JP2945955B2 - Method for producing niobium oxide porous electrode and solar cell using the same - Google Patents

Method for producing niobium oxide porous electrode and solar cell using the same

Info

Publication number
JP2945955B2
JP2945955B2 JP8042747A JP4274796A JP2945955B2 JP 2945955 B2 JP2945955 B2 JP 2945955B2 JP 8042747 A JP8042747 A JP 8042747A JP 4274796 A JP4274796 A JP 4274796A JP 2945955 B2 JP2945955 B2 JP 2945955B2
Authority
JP
Japan
Prior art keywords
niobium oxide
electrode
solar cell
niobium
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8042747A
Other languages
Japanese (ja)
Other versions
JPH09237641A (en
Inventor
和弘 佐山
裕則 荒川
秀樹 杉原
隆昌 花岡
洋史 牛島
利和 高橋
祐司 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP8042747A priority Critical patent/JP2945955B2/en
Publication of JPH09237641A publication Critical patent/JPH09237641A/en
Application granted granted Critical
Publication of JP2945955B2 publication Critical patent/JP2945955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化ニオブ多孔質
電極の製造方法及びそれを用いた太陽電池に関するもの
である。
The present invention relates to a method for producing a niobium oxide porous electrode and a solar cell using the same.

【0002】[0002]

【従来の技術】太陽電池にはいくつかの種類があるが実
用化している大部分はシリコン太陽電池である。しか
し、最近になって色素増感型湿式太陽電池が注目され、
実用化を目指して研究されている。色素増感型湿式太陽
電池は古くから研究されている。その基本構造は、酸化
物半導体、そこに吸着した色素、電解質溶液及び対極か
らなる。色素や電解溶液は様々な種類で検討されている
が、半導体についての研究は種類が限られている。初期
の頃は半導体の単結晶電極が用いられてきた。その種類
としては、酸化チタン(TiO)、酸化亜鉛(Zn
O)、硫化カドミウム(CdS)、酸化スズ(Sn
)等がある。しかし、単結晶電極は色素の吸着量が
少ないため効率は非常に低く、コストが高いというデメ
リットがあった。そこで考え出されてきたのが、微粒子
を焼結して細孔がたくさんある高表面積半導体電極であ
る。坪村らによって有機色素を吸着した多孔質酸化亜鉛
電極が非常に性能が高いことが報告されている(Nat
ure, 261(1976)p402)。その後は色
素にも改良がされるようになり、Graetzelらは
ルテニウム系色素を多孔質酸化チタン電極に吸着させる
ことで、現在、シリコン太陽電池並みの性能を有するま
でになっている(J.Am.Chem.Soc.115
(1993)6382)。しかし、シリコン太陽電池に
とって代わる実用化のためには今まで以上に高いエネル
ギー変換効率や、さらに高い短絡電流、開放電圧、形状
因子が必要になってくる。現在のところ、多孔質半導体
電極で報告されている物質としてはZnO,TiO
酸化ジルコニウム(ZrO)しかない。
2. Description of the Related Art There are several types of solar cells, but most of them are silicon solar cells. However, recently, dye-sensitized wet solar cells have attracted attention,
It is being studied for practical use. Dye-sensitized wet solar cells have been studied for a long time. Its basic structure is composed of an oxide semiconductor, a dye adsorbed thereon, an electrolyte solution, and a counter electrode. Although various types of dyes and electrolytic solutions are being studied, research on semiconductors is limited. In the early days, semiconductor single-crystal electrodes were used. The types include titanium oxide (TiO 2 ) and zinc oxide (Zn
O), cadmium sulfide (CdS), tin oxide (Sn
O 2 ). However, the single crystal electrode has the disadvantage that the efficiency of the single crystal electrode is very low due to the small amount of dye adsorbed and the cost is high. What has been devised is a high-surface-area semiconductor electrode in which fine particles are sintered and many pores are formed. Tsubomura et al. Report that a porous zinc oxide electrode having an organic dye adsorbed thereon has very high performance (Nat
ure, 261 (1976) p402). Since then, dyes have also been improved, and Graetzel et al. Have adsorbed ruthenium-based dyes on porous titanium oxide electrodes, and now have performance comparable to silicon solar cells (J. Am). Chem.Soc.115
(1993) 6382). However, for practical use to replace silicon solar cells, higher energy conversion efficiency, higher short-circuit current, open-circuit voltage, and form factor are required. At present, substances reported as porous semiconductor electrodes include ZnO, TiO 2 ,
There is only zirconium oxide (ZrO 2 ).

【0003】色素増感型湿式太陽電池はシリコン太陽電
池に比べ製造コストが非常に安いため、将来的に現在の
シリコン太陽電池を使っている色々な製品(例えば、電
卓や太陽発電パネル、時計、ゲーム機など)にとって代
わる可能性がある。そのときこれらの製品の使い方に応
じた太陽電池の特性が重要になる。太陽電池の特性には
色々あり、 1.短絡電流 2.開放電圧 3.形状因子 4.エネルギー変換効率 5.光吸収スペクトル などが特に重要である。
Since the manufacturing cost of the dye-sensitized wet solar cell is much lower than that of the silicon solar cell, various products using the current silicon solar cell (for example, calculators, solar panels, watches, Game machines). At that time, the characteristics of the solar cell according to the usage of these products become important. There are various characteristics of solar cells. Short circuit current 2. Open voltage 3. Form factor 4. Energy conversion efficiency5. The optical absorption spectrum is particularly important.

【0004】太陽電池は生活のいたるところで使われる
ようになってきているが、その使用法としては大きく分
けて2通りある。その一つは多くの太陽電池バネルを屋
根や広場に設置し、発生した電力を蓄電池に蓄えたり使
いやすい電流・電圧に変換して利用するエネルギー利用
場合である。もう一つは太陽電池電卓のように光が当た
っているときだけ発生した電気を利用する場合である。
前者の場合、電流と電圧どちらも大きくて最終的に取り
出せる電力エネルギーが如何に大きいかが太陽電池の最
も重要な性能となる。一方、後者の場合、電流と電圧が
あるしきい値を越えることが重要になる。電流を大きく
したいときは電池の面積を大きくしたり内部抵抗をでき
るだけ小さくすることで変化するが、電圧は太陽電池の
材料によってほぼ決まる。そのため電圧を大きくするに
は太陽電池を何枚も直列につなげなければいけない。こ
れは後者の様な使い方をするときの大きなデメリットに
なる。
[0004] Solar cells are being used everywhere in life, but there are two main ways of using them. One of them is an energy use in which many solar battery panels are installed on a roof or a square, and the generated power is stored in a storage battery or converted into an easy-to-use current / voltage for use. The other is a case where electricity generated only when light is applied, such as a solar cell calculator, is used.
In the former case, the most important performance of the solar cell is how large the electric energy that can be finally obtained because both the current and the voltage are large. On the other hand, in the latter case, it is important that the current and the voltage exceed a certain threshold. When it is desired to increase the current, it changes by increasing the area of the battery or reducing the internal resistance as much as possible, but the voltage is almost determined by the material of the solar cell. Therefore, in order to increase the voltage, many solar cells must be connected in series. This is a major disadvantage when using the latter.

【0005】[0005]

【発明が解決しようとする課題】本発明は、色素増感型
湿式太陽電池に対して有利に適用される従来より高い開
放電圧をもつ多孔質構造の酸化ニオブ半導体電極の製造
方法とその電極を使用する太陽電池を提供することをそ
の課題とする。
SUMMARY OF THE INVENTION The present invention is directed to the manufacture of a niobium oxide semiconductor electrode having a porous structure and a higher open voltage than the prior art, which is advantageously applied to a dye-sensitized wet solar cell.
It is an object to provide a method and a solar cell using the electrode.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、本発明を完成する
に至った。すなわち、本発明の製造方法によれば、酸化
ニオブからなる多孔質半導体電極が提供される。また、
本発明によれば、色素を吸着させた酸化ニオブからなる
半導体電極を有する太陽電池が提供される。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have completed the present invention. That is, according to the manufacturing method of the present invention, a porous semiconductor electrode made of niobium oxide is provided. Also,
According to the present invention, a solar cell having a semiconductor electrode made of niobium oxide having a dye adsorbed thereon is provided.

【0007】[0007]

【発明の実施の形態】本発明の製造方法により作られる
多孔質半導体電極は、高い表面積を有する酸化ニオブか
らなる。この酸化ニオブは、高い表面積を電極が持つた
めに、その1次粒子径が小さいことが望ましい。具体的
には1〜200nm、好ましくは50nm以下がよい
が、小さすぎてアモルファスではいけない。酸化ニオブ
自身の表面積としては5〜100m/gがよい。酸化
ニオブを電極として扱うには、酸化ニオブ粉末をそれだ
けでペレット化して焼結してもよいが、導電性基板上に
固定して用いた方が扱い易い。基板としてはチタンやタ
ンタルなどの安定な金属や導電性ガラスやカーボンなど
でもよい。基板上の酸化ニオブの厚さは200〜200
00nm、好ましくは1000nm以上が望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION A porous semiconductor electrode made by the manufacturing method of the present invention comprises niobium oxide having a high surface area. Since the electrode has a high surface area, the niobium oxide preferably has a small primary particle diameter. Specifically, the thickness is 1 to 200 nm, preferably 50 nm or less, but is too small to be amorphous. The surface area of niobium oxide itself is preferably 5 to 100 m 2 / g. In order to treat niobium oxide as an electrode, the niobium oxide powder may be pelletized by itself and sintered, but it is easier to handle by fixing it on a conductive substrate. The substrate may be a stable metal such as titanium or tantalum, or conductive glass or carbon. The thickness of niobium oxide on the substrate is 200 to 200
00 nm, preferably 1000 nm or more.

【0008】酸化ニオブ粒子は純粋な水酸化ニオブの分
解によって調製する。できるだけ不純物の少ない水酸化
ニオブを使うのが望ましいが、ニオブ塩やニオブアルコ
キシドを充分精製してから加水分解して純枠な水酸化ニ
オブを調製してもよい。酸化ニオブ電極が充分に機能す
るためには酸化ニオブ粒子同士の電気的な接触が重要で
あり、そのためには焼成条件が重要になる。水酸化ニオ
ブまたは低温で脱水分解した酸化ニオブは前焼成するの
が望ましい。空気中で300〜900度、好ましくは5
00〜800度にゆっくり昇温し約1時間保ち、またゆ
っくり温度を下げる。前焼成した酸化ニオブは上述した
厚さで基板に固定される。これには酸化ニオブの懸濁液
に基板をデッピングしてもいいし、酸化ニオブのスラリ
ーを塗布してもよい。酸化ニオブスラリーは水または界
面活性剤水溶液を用いたり、ポリエチレングリコールな
どを添加して粘性を高めてもよい。その後基板上でゆっ
くり乾燥させる。次に基板ごと空気中または不活性雰囲
気下で焼成を行う。焼成温度は300〜900度、好ま
しくは400〜800度で1時間行う。ただし、焼成温
度は基板が損傷しない温度以下でおこなわなけれないけ
ない。
[0008] Niobium oxide particles are prepared by the decomposition of pure niobium hydroxide. It is desirable to use niobium hydroxide having as few impurities as possible, but it is also possible to purify the niobium salt or niobium alkoxide sufficiently and then hydrolyze to prepare pure niobium hydroxide. In order for the niobium oxide electrode to function sufficiently, electrical contact between the niobium oxide particles is important, and firing conditions are important for that. Preferably, niobium hydroxide or niobium oxide dehydrated and decomposed at a low temperature is pre-baked. 300 to 900 degrees in air, preferably 5
Slowly raise the temperature to 00-800 degrees and keep it for about 1 hour, then slowly lower the temperature. The pre-fired niobium oxide is fixed to the substrate at the thickness described above. For this purpose, the substrate may be dipped in a suspension of niobium oxide, or a slurry of niobium oxide may be applied. The viscosity of the niobium oxide slurry may be increased by using water or an aqueous solution of a surfactant, or by adding polyethylene glycol or the like. Then, it is slowly dried on the substrate. Next, the substrate is fired in air or under an inert atmosphere. The firing temperature is 300 to 900 degrees, preferably 400 to 800 degrees for 1 hour. However, the firing temperature must be lower than the temperature at which the substrate is not damaged.

【0009】次に、このようにして調製した酸化ニオブ
電極を用いた太陽電池の作製法を説明する。酸化ニオブ
電極に色素を吸着させるには、色素の溶液に電極を15
分〜2時間浸す。温度は色素の分解が起こらないかぎり
溶液の沸点に近い方が好ましい。溶媒は色素をよく溶解
し、かつ色素の電極への吸着を阻害せず、仮に電極表面
に残留していても電気化学的に不活性な物がよい。例え
ば、エタノールやアセトニトリルなどがあげられる。電
解液の溶媒としては電気化学的に不活性で、かつ電解質
を充分な量溶解できる物質が望まれる。例えば、アセト
ニトリルや炭酸プロピレンなどがある。電解質について
は安定なイオンのレドックス対で電荷を充分な速度で電
極間を輸送できる物質が望まれる。レドックス対として
はI/I やBr/Br 、キノン/ヒドロキ
ノン対がある。例えば、I/I 対をつくるときに
は沃素のアンモニウム塩と沃素を混合する。陽イオンは
電解質が溶媒に溶け易いものを選択する。色素について
はローズベンガルなどの有機色素または亜鉛ポルフィリ
ンやルテニウムビピリジルなどの金属錯体が利用できる
が、酸化・還元体が安定比較的であることや光励起した
色素中の電子の電位が酸化ニオブ半導体の伝導帯電位よ
り負であり、かつl/I イオン等のレドックス対
のポテンシャルより正であることなどが必要である。対
極についてはI イオンなどの酸化型レドックスの還
元反応を充分な早さでおこなわせる触媒能を持った材料
が望まれる。例えば白金またはこれを導伝性材料に担持
した電極などがある。最終的に電池を作製するときには
色素を吸着させた酸化ニオブ電極と対極の間にレドック
スを含む電解溶液をはさみ、シール剤で封止する。以上
の作業は空気中の水分や酸素をできるだけ触れさせない
ような条件下で行うことが望ましい。
Next, a method of manufacturing a solar cell using the niobium oxide electrode thus prepared will be described. To adsorb the dye on the niobium oxide electrode, place the electrode on a solution of the dye.
Soak for minutes to 2 hours. The temperature is preferably close to the boiling point of the solution as long as the decomposition of the dye does not occur. The solvent preferably dissolves the dye well, does not inhibit the adsorption of the dye to the electrode, and is electrochemically inactive even if it remains on the electrode surface. For example, ethanol, acetonitrile and the like can be mentioned. As a solvent for the electrolytic solution, a substance which is electrochemically inert and can dissolve a sufficient amount of the electrolyte is desired. For example, there are acetonitrile and propylene carbonate. As the electrolyte, a substance capable of transporting electric charges between the electrodes at a sufficient speed by a stable redox pair of ions is desired. Redox pairs include I / I 3 , Br / Br 3 , and quinone / hydroquinone pairs. For example, when forming an I / I 3 pair, an ammonium salt of iodine and iodine are mixed. The cation is selected so that the electrolyte is easily dissolved in the solvent. Organic dyes such as rose bengal or metal complexes such as zinc porphyrin and ruthenium bipyridyl can be used as the dye.However, the oxides and reductants are stable and relatively stable, and the electron potential in the photoexcited dye is lower than that of the niobium oxide semiconductor. It is necessary to be more negative than the charge potential and more positive than the potential of a redox couple such as l / I 3 ion. Material having a catalytic ability to perform a reduction reaction at a sufficient early as oxidized redox ion is desired - I 3 for the counter electrode. For example, there is platinum or an electrode carrying the same on a conductive material. When a battery is finally manufactured, a redox-containing electrolytic solution is interposed between the niobium oxide electrode on which the dye is adsorbed and the counter electrode, and sealed with a sealant. It is desirable that the above operation be performed under such a condition that moisture and oxygen in the air are not touched as much as possible.

【0010】[0010]

【実施例】以下に本発明の実施例を述べる。Embodiments of the present invention will be described below.

【0011】実施例1〜7 測定する電池の大きさはいずれも1×1cmを用いた。
光源は500Wのキセノンランプを用いた。フィルター
は520nmバンドパスフィルター(4mW/cm
または390nmカットオフフィルター(130mW/
cm)を用いた。短絡電流、開放電圧、形状因子の測
定は無抵抗電流計を備えたポテンシオスタットを用い
た。酸化ニオブは水酸化ニオブ(セントラルガラス社
製)の熱分解により調製した。熱分解のための前焼成温
度を〔表1〕に示すように500、700、800℃で
1時間行った。このようにして調製した酸化ニオブの表
面積は10〜100m/gであった。酸化ニオブ粉末
は水、アセチルアセトン、界面活性剤と混合しスラリー
状にした。このスラリーを導電性ガラス(F−Sn
、10Ω/sq)上に、焼成後に所定の膜厚になる
ように塗布した。焼成はいずれも500℃、1時間空気
中でおこない酸化ニオブ電極を作製した。色素はGra
etzelの報告しているRu((bipy)(COO
H)(SCN)を用いた。色素をエタノールに
溶解し、この中に酸化ニオブ電極を入れて、80℃,1
時間還流して色素を電極に吸着させた。その後、室温で
乾燥させた。対極は白金を20nmの厚さで着した導電
性ガラスを用いた。レドックス対はI/I を用い
た。溶質はtetrapropylammonium
iodide(0.46M〉とヨウ素(0.06M)、
溶媒はethylene carbonate(80v
ol%)とacetonitrile(20vol%)
の混合液を用いた。酸化ニオブを電極として用いた太陽
電池の特性を表1に示す。
Examples 1 to 7 The size of a battery to be measured was 1 × 1 cm.
The light source used was a 500 W xenon lamp. The filter is a 520 nm band pass filter (4 mW / cm 2 )
Or a 390 nm cut-off filter (130 mW /
cm 2 ). The measurement of short-circuit current, open-circuit voltage, and form factor used a potentiostat equipped with a non-resistance ammeter. Niobium oxide was prepared by thermal decomposition of niobium hydroxide (Central Glass). The pre-baking temperature for thermal decomposition was 500, 700, and 800 ° C. for 1 hour as shown in Table 1. The surface area of the niobium oxide thus prepared was 10 to 100 m 2 / g. The niobium oxide powder was mixed with water, acetylacetone, and a surfactant to form a slurry. This slurry is mixed with conductive glass (F-Sn).
O 2 , 10Ω / sq) so as to have a predetermined film thickness after firing. The firing was performed at 500 ° C. for 1 hour in the air to produce a niobium oxide electrode. The pigment is Gra
Ru ((bipy) (COO) reported by etzel
H) 2 ) 2 (SCN) 2 was used. The dye was dissolved in ethanol, and a niobium oxide electrode was placed in the solution.
After refluxing for an hour, the dye was adsorbed on the electrode. Then, it was dried at room temperature. As a counter electrode, a conductive glass on which platinum was deposited with a thickness of 20 nm was used. The redox pair used was I / I 3 . Solute is tetrapropylammonium
iodide (0.46M) and iodine (0.06M),
Solvent is ethyl carbonate (80v
ol%) and acetonitrile (20vol%)
Was used. Table 1 shows the characteristics of the solar cell using niobium oxide as an electrode.

【0012】[0012]

【表1】 実施例 520nmバンドパス >390nmカットオフ 前焼成温度 膜厚 開放電圧 短絡電流 開放電圧 短絡電流 形状因子 半導体 ℃ μm V mA V mA % 1 NbO500 6 0.61 0.29 0.72 6.02 58 2 NbO500 11 0.56 0.31 0.68 7.00 3 NbO700 3 0.60 0.10 0.84 4.2 4 NbO700 8 0.58 0.31 0.74 8.26 61 5 NbO700 10 0.57 0.22 0.73 5.04 6 NbO800 4 0.71 0.11 0.86 3.60 7 NbO800 8 0.63 0.21 0.80 5.45 60[Table 1] Example 520 nm band pass> 390 nm cut-off Pre-baking temperature Film thickness Open voltage Short circuit current Open voltage Short circuit current Form factor Semiconductor ℃ μm V mA V mA% 1 Nb 2 O 5 500 6 0.61 0.29 0.72 6.02 58 2 Nb 2 O 5 500 11 0.56 0.31 0.68 7.00 3 Nb 2 O 5 700 3 0.60 0.10 0.84 4.2 4 Nb 2 O 5 700 8 0.58 0.31 0.74 8.26 61 5 Nb 2 O 5 700 10 0.57 0.22 0.73 5.04 6 Nb 2 O 5 800 4 0.71 0.11 0.86 3.60 7 Nb 2 O 5 800 8 0.63 0.21 0.80 5.45 60

【0013】比較例1〜9 表2に酸化ニオブの代わりに各種酸化物半導体を用いた
太陽電池の特性を示す。比較例1については、Grae
zelらの論文に従った(J.Am.Chem.So
c.115(1993)6382)。酸化チタン材料と
してはP−25(日本アエロジル製)が優れていること
が示されているので、同じ物を同じ調製法で電極として
比較した。表2に示す結果は、論文に示された条件の前
後で少しずつ調製条件を変化させ、最適値でかつ再現性
の取れるデータをのせた。比較例1と表1の結果を比べ
ると、開放電圧はいずれの場合も酸化ニオブ電極が酸化
チタン電極を大きく上回っていることがわかる。短絡電
流は酸化チタン電極の方が上回っているが、形状因子は
酸化ニオブ電極の方がわずかであるがよかった。
Comparative Examples 1 to 9 Table 2 shows characteristics of solar cells using various oxide semiconductors instead of niobium oxide. For Comparative Example 1, Grae
zel et al. (J. Am. Chem. So
c. 115 (1993) 6382). P-25 (manufactured by Nippon Aerosil) was shown to be excellent as a titanium oxide material, and the same material was compared as an electrode by the same preparation method. In the results shown in Table 2, the preparation conditions were changed little by little before and after the conditions shown in the paper, and data having optimum values and reproducibility were placed. Comparing the results of Comparative Example 1 and Table 1, it can be seen that the open-circuit voltage of the niobium oxide electrode is much higher than that of the titanium oxide electrode in each case. The short-circuit current was higher for the titanium oxide electrode, but the form factor was slightly better for the niobium oxide electrode.

【0014】比較例2〜9にっいては、半導体材料は市
販の酸化物または水酸化物いろいろな金属塩やアルコキ
シドなどから酸化物粉末を調製し、これを酸化ニオブ電
極と同じ方法で電極化し、電池を作製した。いくつか調
製条件を変化させて最適値を表2に載せた。その結果、
酸化ニオブ電極はこれらの様々な半導体電極と比較して
開放電圧、短絡電流、形状因子ともに大きく性能が上回
ることがわかる。
In Comparative Examples 2 to 9, as the semiconductor material, an oxide powder was prepared from various metal salts and alkoxides of commercially available oxides or hydroxides, and this was formed into an electrode in the same manner as the niobium oxide electrode. A battery was manufactured. The optimum values are listed in Table 2 by changing some preparation conditions. as a result,
It can be seen that the performance of the niobium oxide electrode greatly exceeds all of these various semiconductor electrodes in terms of open-circuit voltage, short-circuit current, and shape factor.

【0015】[0015]

【表2】 比較例 520nmバンドパス >390nmカットオフ 前焼成温度 膜厚 開放電圧 短絡電流 開放電圧 短絡電流 形状因子 半導体 ℃ μm V mA V mA % 1 TiO500 7 0.52 0.73 0.66 13.72 57 2 ZnO 500 7 0.49 0.11 0.54 0.63 25 3 ZrO500 8 - tr 0.15 tr 21 4 InO500 7 0.30 0.05 0.41 0.74 31 5 SnO500 7 0.46 0.12 0.60 1.61 30 6 LaO500 7 - tr 0.15 tr - 7 TaO500 6 - tr 0.12 tr - 8 WO500 7 0.31 0.11 0.56 0.59 - 9 SrTiO500 6 0.27 tr 0.31 tr 34[Table 2] Comparative example 520 nm band pass> 390 nm cut-off Pre-baking temperature Film thickness Open voltage Short circuit current Open voltage Short circuit current Form factor Semiconductor ℃ μm V mA V mA% 1 TiO 2 500 7 0.52 0.73 0.66 13.72 57 2 ZnO 500 7 0.49 0.11 0.54 0.63 25 3 ZrO 2 500 8-tr 0.15 tr 21 4 In 2 O 3 500 7 0.30 0.05 0.41 0.74 31 5 SnO 2 500 7 0.46 0.12 0.60 1.61 30 6 La 2 O 5 500 7-tr 0.15 tr-7 Ta 2 O 5 500 6-tr 0.12 tr-8 WO 3 500 7 0.31 0.11 0.56 0.59-9 SrTiO 3 500 6 0.27 tr 0.31 tr 34

【0016】[0016]

【発明の効果】本発明によれば、従来の酸化チタンを用
いた湿式太陽電池に比較して開放電圧を大きく取れるの
で、電卓など一定以上の電圧と最小限の電流だけで機能
するような電気製品に組み込んだ場合、電池の直列枚数
が少なくてすむので製作コストが低くなる。
According to the present invention, the open-circuit voltage can be increased as compared with a conventional wet-type solar cell using titanium oxide. When incorporated in a product, the number of batteries in series can be reduced, so that the manufacturing cost is reduced.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 花岡 隆昌 茨城県つくば市東1丁目1番 工業技術 院物質工学工業技術研究所内 (72)発明者 牛島 洋史 茨城県つくば市東1丁目1番 工業技術 院物質工学工業技術研究所内 (72)発明者 高橋 利和 茨城県つくば市東1丁目1番 工業技術 院物質工学工業技術研究所内 (72)発明者 川西 祐司 茨城県つくば市東1丁目1番 工業技術 院物質工学工業技術研究所内 (56)参考文献 特開 平5−59562(JP,A) 特開 平7−249790(JP,A) 特表 平6−511113(JP,A) 特表 平6−507999(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 14/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Takamasa Hanaoka 1-1-1, Higashi, Tsukuba, Ibaraki Pref., National Institute of Advanced Industrial Science and Technology (72) Inventor Hiroshi Ushijima 1-1-1, Higashi, Tsukuba, Ibaraki, Japan Inside the Research Institute of Engineering, Industrial Technology (72) Inventor Toshikazu Takahashi 1-1-1, Higashi, Tsukuba, Ibaraki Pref. Technical Research Institute (56) References JP-A-5-59562 (JP, A) JP-A-7-249790 (JP, A) JP-A-6-511113 (JP, A) JP-A-6-507999 (JP, A) A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 14/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水酸化ニオブまたは低温で脱水分解した
酸化ニオブを、空気中で300〜900℃で緩やかに昇
温し、約1時間その温度に保ち、緩やかに温度を下げて
製造した粒径1〜200nmの酸化ニオブを、基板上に
所定の厚さに固定し、基板上で緩やかに乾燥させた後、
基板ごと空気中または不活性雰囲気下300〜900℃
で焼成することを特徴とする酸化ニオブ多孔質半導体電
極の製造方法。
(1) Niobium hydroxide or dehydrated and decomposed at low temperature
Niobium oxide slowly rises in air at 300-900 ° C
Warm it, keep it at that temperature for about an hour,
The manufactured niobium oxide having a particle size of 1 to 200 nm is placed on a substrate.
After fixing to the predetermined thickness and gently drying on the substrate,
300 ~ 900 ℃ in air or under inert atmosphere with substrate
Niobium oxide porous semiconductor electrode characterized by firing
Polar manufacturing method.
【請求項2】 請求項1の製造方法により製造された酸
化ニオブ多孔質半導体電極を有する高電圧用の太陽電
池。
2. An acid produced by the production method according to claim 1.
A high-voltage solar cell having a niobium fluoride porous semiconductor electrode .
JP8042747A 1996-02-29 1996-02-29 Method for producing niobium oxide porous electrode and solar cell using the same Expired - Lifetime JP2945955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8042747A JP2945955B2 (en) 1996-02-29 1996-02-29 Method for producing niobium oxide porous electrode and solar cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8042747A JP2945955B2 (en) 1996-02-29 1996-02-29 Method for producing niobium oxide porous electrode and solar cell using the same

Publications (2)

Publication Number Publication Date
JPH09237641A JPH09237641A (en) 1997-09-09
JP2945955B2 true JP2945955B2 (en) 1999-09-06

Family

ID=12644614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8042747A Expired - Lifetime JP2945955B2 (en) 1996-02-29 1996-02-29 Method for producing niobium oxide porous electrode and solar cell using the same

Country Status (1)

Country Link
JP (1) JP2945955B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3309785B2 (en) * 1997-11-06 2002-07-29 富士ゼロックス株式会社 Semiconductor electrode, method of manufacturing the same, and photovoltaic cell using the same
US6649824B1 (en) 1999-09-22 2003-11-18 Canon Kabushiki Kaisha Photoelectric conversion device and method of production thereof
AU2009310805B2 (en) 2008-10-29 2017-02-02 Fujifilm Corporation Dye, photoelectric conversion element using the same, photoelectrochemical cell, and method of producing dye
JP5524557B2 (en) 2009-09-28 2014-06-18 富士フイルム株式会社 Method for producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
JP5620081B2 (en) 2009-09-28 2014-11-05 富士フイルム株式会社 Method for manufacturing photoelectric conversion element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4207659A1 (en) * 1992-03-11 1993-09-16 Abb Patent Gmbh METHOD FOR PRODUCING A PHOTOELECTROCHEMICAL CELL AND A CLEARLY PRODUCED CELL
CH686206A5 (en) * 1992-03-26 1996-01-31 Asulab Sa Cellule photoelectrochimique regeneratrice transparent.

Also Published As

Publication number Publication date
JPH09237641A (en) 1997-09-09

Similar Documents

Publication Publication Date Title
JP4470370B2 (en) Method for manufacturing photoelectric conversion element
JP5428555B2 (en) Method for producing dye-sensitized photoelectric conversion element
JP4591131B2 (en) Dye-sensitized photoelectric conversion element, manufacturing method thereof, electronic device, manufacturing method thereof, and electronic apparatus
JP5285062B2 (en) Photosensitizer and solar cell using the same
US9805878B2 (en) Silicon dioxide solar cell
US20130240033A1 (en) Method for producing counter electrode based on electrophoretic deposition of graphene, counter electrode produced by the method and dye-sensitized solar cell including the counter electrode
JP4635473B2 (en) Method for manufacturing photoelectric conversion element and method for manufacturing semiconductor electrode
JP2007311336A (en) Semiconductor electrode containing phosphate and solar battery using the same
JP2004234988A (en) Photoelectric conversion element and its manufacturing method, electronic device and its manufacturing method, and semiconductor layer and its manufacturing method
Lan et al. Quasi-solid-state dye-sensitized solar cells based on a sol–gel organic–inorganic composite electrolyte containing an organic iodide salt
JP4730951B2 (en) Porphyrin dye having trimethylsilyl group, photoelectric conversion element using the same, and dye-sensitized solar cell
JP2009280702A (en) Porphyrin complex, photoelectric conversion device, and dye-sensitized solar cell
EP2256764A2 (en) Dye-sensitized solar cell and organic solvent-free electrolyte for dye-sensitized solar cell
JP2945955B2 (en) Method for producing niobium oxide porous electrode and solar cell using the same
CN102637896A (en) Photo-assisted chargeable lithium ion secondary battery
JP4329302B2 (en) Photoelectric conversion element
JP2004158243A (en) Porous oxide semiconductor film, photoelectric conversion element, and solar cell
JP4507834B2 (en) Dye-sensitized photoelectric conversion element and method for producing the same
JP2004014370A (en) Oxide semiconductor electrode and photoelectric conversion element
JP2004158551A (en) Oxide semiconductor paste, porous oxide semiconductor thin film, photoelectric conversion device, and solar cell
JP2009081074A (en) Dye-sensitized photoelectric transfer element, electrolyte composition, additive for electrolyte, and electronic equipment
Huey Fabrication of super capacitor and perovskite-sensitized solar cell for the assembly of photo-super capacitor
JP2006278240A (en) Dye sensitized photoelectric conversion device and its manufacturing method
Gupta et al. Characterization of screen-printed dye-sensitized nanocrystalline TiO2 solar cells
Squillantea et al. Characterization of screen-printed, dye-sensitized, nanocrystalline Ti02 solar cells

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term