polypyrrole membrane electrode, and these were sandwiched between cocks to produce a cell.
[0054]
This was irradiated with light for one hour, and as a result of observing the change over time in the cell voltage, a voltage stabilizing effect was observed.
[0055]
[Example 5]
For the photoanode, a material prepared by adsorbing N3Dye on a porous titanium oxide electrode (a product obtained by sintering titanium oxide on FTO) was prepared and used. The dye was adsorbed by heating the porous titanium oxide electrode on a hot plate at 450 ° C. for 30 minutes, cooling to room temperature, immersing this in an ethanol solution containing 0.3 mM N3Dye, and allowing it to stand for one day. Was.
[0056]
As the charge storage electrode, one obtained by depositing a polypyrrole film on ITO by electrolytic oxidation polymerization of pyrrole was used. The production conditions were as follows: ITO was immersed in an acetonitrile solution of 0.1 M lithium perchlorate and 0.1 M pyrrole, and the current of the working electrode was 100 μA / cm 2 , And constant-current electrolytic polymerization was performed at an electric quantity of 50 mC, and changes with time in the potential were observed.
[0057]
An acetonitrile solution containing 0.5 M lithium iodide and 0.05 M iodine was used as the electrolyte solution at the photoanode portion, and an acetonitrile solution containing 0.5 M lithium perchlorate was used as the electrolyte solution at the charge storage electrode portion. Was.
[0058]
In the solar cell, the titanium oxide electrode prepared above was made of silicon rubber having a width of 3 mm and the effective electrode area was 1 cm. 2 And using this as a separator, inserting a platinum mesh electrode, through a cation exchange membrane (Selemion), and similarly using a 3 mm wide silicon rubber to obtain an effective electrode area of 1 cm. 2 Was covered with a polypyrrole membrane electrode, and these were sandwiched between cocks to produce a cell.
[0059]
This was irradiated with light for 15 minutes, 30 minutes, and 1 hour, and the change over time in the cell voltage was observed. As a result, a voltage stabilizing effect and the dependency of the voltage on the light irradiation time were recognized.
[0060]
[Example 6]
For the photoanode, a material prepared by adsorbing N3Dye on a porous titanium oxide electrode (a product obtained by sintering titanium oxide on FTO) was prepared and used. The adsorption of the dye was performed by heating the porous titanium oxide electrode on a hot plate at 450 ° C. for 30 minutes, cooling it to room temperature, immersing it in an ethanol solution containing 0.3 mM N3Dye, and allowing it to stand for one day. went.
[0061]
As the charge storage electrode, one obtained by depositing a polypyrrole film on ITO by electrolytic oxidation polymerization of pyrrole was used. The production conditions were as follows: ITO was immersed in a propylene carbonate solution of 0.1 M lithium perchlorate and 0.1 M pyrrole, and the current of the working electrode was 100 μA by a three-electrode method using a Pt electrode as a counter electrode and a reference electrode for SCE. / Cm 2 and constant current electrolytic polymerization with an amount of electricity of 50 mC.
[0062]
A propylene carbonate solution containing 0.5 M lithium iodide and 0.05 M iodine is used as an electrolyte solution at the photoanode portion, and a propylene carbonate solution containing 0.5 M lithium perchlorate is used as an electrolyte solution at the charge storage electrode portion. Was used.
[0063]
In the solar cell, the titanium oxide electrode prepared above was made of silicon rubber having a width of 3 mm and the effective electrode area was 1 cm. 2 And using this as a separator, inserting a platinum mesh electrode, through a cation exchange membrane (Selemion), and similarly using a 3 mm wide silicon rubber to obtain an effective electrode area of 1 cm. 2 Was covered with a polypyrrole electrode, and these were sandwiched between cocks to produce a cell.
[0064]
This was irradiated with light for 15 minutes, 30 minutes, and 1 hour, and the change over time in the cell voltage was observed. As a result, a voltage stabilizing effect and the dependency of the voltage on the light irradiation time were recognized.
[0065]
[Example 7]
As the photoanode, a material prepared by adsorbing N3Dye on porous titanium oxide (a product obtained by sintering titanium oxide particles on FTO) was used. For dye adsorption, the porous titanium oxide electrode was heated on a hot plate at 450 ° C. for 30 minutes, cooled to room temperature, immersed in an ethanol solution containing 0.3 mM N3Dye, and allowed to stand for one day. went.
[0066]
An electrode obtained by depositing silver iodide on FTO was prepared as a charge storage electrode, and a platinum mesh electrode was used as a counter electrode. In the solar cell, the photoanode prepared above was made of silicon rubber having a width of 3 mm and the effective electrode area was 1 cm. 2 And sandwiched between the silver iodide electrodes prepared above, which were used as separators, and a platinum mesh electrode was inserted between the two electrodes. For the electrolyte solution of the cell, a solution in which propylene carbonate containing 0.5 M tetra-n-butylammonium iodide, 0.02 M potassium iodide, and 0.04 M iodine and acetonitrile were mixed at a ratio of 4 to 1 was used. . After the cell production, light irradiation was performed for an appropriate time.
Cell voltage stability was shown.
[0067]
【The invention's effect】
The present invention has the following effects.
Through a cation exchange membrane, a first electrolyte solution and a second electrolyte solution are present, a photoanode and a counter electrode are present in the first electrolyte solution, and a charge accumulation is present in the second electrolyte solution. By using a solar cell having electrodes, a novel solar cell can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing the principle of a solar cell of the present invention.
FIG. 2 is a diagram showing an example of the solar cell of the present invention.
FIG. 3 is a diagram showing photocurrent-voltage characteristics of DSSC and ES-DSSC under AM1.5 light irradiation.
FIG. 4 is a diagram showing the light irradiation time dependency of the cell voltage.
FIG. 5 is a diagram showing an open circuit current density value and light irradiation time dependency.
FIG. 6 is a diagram showing the relationship between the amount of charged electricity and the light irradiation time.
FIG. 7 is a diagram showing the photocharging time dependency of the discharge characteristics of the ES-DSSC (using 10 kΩ for the external resistance).
FIG. 8 is a diagram showing absorption spectra of a polypyrrole film electrode before light irradiation and 30 minutes after light irradiation.
[Explanation of symbols]
1 photoanode, 2 counter electrode, 3 charge storage electrode, 4 cation exchange membrane, 5 photoelectrode side electrolyte solution, 6 charge storage electrode side electrolyte solution

Claims (7)

充電ができることを特徴とする太陽電池。A solar cell characterized by being rechargeable. カチオン交換膜を介して、第1の電解質溶液と第2の電解質溶液が存在し、
上記第1の電解質溶液の中には、光アノードと対極が存在し、
上記第2の電解質溶液の中には、電荷蓄積電極が存在することを特徴とする請求項1記載の太陽電池。
A first electrolyte solution and a second electrolyte solution are present via the cation exchange membrane;
In the first electrolyte solution, there is a photoanode and a counter electrode,
The solar cell according to claim 1, wherein a charge storage electrode is present in the second electrolyte solution.
光アノードが増感色素を有することを特徴とする請求項2記載の太陽電池。The solar cell according to claim 2, wherein the photoanode has a sensitizing dye. 光アノードがN3Dyeを有することを特徴とする請求項2記載の太陽電池。3. The solar cell according to claim 2, wherein the photoanode has N3Dye. 電荷蓄積電極が導電性ポリマーを有することを特徴とする請求項2記載の太陽電池。The solar cell according to claim 2, wherein the charge storage electrode has a conductive polymer. 電荷蓄積電極がポリピロールを有することを特徴とする請求項2記載の太陽電池。The solar cell according to claim 2, wherein the charge storage electrode includes polypyrrole. 電荷蓄積電極がヨウ化銀を有することを特徴とする請求項2記載の太陽電池。The solar cell according to claim 2, wherein the charge storage electrode comprises silver iodide.
JP2003080919A 2003-03-24 2003-03-24 Solar cell Expired - Fee Related JP4757433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003080919A JP4757433B2 (en) 2003-03-24 2003-03-24 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003080919A JP4757433B2 (en) 2003-03-24 2003-03-24 Solar cell

Publications (2)

Publication Number Publication Date
JP2004288985A true JP2004288985A (en) 2004-10-14
JP4757433B2 JP4757433B2 (en) 2011-08-24

Family

ID=33294643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003080919A Expired - Fee Related JP4757433B2 (en) 2003-03-24 2003-03-24 Solar cell

Country Status (1)

Country Link
JP (1) JP4757433B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006067969A1 (en) * 2004-12-22 2006-06-29 Fujikura Ltd. Counter electrode for photoelectric converter and photoelectric converter
JP2006172758A (en) * 2004-12-13 2006-06-29 Univ Of Tokyo Energy storage type dye-sensitized solar cell
WO2010024090A1 (en) * 2008-08-28 2010-03-04 パナソニック電工株式会社 Photoelectric element
US7976975B2 (en) 2006-09-05 2011-07-12 Seiko Epson Corporation Battery device and electronic apparatus
WO2014091809A1 (en) * 2012-12-14 2014-06-19 積水化学工業株式会社 Electrode substrate and dye-sensitized solar cell
JP5815157B2 (en) * 2013-11-08 2015-11-17 パナソニック株式会社 Electrochemical devices
WO2015174131A1 (en) * 2014-05-15 2015-11-19 株式会社村田製作所 Secondary photocell
JP2016146430A (en) * 2015-02-09 2016-08-12 株式会社デンソー Light energy conversion storage system and polymer
WO2016132750A1 (en) * 2015-02-18 2016-08-25 株式会社村田製作所 Secondary photocell and production method for secondary photocell electrode
WO2016132749A1 (en) * 2015-02-18 2016-08-25 株式会社村田製作所 Secondary photocell
JP2017519359A (en) * 2014-05-20 2017-07-13 ハイドロ−ケベック Photovoltaic electrode
US10270050B2 (en) 2012-07-27 2019-04-23 Daicel Corporation Photoelectric conversion layer composition and photoelectric conversion element
JP2019087606A (en) * 2017-11-06 2019-06-06 日本電気株式会社 Dye-sensitized solar cell having a storage function

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127389A (en) * 1982-01-25 1983-07-29 Semiconductor Energy Lab Co Ltd Photoelectric conversion device
JPS60170173A (en) * 1984-02-10 1985-09-03 Matsushita Electric Works Ltd Optical charging silver-halogen cell
JPH01248482A (en) * 1988-03-30 1989-10-04 Matsushita Electric Ind Co Ltd Secondary battery by photovoltaic power generation
JPH03108279A (en) * 1989-09-21 1991-05-08 Seiko Instr Inc Photo-storage battery
JPH04171681A (en) * 1990-11-06 1992-06-18 Nippon Telegr & Teleph Corp <Ntt> Photochemical secondary battery
JPH07130407A (en) * 1993-10-28 1995-05-19 Nippon Telegr & Teleph Corp <Ntt> Photochemical secondary battery
JPH07245125A (en) * 1994-03-04 1995-09-19 Miyazaki Univ Secondary battery capable of generating power
JPH0963657A (en) * 1995-08-24 1997-03-07 Kyushu Univ Light storage battery chargeable by light, and its manufacture
JPH09259942A (en) * 1996-03-18 1997-10-03 Nippon Telegr & Teleph Corp <Ntt> Photochemically hydrogenated secondary air battery
JPH09306553A (en) * 1996-05-08 1997-11-28 Kagaku Gijutsu Shinko Jigyodan Photo-electric conversion secondary battery
JP2001160426A (en) * 1999-09-24 2001-06-12 Toshiba Corp Dye-sensitization type solar battery, its manufacturing method and portable equipment using the same
JP2001357897A (en) * 2000-06-14 2001-12-26 Fuji Xerox Co Ltd Photoelectric conversion module
JP2003500815A (en) * 1999-05-19 2003-01-07 フラウンホーファ−ゲゼルシャフト ツァー フォルデルング デア アンゲバンデン フォルシュンク エー. ファオ. Photovoltaic self-charging power storage system
WO2004006381A1 (en) * 2002-07-09 2004-01-15 Fujikura Ltd. Solar cell

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127389A (en) * 1982-01-25 1983-07-29 Semiconductor Energy Lab Co Ltd Photoelectric conversion device
JPS60170173A (en) * 1984-02-10 1985-09-03 Matsushita Electric Works Ltd Optical charging silver-halogen cell
JPH01248482A (en) * 1988-03-30 1989-10-04 Matsushita Electric Ind Co Ltd Secondary battery by photovoltaic power generation
JPH03108279A (en) * 1989-09-21 1991-05-08 Seiko Instr Inc Photo-storage battery
JPH04171681A (en) * 1990-11-06 1992-06-18 Nippon Telegr & Teleph Corp <Ntt> Photochemical secondary battery
JPH07130407A (en) * 1993-10-28 1995-05-19 Nippon Telegr & Teleph Corp <Ntt> Photochemical secondary battery
JPH07245125A (en) * 1994-03-04 1995-09-19 Miyazaki Univ Secondary battery capable of generating power
JPH0963657A (en) * 1995-08-24 1997-03-07 Kyushu Univ Light storage battery chargeable by light, and its manufacture
JPH09259942A (en) * 1996-03-18 1997-10-03 Nippon Telegr & Teleph Corp <Ntt> Photochemically hydrogenated secondary air battery
JPH09306553A (en) * 1996-05-08 1997-11-28 Kagaku Gijutsu Shinko Jigyodan Photo-electric conversion secondary battery
JP2003500815A (en) * 1999-05-19 2003-01-07 フラウンホーファ−ゲゼルシャフト ツァー フォルデルング デア アンゲバンデン フォルシュンク エー. ファオ. Photovoltaic self-charging power storage system
JP2001160426A (en) * 1999-09-24 2001-06-12 Toshiba Corp Dye-sensitization type solar battery, its manufacturing method and portable equipment using the same
JP2001357897A (en) * 2000-06-14 2001-12-26 Fuji Xerox Co Ltd Photoelectric conversion module
WO2004006381A1 (en) * 2002-07-09 2004-01-15 Fujikura Ltd. Solar cell

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006172758A (en) * 2004-12-13 2006-06-29 Univ Of Tokyo Energy storage type dye-sensitized solar cell
WO2006067969A1 (en) * 2004-12-22 2006-06-29 Fujikura Ltd. Counter electrode for photoelectric converter and photoelectric converter
AU2005320306B2 (en) * 2004-12-22 2010-10-21 Fujikura Ltd. Counter electrode for photoelectric converter and photoelectric converter
US7976975B2 (en) 2006-09-05 2011-07-12 Seiko Epson Corporation Battery device and electronic apparatus
WO2010024090A1 (en) * 2008-08-28 2010-03-04 パナソニック電工株式会社 Photoelectric element
JP5204848B2 (en) * 2008-08-28 2013-06-05 パナソニック株式会社 Photoelectric element
US8674215B2 (en) 2008-08-28 2014-03-18 Panasonic Corporation Photoelectric device
US10270050B2 (en) 2012-07-27 2019-04-23 Daicel Corporation Photoelectric conversion layer composition and photoelectric conversion element
JP5740063B2 (en) * 2012-12-14 2015-06-24 積水化学工業株式会社 Electrode substrate and dye-sensitized solar cell
TWI596824B (en) * 2012-12-14 2017-08-21 積水化學工業股份有限公司 Electrode substrate and dye-sensitized solar cell
WO2014091809A1 (en) * 2012-12-14 2014-06-19 積水化学工業株式会社 Electrode substrate and dye-sensitized solar cell
JP5815157B2 (en) * 2013-11-08 2015-11-17 パナソニック株式会社 Electrochemical devices
WO2015174131A1 (en) * 2014-05-15 2015-11-19 株式会社村田製作所 Secondary photocell
JP2017519359A (en) * 2014-05-20 2017-07-13 ハイドロ−ケベック Photovoltaic electrode
JP2016146430A (en) * 2015-02-09 2016-08-12 株式会社デンソー Light energy conversion storage system and polymer
WO2016132750A1 (en) * 2015-02-18 2016-08-25 株式会社村田製作所 Secondary photocell and production method for secondary photocell electrode
WO2016132749A1 (en) * 2015-02-18 2016-08-25 株式会社村田製作所 Secondary photocell
JP2019087606A (en) * 2017-11-06 2019-06-06 日本電気株式会社 Dye-sensitized solar cell having a storage function

Also Published As

Publication number Publication date
JP4757433B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
Kato et al. Light-assisted rechargeable lithium batteries: organic molecules for simultaneous energy harvesting and storage
Lee et al. Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells
Das et al. Bifunctional photo-supercapacitor with a new architecture converts and stores solar energy as charge
Kubo et al. Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes
McCulloch et al. pH-tuning a solar redox flow battery for integrated energy conversion and storage
Yan et al. Electroactive organic compounds as anode-active materials for solar rechargeable redox flow battery in dual-phase electrolytes
Kim et al. Highly durable and efficient quantum dot-sensitized solar cells based on oligomer gel electrolytes
JP5966012B2 (en) Photoelectric conversion element
Kang et al. Highly efficient bifacial dye-sensitized solar cells employing polymeric counter electrodes
Mahmoudzadeh et al. A high energy density solar rechargeable redox battery
Cao et al. Solar redox flow batteries: mechanism, design, and measurement
EP3067906A1 (en) Electrochemical device
JP4757433B2 (en) Solar cell
Lei et al. A quasi-solid-state solar rechargeable battery with polyethylene oxide gel electrolyte
Park et al. The application of camphorsulfonic acid doped polyaniline films prepared on TCO-free glass for counter electrode of bifacial dye-sensitized solar cells
Dong et al. Petal-like cobalt selenide nanosheets used as counter electrode in high efficient dye-sensitized solar cells
Abdulkarim et al. Urea-treated electrolytes for higher efficiency dye-sensitized solar cells
US10147554B2 (en) Energy storage dye-sensitized solar cell
US20070181178A1 (en) Electrolyte composition and dye-sensitized solar cells employing the same
JP4783893B2 (en) Energy storage type dye-sensitized solar cell
JP4019139B2 (en) Photoelectric conversion element using electrolyte solution containing 2-n-propylpyridine and dye-sensitized solar cell using the same
Chan et al. Influence of nanomaterial fillers in biopolymer electrolyte system for squaraine-based dye-sensitized solar cells
Karlsson et al. Phenoxazine dyes in solid-state dye-sensitized solar cells
Ng et al. The impact of the incorporation of dual salts into poly (1-vinylpyrrolidone-co-vinyl acetate) based quasi-solid polymer electrolyte on the electrochemical and photovoltaic performances of the dye-sensitized solar cells
KR20140122361A (en) Electrolyte for dye sensitized solar cell and dye sensitized solar cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050513

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090505

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101103

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110601

R150 Certificate of patent or registration of utility model

Ref document number: 4757433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees