JP2511905B2 - Optical secondary battery - Google Patents

Optical secondary battery

Info

Publication number
JP2511905B2
JP2511905B2 JP61242512A JP24251286A JP2511905B2 JP 2511905 B2 JP2511905 B2 JP 2511905B2 JP 61242512 A JP61242512 A JP 61242512A JP 24251286 A JP24251286 A JP 24251286A JP 2511905 B2 JP2511905 B2 JP 2511905B2
Authority
JP
Japan
Prior art keywords
electrode
secondary battery
solid electrolyte
light
photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61242512A
Other languages
Japanese (ja)
Other versions
JPS6396874A (en
Inventor
輝寿 神原
正 外邨
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61242512A priority Critical patent/JP2511905B2/en
Publication of JPS6396874A publication Critical patent/JPS6396874A/en
Application granted granted Critical
Publication of JP2511905B2 publication Critical patent/JP2511905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光で充電できる二次電池、すなわち太陽電池
と二次電池とを併せた働らきをする全固体形光二次電池
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photo-chargeable secondary battery, that is, an all-solid-state photo secondary battery that works as a combination of a solar cell and a secondary battery.

従来の技術 光で充電する二次電池の試みは、例えば、金子正夫著
エレクトロニクス,P97〜104(昭59・10)の総説で示さ
れているように数多くなされているが、実用化されてい
るのは太陽電池で通常の二次電池又はコンデンサーを充
電する方式のものである。このように太陽電池で発電し
た電力を二次電池に貯えるハイブリッド型の電池の他に
以下に述べる2通りの方法が提案されている。
2. Description of the Related Art There have been many trials of light-charged secondary batteries, for example, as shown in the review article by Masao Kaneko Electronics, P97-104 (Sho 59/10), but they have been put to practical use. Is a method of charging an ordinary secondary battery or capacitor with a solar cell. In addition to the hybrid type battery in which the electric power generated by the solar cell is stored in the secondary battery as described above, the following two methods have been proposed.

(1) n型TiO2あるいはP型GaPのような光半導体電
極と白金のような金属を電解液に接触させて光電池とす
る方法。
(1) A method of forming a photovoltaic cell by bringing an optical semiconductor electrode such as n-type TiO 2 or P-type GaP and a metal such as platinum into contact with an electrolytic solution.

この電池の動作は、両電極の外部端子を閉路状態又は
負荷状態とし、光半導体電極に光を照射することにより
その電極面で電荷分離(価電子帯にホール,伝導帯に電
子を生ずる)を起させる。電極−電解液界面での光誘起
した電荷が電解液中の物質を酸化又は還元させ、生成し
た酸化体又は還元体を電池活物質として貯えることがで
きる。光無照射時には、光照射時に貯えられた酸化体又
は還元体を放電させる試みもなされている。しかし、こ
の電池は実用の域に達していない。
The operation of this battery is such that the external terminals of both electrodes are closed or loaded and light is emitted to the photosemiconductor electrode to cause charge separation (holes in the valence band and electrons in the conduction band) at the electrode surface. Raise it. The light-induced charge at the electrode-electrolyte interface oxidizes or reduces the substance in the electrolyte, and the generated oxidant or reductant can be stored as a battery active material. At the time of non-irradiation of light, attempts have been made to discharge the oxidant or the reductant stored during light irradiation. However, this battery has not reached the practical range.

これは、以下の理由によるものと考えられている。光
励起した電荷で後続する電気化学的な酸化還元反応を行
わせるには、 (a) 電解質中の物質の酸化還元電位が、光半導体電
極の価電子帯の上端より上部にありかつ伝導帯の下端よ
り下部にあること。
This is considered to be due to the following reasons. In order to carry out the subsequent electrochemical redox reaction with the photoexcited charge, (a) the redox potential of the substance in the electrolyte is above the upper end of the valence band of the photosemiconductor electrode and at the lower end of the conduction band. Be at the bottom.

(b) 光励起により出来るだけ多くの電荷分離を行な
わせるため、半導体のバンドギャップが小さいこと。
(B) The band gap of the semiconductor is small so that as much charge as possible can be separated by photoexcitation.

が必要である。しかしバンドギャップが余り小さいと
(a)の条件が満足できず、後続する電気化学反応が進
行しない。したがって、(a)及び(b)の条件を満た
し、太陽光や蛍光灯の光を吸収して反応を効率よく進め
るためには、半導体電極のバンドギャップは、1〜2.5e
V程度のものが望ましい。このようなバンドギャップを
もつ半導体として例えばn型Si(1,1eV),n型GaAs(1.3
5eV),Cds(2.4eV)が代表的なものとして存在する。し
かし、いずれの半導体電極もそれ自体が電解液中で電気
化学反応に関与し、いわゆる光腐食現象をおこし、実用
性に欠けるという問題を有していた。一方、電解液中で
比較的安定な半導体としてTiO2あるいはZnOがある。し
かしこれらはバンドギャップが3.0〜3.2eVであるため、
紫外光の領域の光のみが利用出来るだけで、光−電気変
換効率が低く、Si,GaAs,Cds等を使用した光電池同様、
実用性に欠けていた。
is necessary. However, if the band gap is too small, the condition (a) cannot be satisfied, and the subsequent electrochemical reaction does not proceed. Therefore, in order to satisfy the conditions of (a) and (b) and to absorb the sunlight and the light of the fluorescent lamp to efficiently proceed the reaction, the band gap of the semiconductor electrode is 1 to 2.5e.
The thing of V grade is desirable. As a semiconductor having such a band gap, for example, n-type Si (1,1 eV), n-type GaAs (1.3
5eV) and Cds (2.4eV) exist as typical ones. However, each of the semiconductor electrodes has a problem that it itself participates in an electrochemical reaction in an electrolytic solution, causes a so-called photocorrosion phenomenon, and lacks practicality. On the other hand, TiO 2 or ZnO is a relatively stable semiconductor in the electrolytic solution. However, since these have a band gap of 3.0 to 3.2 eV,
Only the light in the ultraviolet region can be used, and the photoelectric conversion efficiency is low, as with the photovoltaic cells using Si, GaAs, Cds, etc.
It lacked practicality.

(2) また別の光電池の例として、ヨウ化銀(AgI)
や臭化銀(AgBr)などのハロゲン化銀を透明電極とグラ
ファイト電極の中間に介在させた光電池がある。この電
池に光を照射すると、透明電極を通り入射してくる光に
よりハロゲン化銀が分解し、Agが透明電極上に析出す
る。その際生成するハロゲン(例えばヨウ素や臭素)を
グラファイト電極に吸収させることにより、Ag/I2型光
電池となる。しかしこの電池は光充電に際し、光を透明
電極に照射した際、透明電極表面上にAgが析出する。そ
の結果、光が透明電極−銀界面で反射され、光充電が停
止してしまう。光充電可能な銀の厚さは約500Å程度で
あるため、光充電の電気量を少ないものに制限してい
た。
(2) As another example of photovoltaic cells, silver iodide (AgI)
There is a photovoltaic cell in which silver halide such as silver bromide (AgBr) is interposed between a transparent electrode and a graphite electrode. When this cell is irradiated with light, the light incident through the transparent electrode decomposes the silver halide, and Ag is deposited on the transparent electrode. A halogen electrode (for example, iodine or bromine) generated at that time is absorbed by a graphite electrode to form an Ag / I 2 type photovoltaic cell. However, in this battery, during photo-charging, when the transparent electrode is irradiated with light, Ag is deposited on the surface of the transparent electrode. As a result, light is reflected at the transparent electrode-silver interface and the photocharging stops. Since the thickness of silver that can be charged by light is about 500Å, the amount of electricity required for light charging was limited to a small amount.

発明が解決しようとする問題点 従来の技術で示したように、上記(1)のタイプの光
電池には光腐食という問題があり、また上記(2)のタ
イプの光電池には光充電の電気量が少ないという問題点
があった。
Problems to be Solved by the Invention As shown in the related art, the photocell of the above (1) type has a problem of photocorrosion, and the photocell of the above (2) type has an electric charge of photocharging. There was a problem that there were few.

