JPH0564436B2 - - Google Patents

Info

Publication number
JPH0564436B2
JPH0564436B2 JP60256968A JP25696885A JPH0564436B2 JP H0564436 B2 JPH0564436 B2 JP H0564436B2 JP 60256968 A JP60256968 A JP 60256968A JP 25696885 A JP25696885 A JP 25696885A JP H0564436 B2 JPH0564436 B2 JP H0564436B2
Authority
JP
Japan
Prior art keywords
zrs
positive electrode
light
solid electrolyte
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60256968A
Other languages
Japanese (ja)
Other versions
JPS62117276A (en
Inventor
Teruhisa Kanbara
Tadashi Tonomura
Satoshi Sekido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DODENSEI MUKI KAGOBUTSU GIJUTS
DODENSEI MUKI KAGOBUTSU GIJUTSU KENKYU KUMIAI
Original Assignee
DODENSEI MUKI KAGOBUTSU GIJUTS
DODENSEI MUKI KAGOBUTSU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DODENSEI MUKI KAGOBUTSU GIJUTS, DODENSEI MUKI KAGOBUTSU GIJUTSU KENKYU KUMIAI filed Critical DODENSEI MUKI KAGOBUTSU GIJUTS
Priority to JP60256968A priority Critical patent/JPS62117276A/en
Publication of JPS62117276A publication Critical patent/JPS62117276A/en
Publication of JPH0564436B2 publication Critical patent/JPH0564436B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電力ではなく、光で充電できる二次
電池、すなわち太陽電池と二次電池を併せた働き
をする電池に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a secondary battery that can be charged with light rather than electricity, that is, a battery that functions as a combination of a solar cell and a secondary battery.

従来の技術 光で充電する二次電池の試みは、例えば、金子
正夫、エレクトロニクス、P97〜104(S59・10)
の総説で示されたように数多くなされているが、
実用されているのは太陽電池で通常の二次電池を
充電する方式のものである。このように太陽電池
で発電した電力を二次電池に貯える二段階型の他
に、n型TiO2のような半導体からなる電極を、
白金のような金属、あるいはp型GaPのような半
導体からなる電極と共に電解液に浸漬して半導体
電極を光で照射して電荷分離を起させ(価電帯に
ホール、導電帯に電子を生ずる)、光誘起した電
荷で電解液中の物質を酸化、還元して活物質とし
て貯え、放電時にこれを使用する試みもなされて
いるが、未だ実用の域に達していない。光励起し
た電荷で、後続する酸化・還元反応を行わせるに
は、電解質中の物質の酸化・還元電位が半導体
電極の価電帯の上端より上部、還元電位が導電帯
の下端より下部にある。光励起により出来るだ
け多くの電荷分離を行なわせるに、半導体電極の
バンドギヤツプが小さいことをが必要であるが、
バンドギヤツプが余り小さいとの条件が満足で
きず後続する電気化学反応が進行しない。それゆ
え、及びの条件を満たし、太陽光または螢光
灯の光を吸収して反応を効率よく進めるのに望ま
しい半導体のバンドギヤツプは、1〜2.5eV程度
であるが、そのようなバンドギヤツプをもつ半導
体(n型Si〜1.1eV、n型GaAs〜1.35eV、CdS
〜2.4eV)は何れもそれ自体が反応に関与して腐
食してしまう問題点を有しており、水溶液電解質
中で安定なものは紫外光しか利用できないTiO2
ZnOなどバンドギヤツプが3.0〜3.2eVの材料の限
られるのが現状である。
Conventional technology Attempts to develop secondary batteries that can be charged with light include, for example, Masao Kaneko, Electronics, P97-104 (S59/10)
As shown in the review paper, many studies have been done,
The one currently in use uses solar cells to charge ordinary secondary batteries. In addition to the two-stage type, which stores power generated by solar cells in a secondary battery, electrodes made of a semiconductor such as n-type TiO2 ,
The semiconductor electrode is immersed in an electrolyte with an electrode made of a metal such as platinum or a semiconductor such as p-type GaP, and the semiconductor electrode is irradiated with light to cause charge separation (creating holes in the valence band and electrons in the conduction band). ), attempts have been made to oxidize and reduce substances in the electrolyte with photo-induced charges, store them as active materials, and use them during discharge, but this has not yet reached the level of practical use. In order to cause the subsequent oxidation/reduction reaction to occur with photo-excited charges, the oxidation/reduction potential of the substance in the electrolyte must be above the top of the valence band of the semiconductor electrode, and the reduction potential must be below the bottom of the conduction band. In order to achieve as much charge separation as possible through photoexcitation, it is necessary that the bandgap of the semiconductor electrode be small.
The condition that the band gap is too small cannot be satisfied, and the subsequent electrochemical reaction will not proceed. Therefore, the bandgap of a semiconductor that satisfies the conditions of and and is desirable for absorbing sunlight or fluorescent lamp light and promoting the reaction efficiently is about 1 to 2.5 eV. (n-type Si ~ 1.1eV, n-type GaAs ~ 1.35eV, CdS
~2.4 eV) have the problem that they themselves participate in reactions and corrode, and the only ones that are stable in aqueous electrolytes are TiO 2 , which can only be used with ultraviolet light.
Currently, materials such as ZnO with a band gap of 3.0 to 3.2 eV are limited.

また、最近、、、族の遷移金属のジカル
コゲナイトを正極材料に使用する二次電池の研究
が多く行なわれて来ている。その多くはLiを負極
材料とし、有機電解質を用いるものである。
Further, recently, much research has been conducted on secondary batteries using dichalcogenite, a transition metal of the , , , group, as a positive electrode material. Most of them use Li as the negative electrode material and an organic electrolyte.

ごく最近、これらの遷移金属のジカルコゲナイ
トが電流ばかりでなく、光によつてもイオンを出
し入れすることができ、例えば、エイチ トリビ
ツチ、“フオトエレクトロケム エナジー コン
バージヨン インヴオルヴイング トランジシヨ
ン メタル デイースタイツ アンド インター
カレーシヨン コンパウンドオブ レイヤー コ
ンパンヅ,”ストラクチアー アンド ボンデイ
ング(H.Tributch、“Photoelectrochem energy
conversion involving transition metal d−
states and intercalation compound of layer
conpounds”、Structure and Bonding 49、162
〜166′82)は自他の研究を総合して総説的に光で
充電できる電池の可能性を述べている。その中で
太陽光を利用するということを考慮すると、Liを
負極とする電池では充電に必要なエネルギーが大
き過ぎて効率の高い充電が出来ない。効率の上か
ら負極はもつと貴な酸化・還元電位をもつCuの
ようなものに置き換える方がよいことを予言して
いる。このことは上記,の条件から容易に考
えられることである。また、光充電の過程におい
て電極は半導性をとり続けることが必要でFeと
かCuのZrS2とかHfS2へのインターカレーシヨン
を取扱つた、ビージーヤコブ他 ジヤーナル オ
ブ フイジツク ス シ(ソリツド ステイト
フイジツクス)B.G.Yacob、et、al、J.Phys.C.
(Solid State Phys)12、2189(’79)を引用し
て、これらの二硫化物が光電極として有望なこと
を述べている。
Very recently, it has been discovered that these transition metal dichalcogenites can transfer ions in and out not only by electric current but also by light. and Intercalation Compound of Layer Compounds,” Structure and Bonding (H. Tributch, “Photoelectrochem energy
conversion involving transition metal d−
states and intercalation compound of layer
compounds”, Structure and Bonding 49, 162
~166'82) synthesized his own and others' research and summarized the possibility of batteries that can be charged with light. Considering the use of sunlight, batteries with Li as the negative electrode require too much energy to charge efficiently, making it impossible to charge them efficiently. From the viewpoint of efficiency, it is predicted that it would be better to replace the negative electrode with something like Cu, which has a noble oxidation/reduction potential. This can easily be considered from the above conditions. In addition, it is necessary for the electrode to maintain semiconductivity during the photocharging process , and a study in the Journal of Physics by B.G. Jacob et al .
Phys.) BGYacob, et, al, J.Phys.C.
(Solid State Phys) 12, 2189 ('79), states that these disulfides are promising as photoelectrodes.

発明が解決しようとする問題点 発明者らは先にn型ZrS2及びHfS2を用いた光
で充電できる二次電池を提供した。しかしなが
ら、上記材料を正極としたものでは光充電に際し
ての量子効率が低いという欠点を有し、また60℃
以上になるとZrS2からSが遊離し、内部シヨー
トを起す欠点を有していた。
Problems to be Solved by the Invention The inventors have previously provided a secondary battery that uses n-type ZrS 2 and HfS 2 and can be charged with light. However, using the above materials as positive electrodes has the disadvantage of low quantum efficiency during photocharging, and
If the temperature exceeds that level, S is liberated from ZrS 2 , which has the disadvantage of causing internal shoots.

問題点を解決するための手段 電池の正極材料として、ZrS2-X(0<x<0.5)
を主体とする材料を用いる。
Measures to solve the problem ZrS 2-X (0<x<0.5) is used as a positive electrode material for batteries.
The main material used is

作 用 ZrS2は価電帯と伝導帯とのエネルギーギヤツ
プがかなり大きく、そのため電子伝導性が非常に
低く、これが光充電の際の量子効率を下げる一つ
の原因となる。そこで当量組成であるZrS2から
Sを定量取り除く事で、価電帯と伝導帯の間に局
在レベルを作り電子伝導性を増大せしめる事で光
充電の量子効率を向上させる。と同時にすでにS
を当量比より不足量にしているため、その遊離も
ほとんどなくなつた。
Effect ZrS 2 has a fairly large energy gap between the valence band and the conduction band, and therefore has very low electronic conductivity, which is one of the causes of lower quantum efficiency during photocharging. Therefore, by quantitatively removing S from the equivalent composition of ZrS 2 , a localized level is created between the valence band and the conduction band, increasing electronic conductivity and improving the quantum efficiency of photocharging. At the same time, S
Because the amount of oxidation was insufficient compared to the equivalent ratio, its release was almost completely eliminated.

実施例 以下本発明の実施例について説明する。Example Examples of the present invention will be described below.

実施例 1 電池を構成する材料は下記の通りである。Example 1 The materials constituting the battery are as follows.

正 極:ZrS1.7粉末+RbCu4I1.5Cl3.5粉末(重
量比2:3) ……60mg 固体電解質:RbCu4I1.5Cl3.5粉末 ……50mg 負 極:Cu粉末+Cu1.59S粉末+RbCu4I1.5
Cl3.5粉末(重量比4:19:5) ……50mg 上記正極粉末と固体電解質と負極粉末とを層状
に三層に約3トンの圧力でプレスし、直径10mmの
電池ペレツトとし、第3図に示すように構成し
た。1は上記の正極層、2は固体電解質層、3は
負極層であり、4は透明電極でIn2O3にSnO2をド
ープしたものをガラスの上に蒸着したものを用い
た。5は集電体でスチレン、ブタジエンゴムに線
径が7〜8μm、長さが30〜100μmの炭素繊維を
分散させた導電ゴムを用いた。6はリード線、7
は高絶縁性樹脂を用いたパツケージである。上記
電池を200μAで放電し検起電圧が0.1ボルトまで
下がつた時を時間軸の原点として光照射を行なつ
た時の、閉路電圧の時間変化を示したものが第1
図である。図中○印で示したものが本実施例であ
り、□印で示したものがZrS2を正極の主体材料
とする比較例である。光源には100WのXeランプ
を用い、距離50cmで照射した。
Positive electrode: ZrS 1.7 powder + RbCu 4 I 1.5 Cl 3.5 powder (weight ratio 2:3) ...60mg Solid electrolyte: RbCu 4 I 1.5 Cl 3.5 powder ...50mg Negative electrode: Cu powder + Cu 1.59 S powder + RbCu 4 I 1.5
Cl 3.5 powder (weight ratio 4:19:5) ...50 mg The above positive electrode powder, solid electrolyte and negative electrode powder were pressed into three layers under a pressure of about 3 tons to form battery pellets with a diameter of 10 mm, as shown in Figure 3. It was configured as shown in . 1 is the above positive electrode layer, 2 is a solid electrolyte layer, 3 is a negative electrode layer, and 4 is a transparent electrode made by doping In 2 O 3 with SnO 2 and depositing it on glass. No. 5 is a current collector made of conductive rubber in which carbon fibers having a wire diameter of 7 to 8 μm and a length of 30 to 100 μm are dispersed in styrene or butadiene rubber. 6 is the lead wire, 7
is a package made of highly insulating resin. The first graph shows the time change in the closed circuit voltage when the above battery was discharged at 200μA and the time axis was irradiated with light, with the time axis set at the origin when the detected voltage decreased to 0.1 volt.
It is a diagram. In the figure, the one marked with ○ is the present example, and the one marked with □ is a comparative example in which ZrS 2 is the main material of the positive electrode. A 100W Xe lamp was used as the light source, and irradiation was performed at a distance of 50cm.

またSの遊離による内部シヨートの事実とし
て、60℃において20μAの放電を行なつた。その
時の放電時間と電池電圧とを示したものが第2図
である。これを見ると分かるようにZrS2を正極
の主体材料に用いた比較列は3時間のあたりで急
速に電圧が低下するが、ZrS1.7を用いた本実施例
は、上記のような電圧低下は示さない。またSの
遊離の確認には熱重量分析を行なつた。温度とS
の遊離量との関係を第3図に示す。第1図同様に
○印はZrS1.7□印はZrS2である。横軸は温度、縦
軸は試料1gからのSの遊離量を示す。温度は毎
分2℃ずつ上昇させ、Sの確認はガスクロマトグ
ラフイーで行なつた。
In addition, to confirm the internal shoot caused by the release of S, a discharge of 20 μA was performed at 60°C. FIG. 2 shows the discharge time and battery voltage at that time. As you can see, in the comparison series using ZrS 2 as the main material of the positive electrode, the voltage drops rapidly around 3 hours, but in this example using ZrS 1.7 , the voltage drop as described above did not occur. Not shown. Furthermore, thermogravimetric analysis was performed to confirm the release of S. Temperature and S
The relationship between the amount of release and the amount of release is shown in FIG. As in Figure 1, the ○ mark is ZrS 1.7 and the □ mark is ZrS 2 . The horizontal axis represents temperature, and the vertical axis represents the amount of S released from 1 g of sample. The temperature was increased by 2° C. per minute, and S was confirmed by gas chromatography.

実施例 2 正極としてZrS1.6+RbCu4I1.5Cl3.5を重量比2:
3で混合したものを60mg使い、他は上記実施例1
とまつたく同じ条件で作製した電池を50KΩ定抵
抗負荷の放電をしながら、第1図と同じ光照射を
行なつた時の閉路電圧の時間変化を示したものが
第5図である。また、20μA、80℃での放電曲線
を第6図に示す。
Example 2 ZrS 1.6 + RbCu 4 I 1.5 Cl 3.5 as a positive electrode in a weight ratio of 2:
Use 60 mg of the mixture in step 3, and use the same procedure as in Example 1 above.
Figure 5 shows the change in closed-circuit voltage over time when a battery fabricated under exactly the same conditions was subjected to the same light irradiation as in Figure 1 while discharging a 50KΩ constant resistance load. Further, the discharge curve at 20μA and 80°C is shown in Figure 6.

なお、正、負極材料は粉末だけでなくスパツタ
膜、CVD膜等であつてもよい。
Note that the positive and negative electrode materials may be not only powders but also sputtered films, CVD films, etc.

また固体電解質を用いた理由は、電解質が液体
の場合正極との接合面で光が照射されると、カチ
オンとアニオンの両者が反応に関与し、そこで正
極材料の腐食がおこるのであるが、本光二次電池
に用いた固体電解質の場合反応するのはCu+のみ
であり、正極材料の腐食はおこらない点にある。
The reason for using a solid electrolyte is that when the electrolyte is a liquid, when light is irradiated at the joint surface with the positive electrode, both cations and anions participate in the reaction, which causes corrosion of the positive electrode material. In the case of solid electrolytes used in photosecondary batteries, only Cu + reacts, and the positive electrode material does not corrode.

発明の効果 本発明の光二次電池はZrS2からSを定量取除
くことにより生じた局在レベルにより光照射後の
電圧の上昇率はZrS2を正極材料の主体とするも
のに較べはるかに大きい、すなわち光充電の量子
効率がはるかに大きい。
Effects of the Invention Due to the localized level generated by quantitatively removing S from ZrS 2 in the photosecondary cell of the present invention, the rate of increase in voltage after light irradiation is much greater than that in a photovoltaic cell in which ZrS 2 is the main cathode material. , that is, the quantum efficiency of photocharging is much larger.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例の光二次
電池の特性図、第3図はZrS2及びZrS1.7の熱分析
を示した図、第4図は同電池の構成図、第5図及
び第6図は本発明の異なる実施例の特性図であ
る。 1……正極、2……固体電解質、3……負極、
4……透明電極、5……集電体、6……リード
線、7……密封パツケージ。
Figures 1 and 2 are characteristic diagrams of a secondary photovoltaic cell according to an embodiment of the present invention, Figure 3 is a diagram showing thermal analysis of ZrS 2 and ZrS 1.7 , Figure 4 is a block diagram of the same battery, 5 and 6 are characteristic diagrams of different embodiments of the present invention. 1... Positive electrode, 2... Solid electrolyte, 3... Negative electrode,
4... Transparent electrode, 5... Current collector, 6... Lead wire, 7... Sealed package.

Claims (1)

【特許請求の範囲】[Claims] 1 金属銅とCu+イオン導電性固体電解質を含有
する負極と、前記Cu+イオン導電性固体電界質よ
りなる固体電界質と、ZrS2-X(0<X<0.5)を含
有する正極を順次積層し、前記正極に光を照射す
ることを特徴とする光二次電池。
1. A negative electrode containing metallic copper and a Cu + ion conductive solid electrolyte, a solid electrolyte consisting of the Cu + ion conductive solid electrolyte, and a positive electrode containing ZrS 2-X (0<X<0.5) are sequentially added. A photo secondary cell characterized in that the positive electrode is laminated and the positive electrode is irradiated with light.
JP60256968A 1985-11-15 1985-11-15 Photo secondary cell Granted JPS62117276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60256968A JPS62117276A (en) 1985-11-15 1985-11-15 Photo secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60256968A JPS62117276A (en) 1985-11-15 1985-11-15 Photo secondary cell

Publications (2)

Publication Number Publication Date
JPS62117276A JPS62117276A (en) 1987-05-28
JPH0564436B2 true JPH0564436B2 (en) 1993-09-14

Family

ID=17299870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60256968A Granted JPS62117276A (en) 1985-11-15 1985-11-15 Photo secondary cell

Country Status (1)

Country Link
JP (1) JPS62117276A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51119933A (en) * 1975-03-07 1976-10-20 Suwa Seikosha Kk Driving source
JPS5224569A (en) * 1975-08-20 1977-02-24 Matsushita Electric Ind Co Ltd Thermoelectromotive force element
JPS59111280A (en) * 1982-12-14 1984-06-27 Matsushita Electric Ind Co Ltd Secondary photocell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51119933A (en) * 1975-03-07 1976-10-20 Suwa Seikosha Kk Driving source
JPS5224569A (en) * 1975-08-20 1977-02-24 Matsushita Electric Ind Co Ltd Thermoelectromotive force element
JPS59111280A (en) * 1982-12-14 1984-06-27 Matsushita Electric Ind Co Ltd Secondary photocell

Also Published As

Publication number Publication date
JPS62117276A (en) 1987-05-28

Similar Documents

Publication Publication Date Title
US4916035A (en) Photoelectrochemical cells having functions as a solar cell and a secondary cell
Wang et al. A Renewable Light‐Promoted Flexible Li‐CO2 Battery with Ultrahigh Energy Efficiency of 97.9%
CN105280883B (en) Metal lithium polar plate
US10511055B2 (en) Metal plating-based electrical energy storage cell
US5346785A (en) Photochargeable air battery
Sharon et al. Saur Viddyut Kosh IV: Study of a rechargeable solar battery with n-Pb3O4 electrodes
JPH0564436B2 (en)
JP3025798B2 (en) Photochemical secondary battery and method of manufacturing photochemical secondary battery
JPH0477423B2 (en)
JP2726285B2 (en) Rechargeable battery
Yamamoto et al. Li| LiI| iodine galvanic cells using iodine-poly (2, 5-thienylene) adducts as active materials of positive electrodes
JPH0477424B2 (en)
JPH0578912B2 (en)
JPH0564437B2 (en)
JP3140443B2 (en) Rechargeable battery
JP2511905B2 (en) Optical secondary battery
JPS59111280A (en) Secondary photocell
JPS634557A (en) Photo-secondary battery
JPH0578147B2 (en)
JPH07245125A (en) Secondary battery capable of generating power
JPS634558A (en) Photo-secondary battery
JPS62117278A (en) Photo-secondary cell
JP2801599B2 (en) Rechargeable battery
JPH0477422B2 (en)
JP2738708B2 (en) Rechargeable battery