JPH09306553A - Photo-electric conversion secondary battery - Google Patents

Photo-electric conversion secondary battery

Info

Publication number
JPH09306553A
JPH09306553A JP8137558A JP13755896A JPH09306553A JP H09306553 A JPH09306553 A JP H09306553A JP 8137558 A JP8137558 A JP 8137558A JP 13755896 A JP13755896 A JP 13755896A JP H09306553 A JPH09306553 A JP H09306553A
Authority
JP
Japan
Prior art keywords
compound semiconductor
species
secondary battery
solution
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8137558A
Other languages
Japanese (ja)
Inventor
Jun Kuwabara
純 桑原
Kazuyuki Hirao
一之 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagaku Gijutsu Shinko Jigyodan
Original Assignee
Kagaku Gijutsu Shinko Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagaku Gijutsu Shinko Jigyodan filed Critical Kagaku Gijutsu Shinko Jigyodan
Priority to JP8137558A priority Critical patent/JPH09306553A/en
Publication of JPH09306553A publication Critical patent/JPH09306553A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a photo-electric conversion secondary battery having a photo-electric conversion function together with a secondary battery function in the same structure by filling the specified oxidation-reduction solution between a coloring matter adsorbed compound semiconductor layer and a transparent conductor layer. SOLUTION: A photo-electric conversion secondary battery has such structure that a coloring matter adsorbed compound semiconductor is interposed between a transparent conductor formed on the surface of a transparent supporting body and a counter electrode, and an oxidation-reduction solution whose oxidation species is colored and reduction species is colorless is filled between the transparent conductor and the compound semiconductor, and a metal species is filled between the counter electrode and the compound semiconductor. As the transparent supporting body, for example, transparent plastic for optics is used, and as the transparent conductor, for example, fluorine-doped tin oxide is used. The coloring matter adsorbed compound semiconductor is obtained in such a way that a compound semiconductor fine particle dispersion solution is applied to a metal species/counter electrode, baked, then immersed in a coloring matter solution. As the metal species, Al, Mg or the like is used. As the oxidation-reduction solution, iodine/tetrapropyle ammonium iodide (I2 /I<-> ) system is listed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化合物半導体の光電気
化学効果を利用して光電変換させる二次電池を製造する
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a secondary battery which performs photoelectric conversion by utilizing the photoelectrochemical effect of a compound semiconductor.

【0002】[0002]

【従来の技術】放電・充電を繰り返す二次電池として、
鉛蓄電池,アルカリ蓄電池,ニッケル・カドミウム蓄電
池等が知られている。この種の蓄電池では、正極活性物
質,負極活性物質,両物質間に存在する電解質を備えて
いる。負極活性物質は、放電過程で外部回路に電子を放
出し、それ自体が酸化される。正極活性物質は、放出さ
れた電子を受け取り還元される。また、負極活性物質及
び正極活性物質と電解質との界面では、活性室とイオン
との間で電子を移行させる電気化学反応が進行する。た
とえば、Pb(H2 SO4 )|隔膜|(H2 SO4 )P
bO2 系の鉛蓄電池では、負極側でPb→Pb2++2e
- +SO4 2- ,Pb2++SO4 2- →PbSO4 ,正極側
でPbO2 +4H+ +SO4 2- +2e- →PbSO4
2H2 O,全反応式としてPbO2 +2H2 SO4 +P
b→2PbSO4 +2H2 Oの放電反応が進行する。充
電は、逆の反応過程を経る。この点、光電池では、化合
物半導体の光電気化学的な効果を利用し光エネルギーを
電気エネルギーに変換する。
2. Description of the Related Art As a secondary battery that is repeatedly discharged and charged,
Lead acid batteries, alkaline batteries, nickel-cadmium batteries, etc. are known. This type of storage battery includes a positive electrode active material, a negative electrode active material, and an electrolyte existing between both materials. The negative electrode active material emits electrons to the external circuit during the discharge process and is itself oxidized. The positive electrode active material receives the emitted electrons and is reduced. At the interface between the negative electrode active material and the positive electrode active material and the electrolyte, an electrochemical reaction for transferring electrons between the active chamber and the ions proceeds. For example, Pb (H 2 SO 4 ) | diaphragm | (H 2 SO 4 ) P
In a bO 2 type lead storage battery, Pb → Pb 2+ + 2e on the negative electrode side.
- + SO 4 2- , Pb 2+ + SO 4 2- → PbSO 4 , PbO 2 + 4H + + SO 4 2- + 2e → PbSO 4 + on the positive electrode side
2H 2 O, PbO 2 + 2H 2 SO 4 + P as the whole reaction formula
The discharge reaction of b → 2PbSO 4 + 2H 2 O proceeds. Charging goes through the opposite reaction process. In this respect, the photovoltaic cell converts light energy into electric energy by utilizing the photoelectrochemical effect of the compound semiconductor.

【0003】[0003]

【発明が解決しようとする課題】このように放電・充電
が繰返し可能な二次電池を充電するためには、商用電
源,発電機,光電池等の外部電源を必要とする。このと
き、放電不十分時に充電すると、蓄電容量が減少するメ
モリー効果,過充電による破壊等が生じるため、充電管
理を必要とする。また、光電池では、それ自体に蓄電機
能がないため光照射時にのみ電力が供給され、継続的な
使用には蓄電池が別途必要となる。そのため、この蓄電
池の充電管理が要求される。本発明は、このような問題
を解消すべく案出されたものであり、酸化種が有色で還
元種が無色の酸化還元溶液を色素吸着化合物半導体層と
透明導電体層との間に充填することにより、同一構造で
光電変換機能と二次電池機能を併せ持つ光電変換型二次
電池を提供することを目的とする。
An external power source such as a commercial power source, a generator, or a photovoltaic cell is required to charge the secondary battery which can be repeatedly discharged and charged in this way. At this time, if the battery is charged when the discharge is insufficient, the memory effect of reducing the storage capacity, the destruction due to overcharge, and the like occur, and thus charge management is required. Further, since the photovoltaic cell itself does not have a power storage function, electric power is supplied only during light irradiation, and a storage battery is separately required for continuous use. Therefore, charge management of this storage battery is required. The present invention has been devised to solve such a problem, and a redox solution in which an oxidizing species is colored and a reducing species is colorless is filled between the dye adsorbing compound semiconductor layer and the transparent conductor layer. Accordingly, it is an object of the present invention to provide a photoelectric conversion secondary battery having the same structure and having both a photoelectric conversion function and a secondary battery function.

【0004】[0004]

【課題を解決するための手段】本発明の光電変換型二次
電池は、その目的を達成するため、その構造を図1に示
すように透明支持体の表面に形成された透明導電体と対
極との間に色素が吸着された化合物半導体層を挟み込
み、前記透明導電体と前記化合物半導体層との間に酸化
種が有色で還元種が無色の酸化還元溶液を充填し、前記
対極と前記化合物半導体層との間に金属種を充填したこ
とを特徴とする。透明支持体としては、無アルカリガラ
スやPMMA,PC,PVC等の光学用透明プラスチッ
ク等が使用される。この透明支持体の表面に、スパッタ
法,スプレー法等によって透明導電体層を形成する。透
明導電体層としては、フッ素ドープ酸化錫(SnO2
F)やSnドープ酸化インジウム(ITO)等が使用さ
れる。
In order to achieve the object, a photoelectric conversion type secondary battery of the present invention has a structure in which a transparent conductor and a counter electrode formed on the surface of a transparent support as shown in FIG. A compound semiconductor layer in which a dye is adsorbed is sandwiched between, and a redox solution in which an oxidizing species is colored and a reducing species is colorless is filled between the transparent conductor and the compound semiconductor layer, and the counter electrode and the compound It is characterized in that a metal species is filled between the semiconductor layer and the semiconductor layer. As the transparent support, non-alkali glass, optical transparent plastics such as PMMA, PC and PVC are used. A transparent conductor layer is formed on the surface of this transparent support by a sputtering method, a spray method or the like. As the transparent conductor layer, fluorine-doped tin oxide (SnO 2
F), Sn-doped indium oxide (ITO), or the like is used.

【0005】色素吸着化合物半導体は、湿式光電池によ
る光電変換機能及び電気化学的な隔膜機能を呈するもの
であり、化合物半導体微粒子分散液を金属種/対極上に
塗布し450〜550℃で焼成したものを色素溶液中に
浸漬することにより調製される。金属種/対極は、A
l,Mg等を通常の電極にコーティングしたものであ
る。金属種は、基本的には標準電極電位を参照しながら
酸化還元溶液の種類に応じて選択される。たとえば、I
2 /I- 系の酸化還元溶液では、標準電極電位(vsNH
E,25℃)が+0.536Vであるので、その電位よ
りも低い標準電極電位をもつAl3+/Al:−1.66
2V,Mg2+/Mg:−2.363V等の金属種が選定
され電池が構成される。この化合物半導体層/金属種/
対極と前述した透明導電体とを貼り合わせ、化合物半導
体層/金属種/対極と透明導電体層との間に酸化種が有
色で還元種が無色の酸化還元溶液を注入する。この種の
酸化還元溶液としては、沃素/沃化テトラプロピルアン
モニウム(I2 /I- )系がある。
The dye-adsorbed compound semiconductor exhibits a photoelectric conversion function and an electrochemical diaphragm function by a wet-type photovoltaic cell, and a compound semiconductor fine particle dispersion is applied on a metal species / counter electrode and baked at 450 to 550 ° C. Is prepared by immersing in a dye solution. Metal type / counter electrode is A
A normal electrode is coated with 1, Mg or the like. The metal species is basically selected according to the type of the redox solution with reference to the standard electrode potential. For example, I
2 / I - in the redox solution system, the standard electrode potential (VSNH
E, 25 ° C.) is +0.536 V, so Al 3+ /Al:-1.66 having a standard electrode potential lower than that potential.
A battery is formed by selecting a metal species such as 2V, Mg 2+ / Mg: -2.363V. This compound semiconductor layer / metal species /
The counter electrode and the transparent conductor described above are bonded together, and a redox solution in which the oxidizing species are colored and the reducing species is colorless is injected between the compound semiconductor layer / metal species / counter electrode and the transparent conductor layer. As this kind of redox solution, there is an iodine / tetrapropylammonium iodide (I 2 / I ) system.

【0006】[0006]

【作用】本発明者等は、色素増感系湿式光電池について
調査・研究をする過程で、図1に示した構造をもつ素子
が二次電池の機能と光電変換機能を併せ持つことを見い
出した。金属種としてアルミニウムを、酸化還元溶液と
してI2 /I- 系を使用した場合を例に取って説明する
と、次のようなメカニズムで二次電池機能及び光電変換
機能が発揮されるものと推察される。対極側の金属種で
2Al→2Al3++6e- ,透明導電体側の酸化還元溶
液中で3I2 +6e- →6I- の反応が進行する。この
反応は、金属種の酸化又は酸化還元溶液中にある酸化種
の還元が完了するまで継続し、放電が行われる。
In the process of investigating and researching a dye-sensitized wet photocell, the present inventors have found that the device having the structure shown in FIG. 1 has both the function of a secondary cell and the photoelectric conversion function. When aluminum is used as a metal species and I 2 / I system is used as a redox solution, the secondary battery function and the photoelectric conversion function are assumed to be exhibited by the following mechanism. It The reaction of 2Al → 2Al 3+ + 6e − in the metal species on the counter electrode side and the reaction of 3I 2 + 6e → 6I − in the redox solution on the transparent conductor side proceed. This reaction is continued until the oxidation of the metallic species or the reduction of the oxidizing species present in the redox solution is completed, and discharging is performed.

【0007】この系に透明支持体側から光を照射する
と、光電変換反応が生起する。この光電変換反応は、色
素増感系湿式光電池に由来するものであり、照射光を吸
収した色素が半導体化合物との界面で電荷を発生・移動
させる結果である。このとき、色素と酸化還元溶液との
間で酸化還元反応が生じる。これらの反応を化学式で表
すと、 色素の励起・電荷の発生 6dye+6hν→6dye* →6dye+ +6e- 金属種の還元 2Al3++6e- →2Al 酸化還元溶液の酸化(酸化色素の還元) 6dye+ +6I- →6dye+3I2 となる。なお、hνは照射した光エネルギーを、dye
は色素を、6dye* は光吸収により励起状態になった
色素を、dye+ は酸化状態になった色素を示す。これ
らの反応は、光照射の停止、或いは酸化還元溶液の酸化
又は酸化金属種の還元が完了するまで継続し、充電され
る。
When this system is irradiated with light from the transparent support side, a photoelectric conversion reaction occurs. This photoelectric conversion reaction originates from the dye-sensitized wet-type photocell, and is the result of the dye absorbing the irradiation light generating and transferring charges at the interface with the semiconductor compound. At this time, a redox reaction occurs between the dye and the redox solution. Expressing these reaction formulas, the generation of excitation and charge of the dye 6dye + 6hν → 6dye * → 6dye + + 6e - metal species reducing 2Al 3+ + 6e - → 2Al (reduction of the oxidized dye) redox oxidation solution 6dye + + 6I - → 6dye + 3I 2 . In addition, hν is the light energy irradiated,
Indicates a dye, 6dye * indicates a dye in an excited state by light absorption, and dye + indicates a dye in an oxidized state. These reactions are continued and charged until the light irradiation is stopped, or the oxidation of the redox solution or the reduction of the metal oxide species is completed.

【0008】充電反応には、酸化還元溶液の色が影響す
る。たとえば、還元種が有色の酸化還元系では、照射光
が有色の還元種に吸収され、色素を十分に励起させるこ
とができない。そのため、光充電反応が妨げられる。こ
れに対し、酸化種が有色で還元種が無色の酸化還元系で
は、充電容量に応じて色相変化を示す。そして、多量の
充電が必要とされる場合、薄色となっているので照射光
が効果的に色素に当り有効に励起される。また、充電を
必要としない場合、照射光を透過しにくいため色素に照
射されず、過充電が防止される。対極上に形成される金
属種は、通常ではAl,Mg等の金属であるため、酸化
金属種は単核イオンとなる。そのため、還元したときに
当初の膜形状に完全には戻らない場合がある。このよう
な場合には、多価イオン種に結合できる包接化合物で対
極に固定することにより、最大充電容量の低下が防止さ
れる。多価イオン種と結合可能な包接化合物としては、
フタロシアニン等に代表される大環状有機金属錯体,金
属種をイオン交換したゼオライト類,層間化合物等があ
る。なかでも、焼成処理を伴うことからゼオライト等の
無機系包接化合物が好ましい。
The color of the redox solution affects the charging reaction. For example, in a redox system in which the reducing species are colored, the irradiation light is absorbed by the colored reducing species and the dye cannot be sufficiently excited. Therefore, the light charging reaction is hindered. On the other hand, a redox system in which the oxidizing species are colored and the reducing species are colorless exhibits a hue change according to the charge capacity. Then, when a large amount of charge is required, the light is effectively colored because it has a light color and is effectively excited. In addition, when charging is not required, it is difficult for the irradiation light to pass therethrough, so that the dye is not irradiated and overcharging is prevented. Since the metal species formed on the counter electrode is usually a metal such as Al or Mg, the metal oxide species become mononuclear ions. Therefore, the original film shape may not be completely returned when it is reduced. In such a case, a decrease in the maximum charge capacity can be prevented by fixing to the counter electrode with an inclusion compound capable of binding to a multivalent ion species. As an inclusion compound capable of binding to a multivalent ion species,
There are macrocyclic organometallic complexes represented by phthalocyanines, zeolites with ion exchange of metal species, and intercalation compounds. Of these, an inorganic inclusion compound such as zeolite is preferable because it involves a firing treatment.

【0009】[0009]

【実施例】金属種/対極としてアルミニウム薄板を使用
し、酸化チタン半導体微粒子分散液を塗布した。酸化チ
タン半導体微粒子分散液は、平均粒径7mmのアナター
ゼ型酸化チタンを溶媒に30重量%の割合で均一分散さ
せたものを使用した。塗布後、450℃×0.5時間で
焼成した。得られた酸化チタン半導体層/アルミニウム
対極を、無アルカリガラスを透明支持体とするITO透
明導電体層に貼り合わせ、酸化チタン半導体層/アルミ
ニウム対極とITO透明導電体層との間に沃素/沃化テ
トラプロピルアンモニウム(I2 /I- )系の酸化還元
溶液を注入し、光電変換型二次電池を構成した。この光
電変換型二次電池の初期起電力は、開放電圧が0.65
V,短絡電流が0.052mAであった。暗時での10
時間短絡したところ、開放電圧が85%,短絡電流が9
%に減少し、放電が行われた。その後、250Wのハロ
ゲンランプを使用して10時間光照射したところ、初期
値に対し開放電圧が100%に、短絡電流が68%まで
回復し、充電が行われた。図2は、このときの充電効果
を示す。
Example An aluminum thin plate was used as a metal species / counter electrode, and a titanium oxide semiconductor fine particle dispersion liquid was applied. As the titanium oxide semiconductor fine particle dispersion liquid, an anatase type titanium oxide having an average particle diameter of 7 mm was uniformly dispersed in a solvent at a ratio of 30% by weight. After coating, it was baked at 450 ° C. for 0.5 hours. The obtained titanium oxide semiconductor layer / aluminum counter electrode was attached to an ITO transparent conductor layer having a non-alkali glass as a transparent support, and iodine / iodine was provided between the titanium oxide semiconductor layer / aluminum counter electrode and the ITO transparent conductor layer. A photoelectric conversion secondary battery was constructed by injecting a tetrapropylammonium (I 2 / I ) based redox solution. The initial electromotive force of this photoelectric conversion secondary battery has an open circuit voltage of 0.65.
V, the short circuit current was 0.052 mA. 10 in the dark
When short-circuited for a period of time, the open circuit voltage was 85% and the short-circuit current was 9
% And the discharge took place. After that, when light was irradiated for 10 hours using a 250 W halogen lamp, the open voltage was 100% and the short-circuit current was recovered to 68% with respect to the initial values, and charging was performed. FIG. 2 shows the charging effect at this time.

【0010】[0010]

【発明の効果】以上に説明したように、本発明の光電変
換型二次電池は、透明導電体層と対極との間に色素吸着
化合物半導体層を挟み込み、酸化種が有色で還元種が無
色の酸化還元溶液を透明導電体層と半導体層との間に充
填している。この構造のため、充電容量に応じて色相変
化を示し、充電時に照射光が効果的に色素を励起し、充
電を必要としない状態では照射光が透過しにくくなって
いるので過充電が防止される。このように放電・充電器
能を併せ持つことから、光電変換機能を活用して継続的
な発電が可能となる。
As described above, in the photoelectric conversion secondary battery of the present invention, the dye adsorbing compound semiconductor layer is sandwiched between the transparent conductor layer and the counter electrode, and the oxidizing species are colored and the reducing species are colorless. The redox solution is filled between the transparent conductor layer and the semiconductor layer. Due to this structure, the hue changes according to the charging capacity, the irradiation light effectively excites the dye during charging, and it is difficult for the irradiation light to pass through when charging is not required, so overcharging is prevented. It Since it has both discharging and charging functions in this way, it is possible to continuously generate electricity by utilizing the photoelectric conversion function.

【図面の簡単な説明】[Brief description of drawings]

【図1】 充電・放電機能を併せ持つ光電変換型二次電
FIG. 1 Photoelectric conversion secondary battery having both charging and discharging functions

【図2】 実施例で作成した光電変換型二次電池の充電
効果
FIG. 2 is a charging effect of the photoelectric conversion type secondary battery prepared in the example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 透明支持体の表面に形成された透明導電
体と対極との間に色素が吸着された化合物半導体層を挟
み込み、前記透明導電体と前記化合物半導体層との間に
酸化種が有色で還元種が無色の酸化還元溶液を充填し、
前記対極と前記化合物半導体層との間に金属種を充填し
たことを特徴とする光電変換型二次電池。
1. A compound semiconductor layer on which a dye is adsorbed is sandwiched between a transparent conductor formed on the surface of a transparent support and a counter electrode, and an oxidizing species is present between the transparent conductor and the compound semiconductor layer. Fill with a redox solution that is colored and the reducing species are colorless,
A photoelectric conversion secondary battery, wherein a metal species is filled between the counter electrode and the compound semiconductor layer.
JP8137558A 1996-05-08 1996-05-08 Photo-electric conversion secondary battery Pending JPH09306553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8137558A JPH09306553A (en) 1996-05-08 1996-05-08 Photo-electric conversion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8137558A JPH09306553A (en) 1996-05-08 1996-05-08 Photo-electric conversion secondary battery

Publications (1)

Publication Number Publication Date
JPH09306553A true JPH09306553A (en) 1997-11-28

Family

ID=15201535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8137558A Pending JPH09306553A (en) 1996-05-08 1996-05-08 Photo-electric conversion secondary battery

Country Status (1)

Country Link
JP (1) JPH09306553A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280587A (en) * 2001-03-21 2002-09-27 Fuji Photo Film Co Ltd Method for manufacturing photoelectric transfer device, photoelectric transfer device, and photoelectric cell
WO2004006381A1 (en) * 2002-07-09 2004-01-15 Fujikura Ltd. Solar cell
JP2004288985A (en) * 2003-03-24 2004-10-14 Japan Science & Technology Agency Solar cell
US6936567B2 (en) 2000-06-28 2005-08-30 Sanyo Electric Co., Ltd. Fuel reformer and manufacturing method of the same
US7825330B2 (en) 2002-07-09 2010-11-02 Fujikura Ltd. Solar cell
JP2013077578A (en) * 2013-01-16 2013-04-25 Fujikura Ltd Photoelectric conversion element
WO2013157589A1 (en) * 2012-04-18 2013-10-24 株式会社 東芝 Optical power generation system and electrical storage apparatus
US11575182B2 (en) 2016-10-14 2023-02-07 American Battery Solutions, Inc. Bonding connector with fuse section and battery module with insulative P-group separator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6936567B2 (en) 2000-06-28 2005-08-30 Sanyo Electric Co., Ltd. Fuel reformer and manufacturing method of the same
JP2002280587A (en) * 2001-03-21 2002-09-27 Fuji Photo Film Co Ltd Method for manufacturing photoelectric transfer device, photoelectric transfer device, and photoelectric cell
WO2004006381A1 (en) * 2002-07-09 2004-01-15 Fujikura Ltd. Solar cell
KR100681499B1 (en) * 2002-07-09 2007-02-09 가부시키가이샤후지쿠라 Solar cell
CN1300894C (en) * 2002-07-09 2007-02-14 株式会社藤仓 Solar cell
AU2003252477B2 (en) * 2002-07-09 2007-04-05 Fujikura Ltd. Solar cell
US7825330B2 (en) 2002-07-09 2010-11-02 Fujikura Ltd. Solar cell
JP2004288985A (en) * 2003-03-24 2004-10-14 Japan Science & Technology Agency Solar cell
WO2013157589A1 (en) * 2012-04-18 2013-10-24 株式会社 東芝 Optical power generation system and electrical storage apparatus
TWI500203B (en) * 2012-04-18 2015-09-11 Toshiba Kk Photovoltaic power generation system and power storage device
JP2013077578A (en) * 2013-01-16 2013-04-25 Fujikura Ltd Photoelectric conversion element
US11575182B2 (en) 2016-10-14 2023-02-07 American Battery Solutions, Inc. Bonding connector with fuse section and battery module with insulative P-group separator

Similar Documents

Publication Publication Date Title
Murakami et al. A high-voltage dye-sensitized photocapacitor of a three-electrode system
Miyasaka et al. The photocapacitor: An efficient self-charging capacitor for direct storage of solar energy
US20090146604A1 (en) Complex lithium secondary battery and electronic device employing the same
JP6581983B2 (en) Transparent automatic photorechargeable electrochemical device
JP4081084B2 (en) Solar cell and solar power generation device using the same
JPH09306553A (en) Photo-electric conversion secondary battery
US4085257A (en) Radiant energy converter having storage
JP2003500815A (en) Photovoltaic self-charging power storage system
CN102637896A (en) Photo-assisted chargeable lithium ion secondary battery
JP3448444B2 (en) Light storage battery
CN205900715U (en) Fill soon, put soon, long -lived lithium ion power batteries
JP2945955B2 (en) Method for producing niobium oxide porous electrode and solar cell using the same
Zhang et al. A solar rechargeable flow battery based on electroactive organic redox couples
Zhang et al. An approach to solar rechargeable flow battery based on electroactive organic redox couples
JPS5931571A (en) Electrolyte for lithium secondary battery
US20230238595A1 (en) Photovoltaic-electrochromic-battery all-in-one device
JP2004171815A (en) Dye sensitized solar battery
CN207753495U (en) A kind of solar charger
JP2511905B2 (en) Optical secondary battery
JPS62165857A (en) Nonaqueous electrolyte secondary cell
JPH0677513A (en) Photoelectricity source capable of displaying output
JP2615465B2 (en) Photovoltaic secondary battery
CN116190543A (en) Water system high energy density zinc iodine electrochromic cell
JP5499323B2 (en) Rocking chair type photovoltaic battery
JPH08203529A (en) Combined electrode, manufacture thereof and lithium secondary battery