問題点を解決するための手段 本発明の技術手段は、2つの電極間、即ち光導電特性
を有する材料からなる電極と、白金,金,炭素等の対極
間に固体電解質を介在させることにより、光照射時に負
荷電流を取り出しながら、充電が出来る光二次電池を構
成するものである。
Means for Solving the Problems The technical means of the present invention comprises interposing a solid electrolyte between two electrodes, that is, an electrode made of a material having a photoconductive property and a counter electrode such as platinum, gold or carbon. An optical secondary battery that can be charged while extracting a load current during light irradiation is configured.

作用 電解液中における光半導体の光腐食という問題の本質
的な原因は、電解液中では陽イオンのみならず陰イオン
も含めて全てのイオンが動くため、光半導体そのものが
イオン化し溶出することにある。これに対し固定電解質
において動き得るイオンは特定のイオン(例えば銀イオ
ン固体電解質を用いた場合Ag+イオン)のみである。し
たがって、光半導体材料の電解質中への溶出ということ
は起こらない。つまり光腐食という問題は電解質として
溶液のかわりに固体電解質を用いることで解決される。
Action The essential cause of the problem of photocorrosion of photo-semiconductors in the electrolyte is that not only cations but also anions move in the electrolyte, so that the photo-semiconductor itself is ionized and eluted. is there. On the other hand, the ions that can move in the fixed electrolyte are only specific ions (for example, Ag + ions when using a silver ion solid electrolyte). Therefore, the elution of the optical semiconductor material into the electrolyte does not occur. That is, the problem of photocorrosion is solved by using a solid electrolyte instead of a solution as the electrolyte.

また上述の問題点で示した光充電の際の充電生成物に
よる光充電の妨害という問題は、第2図に示した本発明
の構造から分るように、光の吸収は光半導体面で進行さ
せるため本発明の電池においては起こらない。
Further, the problem of the interference of the light charging by the charge product at the time of the light charging, which is shown in the above-mentioned problems, is understood from the structure of the present invention shown in FIG. Therefore, it does not occur in the battery of the present invention.

次に本発明による電池の動作原理を第1図に従って説
明する。第1図は光照射中の充電過程を示したものであ
る。光が照射されると、半導体層内に電子e-とホールP+
が生じ、生成したホールは半導体−固体電解質界面で例
えば固体電解質あるいは、固体電解質と半導体電極との
間に配置される金属ハロゲン化物を構成するアニオンで
あるハロゲンイオンX-は、2X-+2P+→2X2の反応を起こ
す。一方、電子は半導体電極から外部回路(負荷)を通
り対極に送られ、対極−固体電解質界面で固体電解質中
を伝導するイオン、例えばAg+イオンの還元反応、即
ち、Ag++e-→Agなる反応を起こす。半導体としてP型
を用いた場合は、その電解質界面で還元反応が、また同
時に対電極では酸化反応が起こる。即ち、本発明の電池
では光が照射されている間、外部回路に負荷があれば、
電流を取り出しながら、本電池は充電される。一方、光
遮断時は光照射時に生成した物質(X2およびAg)を不活
性電極を正極に、対極を負極にして外部出力として取り
出す。その反応は、不活性電極では、X2+2e-→2X-,対
電極でAg→Ag++e-となり、光充電時とは逆の反応が進
行する。
Next, the operating principle of the battery according to the present invention will be described with reference to FIG. FIG. 1 shows the charging process during light irradiation. When irradiated with light, electrons e and holes P + in the semiconductor layer.
Is generated and the generated holes are, for example, a solid electrolyte or a halogen ion X which is an anion forming a metal halide arranged between the solid electrolyte and the semiconductor electrode at the semiconductor-solid electrolyte interface, and is 2X + 2P + → Causes a 2X 2 reaction. Meanwhile, the electron is passed as a counter electrode to an external circuit (load) from the semiconductor electrode, a counter electrode - ion conducting solid electrolyte in the solid electrolyte interface, for example, Ag + ions reduction reaction, i.e., Ag + + e - consisting → Ag Cause a reaction. When the P type is used as the semiconductor, a reduction reaction occurs at the electrolyte interface and an oxidation reaction occurs at the counter electrode at the same time. That is, in the battery of the present invention, if there is a load on the external circuit while being irradiated with light,
This battery is charged while drawing out the current. On the other hand, when the light is blocked, the substances (X 2 and Ag) generated during the light irradiation are taken out as an external output by using the inert electrode as the positive electrode and the counter electrode as the negative electrode. The reaction is X 2 + 2e → 2X at the inactive electrode and Ag → Ag + + e at the counter electrode, and the reaction opposite to that at the time of photocharging proceeds.

第2図は本発明による光二次電池の基本的な断面図を
示す。対極としては例えばA,固体電解質としてはRbCl−
AgI−AgCl系固体電解質、光半導体としてSiを用いたも
のを示した。
FIG. 2 shows a basic sectional view of the photo secondary battery according to the present invention. As the counter electrode, for example, A, and as the solid electrolyte, RbCl-
An AgI-AgCl-based solid electrolyte and one using Si as an optical semiconductor are shown.

さらに、上記Ag+イオン導電性固体電解質の他に、RbA
g4I5,Ag3SI,Ag4I2MoO4等のAg+イオン導電性固体電解
質、さらには、Sb2O5・nH2O,H3Mo12PO40・29H2O,H3W12P
O40・29H2O等のプロトン導電性固体電解質を用いても同
様の結果が得られることは言うまでもない。また必要に
応じ、固体電解質と半導体電極の間に配置される金属ハ
ロゲン化物としては、AgBr,AgI等が好適に用いられる。
これら金属ハロゲン化物は、固体電解質に較べイオン導
電性は劣るが、アニオン(ハロゲンイオン)の含有率が
高いため、単位体積当りより高容量の電池を提供できる
という利点がある。
In addition to the Ag + ion conductive solid electrolyte described above, RbA
g 4 I 5 ,, Ag 3 SI, Ag 4 I 2 MoO 4 etc.Ag + ion conductive solid electrolyte, and further Sb 2 O 5・ nH 2 O, H 3 Mo 12 PO 40・ 29H 2 O, H 3 W 12 P
It goes without saying that the same result can be obtained by using a proton conductive solid electrolyte such as O 40 · 29H 2 O. If necessary, AgBr, AgI, or the like is preferably used as the metal halide arranged between the solid electrolyte and the semiconductor electrode.
These metal halides are inferior in ionic conductivity to solid electrolytes, but have a high content of anions (halogen ions), and therefore have an advantage that a battery having a higher capacity per unit volume can be provided.

また光半導体電極つまり光導電性を示す電極として
は、光起電圧が用いる電解質の分解電圧以下である必要
上、Siの他にアモルファスSi,CdS,CdTe,IuP,GaP,MoSe2
が本発明に好適に選ばれる。しかし、これらの他のバン
ドギャップが固体電解質の分解電圧以下を示すものなら
ば、いづれも本発明の光二次電池に応用することが出来
る材料であることはいうまでもない。
Further, as the photo-semiconductor electrode, that is, the electrode exhibiting photoconductivity, it is necessary that the photovoltaic voltage is equal to or lower than the decomposition voltage of the electrolyte used, and thus, in addition to Si, amorphous Si, CdS, CdTe, IuP, GaP, MoSe 2
Is preferably selected for the present invention. However, it goes without saying that any of these other band gaps showing a decomposition voltage of the solid electrolyte or less can be applied to the photo secondary battery of the present invention.

また本発明でいう不活性電極とは、光半導体電極及び
固体電解質に対して化学反応を行なわず、なおかつ電子
伝導性の高いものであり、その働きは光半導体電極と固
体電解質との密着性を高めることにある。このような作
用を得ることの出来る不活性電極としては、Pt,Auが好
適に用いられる。
Further, the inert electrode in the present invention is one that does not chemically react with the photosemiconductor electrode and the solid electrolyte, and has high electron conductivity, and its function is to improve the adhesion between the photosemiconductor electrode and the solid electrolyte. To raise. Pt and Au are preferably used as the inactive electrode capable of obtaining such an action.

実施例 実施例1 第2図は、本発明の実施例である光二次電池の構造を
示す断面図である。
Examples Example 1 FIG. 2 is a sectional view showing the structure of an optical secondary battery that is an example of the present invention.

大きさ20×20mm,厚さ1mmのガラス基板1の上にIn2O3
を蒸着した透明電極2上に、光半導体3としてアモルフ
ァンSi膜をプラズマCVD法により厚さ1ηm形成する。
次に上記光半導体3に接触するようにRbAg4I1.5Cl3.5
表わされるAg+イオン導電性固体電解質膜4を6μの厚
さに形成した。上記電解質膜4の形成は、所定の割合に
混合したRbCl−AgI−AgClの混合物を蒸発源として抵抗
加熱による真空蒸着法により減圧下(5×10-6Torr)で
行なった。さらにこの上に対極5としてPtを厚さ1μm
に真空蒸着した。6及び7はリード端子であり、8はエ
ポキシ樹脂よりなる密封パッケージで全体を封じ光二次
電池を作成した。
In 2 O 3 is placed on the glass substrate 1 with a size of 20 × 20 mm and a thickness of 1 mm.
An amorphous silicon film as an optical semiconductor 3 having a thickness of 1 ηm is formed on the transparent electrode 2 by vapor deposition by plasma CVD.
Next, an Ag + ion conductive solid electrolyte membrane 4 represented by RbAg 4 I 1.5 Cl 3.5 was formed to a thickness of 6 μ so as to come into contact with the optical semiconductor 3. The formation of the electrolyte membrane 4 was performed under reduced pressure (5 × 10 −6 Torr) by a vacuum deposition method by resistance heating using a mixture of RbCl—AgI—AgCl mixed in a predetermined ratio as an evaporation source. Furthermore, Pt as a counter electrode 5 is further formed on this with a thickness of 1 μm.
It was vacuum-deposited on. 6 and 7 are lead terminals, and 8 is a hermetically sealed package made of epoxy resin, which is wholly sealed to form a photo secondary battery.

第3図はこのようにして形成された光二次電池を、リ
ード端子6,7を短絡しながら1時間太陽光を照射した
後、暗所でリード端子7,8を通じて20℃で1mAの一定電流
で1時間放電した際のリード端子6及び7の間の電圧変
化を示したものである。第3図中、1サイクル目,200サ
イクル目とあるのは、1時間太陽光による光充電を行っ
た後、1mAで1時間放電すると充放電サイクルを1回,20
0回くり返した際の放電時のリード端子6,7の間の電圧変
化を示したものである。200サイクル後でもほとんど初
期特性と変りない放電特性を示す光電池が得られた。
Fig. 3 shows the photo rechargeable battery thus formed, which was exposed to sunlight for 1 hour while short-circuiting the lead terminals 6 and 7, and then through the lead terminals 7 and 8 in the dark at a constant current of 1 mA at 20 ° C. 3 shows a voltage change between the lead terminals 6 and 7 when the battery is discharged for 1 hour. In Fig. 3, the 1st cycle and the 200th cycle mean that after charging with sunlight for 1 hour and then discharging at 1mA for 1 hour, one charge and discharge cycle is performed.
It shows the voltage change between the lead terminals 6 and 7 during discharge when repeated 0 times. A photovoltaic cell was obtained that showed almost the same initial discharge characteristics even after 200 cycles.

実施例2 光半導体電極としてスパッタ法で形成したCdTeを用
い、他の構成は上記実施例1とまったく同じとして光二
次電池を作製した。これに対して上記実施例1と同様に
光充電及び光遮断放電のサイクルを行い、リード端子間
の電圧変化を示したものが第4図である。実施例1と同
様に200サイクル後でもほとんど初期特性と変りない放
電特性を示す光二次電池が得られた。
Example 2 An optical secondary battery was manufactured by using CdTe formed by a sputtering method as an optical semiconductor electrode and using the same other configurations as in Example 1 above. On the other hand, FIG. 4 shows the change in voltage between the lead terminals when the cycle of photocharging and photointerrupting discharge was performed in the same manner as in Example 1 above. As in Example 1, a photo-rechargeable battery having a discharge characteristic almost unchanged from the initial characteristic even after 200 cycles was obtained.

実施例3 固体電解質として真空蒸着法で形成したAg3SIを用
い、他の構成は上記実施例1とまったく同じとして光二
次電池を作製した。これに対し上記実施例1と同様に光
充電及び光遮断放電のサイクルを行い、リード端子間の
電圧変化を示したものが第5図である。実施例1と同様
に200サイクル後もほとんど初期特性と変りない放電特
性を示す光二次電池が得られた。
Example 3 A photo secondary battery was prepared by using Ag 3 SI formed by a vacuum deposition method as the solid electrolyte and using the same other configurations as in Example 1 above. On the other hand, FIG. 5 shows changes in voltage between the lead terminals when the cycle of photocharging and photointerrupting discharge was performed in the same manner as in Example 1 above. As in Example 1, a photo secondary battery was obtained which showed almost the same initial characteristics as the discharge characteristics even after 200 cycles.

実施例4 第6図は、本発明により他の実施例である光二次電池
の構造を示す断面図である。
Embodiment 4 FIG. 6 is a sectional view showing the structure of an optical secondary battery that is another embodiment of the present invention.

大きさ20×20mm,厚さ1mmのガラス基板1の上にIn2O3
を蒸着した透明電極2上に、光半導体3としてGaP膜を
スパッタ法により厚さ1μm形成する。次に上記光半導
体3に接触するように膜厚1μmのPtを真空蒸着法によ
り形成し不活性電極9とする。さらにその上に膜厚1μ
mのAgI層を真空蒸着法により形成し、金属ハロゲン化
物層4とした。つぎに上記AgI層に接触するようにH3W12
PO40・29H2Oであらわされるプロトン導電性固体電解質
膜5を、スクリーン印刷法により100μmの厚さで形成
した。さらに上記電解質膜5に接触するようにあらかじ
め厚さ1μのpt電極上にスパッタ法で形成したLaNis層
(1μm)を配置し、水素吸蔵合金層6とする。7はこ
の合金層6上に形成した対極である。10,11及び12はリ
ード端子、8はエポキシ樹脂よりなる密封パッケージで
あり、全体を封じて光二次電池を作成した。
In 2 O 3 is placed on the glass substrate 1 with a size of 20 × 20 mm and a thickness of 1 mm.
A GaP film having a thickness of 1 μm is formed as an optical semiconductor 3 on the vapor-deposited transparent electrode 2 by a sputtering method. Next, Pt having a film thickness of 1 μm is formed by a vacuum evaporation method so as to be in contact with the optical semiconductor 3 to form the inactive electrode 9. Furthermore, a film thickness of 1μ
An AgI layer of m was formed by a vacuum vapor deposition method to form a metal halide layer 4. Next, H 3 W 12 is contacted with the AgI layer.
The proton conductive solid electrolyte membrane 5 represented by PO 40 .29H 2 O was formed by screen printing to a thickness of 100 μm. Further, a LaNis layer (1 μm) formed in advance by a sputtering method is arranged on the pt electrode having a thickness of 1 μm so as to be in contact with the electrolyte membrane 5 to form the hydrogen storage alloy layer 6. 7 is a counter electrode formed on the alloy layer 6. 10, 11 and 12 are lead terminals, 8 is a hermetically sealed package made of epoxy resin, and the whole is sealed to form a photo secondary battery.

このようにして形成した光二次電池に対して実施例1
と同様に光充電及び光遮断放電のサイクルを行い、リー
ド端子11及び12の間の電圧変化を示したものが第7図で
ある。本実施例も実施例1と同様200サイクル後でもほ
とんど初期特性と変りない放電特性を示す光二次電池が
得られた。
Example 1 was applied to the photo secondary battery thus formed.
FIG. 7 shows the change in voltage between the lead terminals 11 and 12 after performing the cycle of light charging and light blocking discharge in the same manner as in. Also in this example, as in the case of Example 1, a photo-rechargeable battery having a discharge characteristic almost unchanged from the initial characteristic even after 200 cycles was obtained.

次に本実施例4の動作原理を第8図に従って説明す
る。第8図は光照射中の充電過程を示したものである。
光が照射されると光半導体GaP内に電子e-とホールP+
生じ、不活性電極PtとAgIとの界面で2I-→I2+2e-なる
反応により生成された電子e-と会合する。一方、電子は
GaPから負荷を通じて対極Ptを通り水素吸蔵合金LaNisに
送られる。そしてLaNi5−H3W12PO40・29H2O界面でプロ
トンの還元反応、即ち2H++2e-→H2なる反応を起こし、
生成されたH2は水素吸蔵合金LaNi5に吸蔵される。これ
が本実施例4の光照射による充電反応の原理である。一
方、光遮断時は光照射時に生成したI2及びH2を透明電極
を正極に対電極Ptを負極にし、外部出力として取り出
す。その反応はPt−AgI界面ではI2+2e-→2I-,LaNi5−H
3W12PO40・29H2O界面ではH2→2H++2e-となり、光充電
時とは逆の反応が進行する。
Next, the operation principle of the fourth embodiment will be described with reference to FIG. FIG. 8 shows the charging process during light irradiation.
When irradiated with light, electrons e and holes P + are generated in the optical semiconductor GaP and associate with the electrons e generated by the reaction 2I → I 2 + 2e at the interface between the inactive electrode Pt and AgI. . On the other hand, the electron
It is sent from GaP through a load to the hydrogen storage alloy LaNis through the counter electrode Pt. Then, at the LaNi 5 -H 3 W 12 PO 40 / 29H 2 O interface, a proton reduction reaction, that is, a reaction of 2H + + 2e → H 2 occurs,
The generated H 2 is stored in the hydrogen storage alloy LaNi 5 . This is the principle of the charging reaction by light irradiation in the fourth embodiment. On the other hand, when light is blocked, I 2 and H 2 generated at the time of light irradiation are taken out as external outputs by setting the transparent electrode as a positive electrode and the counter electrode Pt as a negative electrode. The reaction I 2 + 2e in Pt-AgI interface - → 2I -, LaNi 5 -H
At the 3 W 12 PO 40・ 29H 2 O interface, H 2 → 2H + + 2e , and the opposite reaction to that during photocharging progresses.

発明の効果 以上、本発明は実施例から分るように、特にサイクル
寿命特性に優れた光二次電池が得られ、また放電容量が
大きく光腐食による劣化のない光二次電池を提供するも
のである。
EFFECTS OF THE INVENTION As described above, the present invention provides a photo-rechargeable secondary battery which is excellent in cycle life characteristics and which has a large discharge capacity and is not deteriorated by photo-corrosion. .

【図面の簡単な説明】[Brief description of drawings]

第1図及び第8図は本発明の光二次電池の動作原理を示
した図、第2図及び第6図は本発明の実施例の構造を示
した図、第3図,第4図,第5図及び7図は上記実施例
の充放電特性を示した図である。 1……ガラス基板、2……透明電極、3……光半導体、
4……固体電解質、5……対極。
FIGS. 1 and 8 are diagrams showing the operation principle of the photo secondary battery of the present invention, FIGS. 2 and 6 are diagrams showing the structure of the embodiment of the present invention, FIGS. 3, 4 and 5 and 7 are graphs showing the charge / discharge characteristics of the above-mentioned embodiment. 1 ... Glass substrate, 2 ... Transparent electrode, 3 ... Optical semiconductor,
4 ... Solid electrolyte, 5 ... Counter electrode.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−111280(JP,A) 特開 昭62−259359(JP,A) 特開 昭59−197831(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-59-111280 (JP, A) JP-A-62-259359 (JP, A) JP-A-59-197831 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光導電性を示す電極、第1の活物質電極、
Ag+イオン伝導性固体電解質、第2の活物質電極および
対極を順次積層してなり、前記第1および第2の電極は
前記Ag+イオン伝導性固体電解質の化学構造式中に含ま
れるハロゲン分子を含有する化合物よりなることを特徴
とする光二次電池。
1. An electrode having photoconductivity, a first active material electrode,
An Ag + ion conductive solid electrolyte, a second active material electrode and a counter electrode are sequentially laminated, and the first and second electrodes are halogen molecules contained in the chemical structural formula of the Ag + ion conductive solid electrolyte. A secondary battery comprising a compound containing
【請求項2】光導電性を示す電極、第1の活物質電極、
プロトン伝導性固体電解質、第2の活物質電極及び対極
を順次積層してなり、前記第1の電極または前記第2の
電極は金属水素化物であることを特徴とする光二次電
池。
2. A photoconductive electrode, a first active material electrode,
A photo secondary battery comprising a proton conductive solid electrolyte, a second active material electrode, and a counter electrode, which are sequentially laminated, and the first electrode or the second electrode is a metal hydride.
JP61242512A 1986-10-13 1986-10-13 Optical secondary battery Expired - Fee Related JP2511905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61242512A JP2511905B2 (en) 1986-10-13 1986-10-13 Optical secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61242512A JP2511905B2 (en) 1986-10-13 1986-10-13 Optical secondary battery

Publications (2)

Publication Number Publication Date
JPS6396874A JPS6396874A (en) 1988-04-27
JP2511905B2 true JP2511905B2 (en) 1996-07-03

Family

ID=17090205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61242512A Expired - Fee Related JP2511905B2 (en) 1986-10-13 1986-10-13 Optical secondary battery

Country Status (1)

Country Link
JP (1) JP2511905B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109192517A (en) * 2018-08-17 2019-01-11 中国科学院合肥物质科学研究院 A kind of quasi-solid electrolyte and preparation method thereof based on cogelled dose of multicomponent is applied with it

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111280A (en) * 1982-12-14 1984-06-27 Matsushita Electric Ind Co Ltd Secondary photocell
JPS59197831A (en) * 1983-04-25 1984-11-09 Daicel Chem Ind Ltd Photoelectric converting element
JPS62259359A (en) * 1986-05-02 1987-11-11 Tech Res Assoc Conduct Inorg Compo Photoelectric secondary cell

Also Published As

Publication number Publication date
JPS6396874A (en) 1988-04-27

Similar Documents

Publication Publication Date Title
US4916035A (en) Photoelectrochemical cells having functions as a solar cell and a secondary cell
US8821700B2 (en) Photoelectrochemical cell and energy system using same
US4656103A (en) Liquid junction photoelectrodes using amorphous silicon-based thin film semiconductor
US4525437A (en) Light energy conversion system
KR20090061300A (en) Complex lithium secondary battery and electronic device employing the same
US20120216854A1 (en) Surface-Passivated Regenerative Photovoltaic and Hybrid Regenerative Photovoltaic/Photosynthetic Electrochemical Cell
US4525435A (en) Light energy conversion system
US4235955A (en) Solid state photoelectrochemical cell
US4119768A (en) Photovoltaic battery
JP2511905B2 (en) Optical secondary battery
EP0108492A2 (en) Composite photocell
EP1095387A1 (en) Reversed dye-sensitized photovoltaic cell
JPS6191975A (en) Energy accumulator
JP2615465B2 (en) Photovoltaic secondary battery
KR100545373B1 (en) Dye sensitized solar cell with built-in down converter
JPH05198319A (en) Photoelectric air secondary battery
JPH0477424B2 (en)
JPH0477423B2 (en)
KR830000300B1 (en) Photoelectrochemical Cell
JP2723608B2 (en) Solar cell
JPH0564436B2 (en)
Krotova et al. Conversion of the energy of ionizing radiation ina cell with semiconductor electrode. Charge separation in the semiconductor and quantum Yield
JPH0785895A (en) Photochemical secondary battery
JPH0477422B2 (en)
JPH0117273B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees