JPS634557A - Photo-secondary battery - Google Patents

Photo-secondary battery

Info

Publication number
JPS634557A
JPS634557A JP61148779A JP14877986A JPS634557A JP S634557 A JPS634557 A JP S634557A JP 61148779 A JP61148779 A JP 61148779A JP 14877986 A JP14877986 A JP 14877986A JP S634557 A JPS634557 A JP S634557A
Authority
JP
Japan
Prior art keywords
positive electrode
mox2
light
produced
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61148779A
Other languages
Japanese (ja)
Inventor
Teruhisa Kanbara
神原 輝寿
Tadashi Tonomura
正 外邨
Shigeo Kondo
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECH RES ASSOC CONDUCT INORG COMPO
Original Assignee
TECH RES ASSOC CONDUCT INORG COMPO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECH RES ASSOC CONDUCT INORG COMPO filed Critical TECH RES ASSOC CONDUCT INORG COMPO
Priority to JP61148779A priority Critical patent/JPS634557A/en
Publication of JPS634557A publication Critical patent/JPS634557A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To prevent decomposition caused by light irradiation by using MoX2 (X is S, Se, or Te) as a main material of a positive electrode. CONSTITUTION:A battery consists of a negative electrode mainly comprising copper, a Cu<+> ion conductive solid electrolyte, and a positive electrode mainly comprising n type MoX2 (X is S, Se, or Te). By irradieting light to the positive electrode, the battery is charged. In the band structure of MS2 (M is Ti, Zr, or Hf) and MoX2 (X is S, Se, or Te), when light is irradiated to MS2, a hole is produced in P orbit of S. The P orbit of S is a valence band of MS2, or a chemical bonding part of MS2. When the hole is produced there, the chemical bond of MS2 is cut at high atmospheric temperature, resulting in the decomposition of MS2. On the other hand, when light is irradiated to MoX2, a hole is produced in t2g orbit which is produced by the interaction of Mo and X. Therefore, even if the hole is produced there, the chemical bond of MoX2 is not cut.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電力または光で充電できる二次電池、つまシ
太陽電池と二次電極と?併せた働らきをする全固体の光
二次電池に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a secondary battery that can be charged with electricity or light, a solar cell, and a secondary electrode. The invention relates to an all-solid-state photovoltaic battery that functions in combination.

従来の技術 光で充電する二次電池の試みは、例えば、金子正夫著エ
レクトロニクス、P97〜104(昭59.10)の総
説に示されたように数多くなされているが、実用されて
いるのは太陽電池を吏い通常の二次電池に充電する方式
のものである。
Conventional technology Many attempts have been made to develop secondary batteries that can be charged with light, as shown in the review of Masao Kaneko's Electronics, pages 97-104 (October 1982), but only one has been put into practical use. It uses a solar cell to charge a normal secondary battery.

このように太陽電池で発電した電力を二次電池に貯える
二段階型のものの他に、n型TlO2のような半導体か
らなる電極全、白金のような金属あるいはp型GaPの
ような半導体からなる電極と共に電解液に浸漬して半導
体電極を光で照射して電荷分離を起させ(価電子帯にホ
ール、導電帯に電子を生ずる)、光誘起した電荷で電解
液中の物質を酸化・還元して活物質として貯え、放電時
にこれ全匣用する試みもなされているが、未だ実用の域
に達していない。光励起した電荷で、後続する酸化・還
元反応を行わせるには、■電解質中の物質の酸化・還元
電位が、半導体電極の価電子帯の上端より上部に、還元
電位が導電帯の下端より下部にあること、0元励起によ
シ出来るだけ多くの電荷分離を行なわせるのに、半導体
電極のバンドギャップが小さいことが必要であるが、バ
ンドギャップが余り小さいと■の条件が満足できず後続
する電気化学反応が効率よく進行しない。それゆえ、■
及び■の条件を満たし、太陽光または蛍光灯の光音吸収
して反応を効率よく進めるのに望ましい半導体のバンド
ギャップは、1〜2.5ev程度であるが、そのような
バンドギャップ全もつ半導体、例えばn型3i (〜1
.1+5V)、n型04ムS(〜1,35ev ) 、
 CdS (〜2,4 eV )はいずれもそれ自体が
反応に関与して腐食してしまう問題点を有しており、水
溶液中で安定なものは紫外光しか利用できないTiO2
、ZnOなどバンドギャップが3.0〜3.2 eVの
材料に限られるのが現状である。
In addition to the two-stage type that stores electricity generated by solar cells in a secondary battery, there are electrodes made entirely of semiconductors such as n-type TlO2, metals such as platinum, or semiconductors such as p-type GaP. The semiconductor electrode is immersed in an electrolytic solution along with the electrode, and the semiconductor electrode is irradiated with light to cause charge separation (generating holes in the valence band and electrons in the conductive band), and the photo-induced charge oxidizes and reduces substances in the electrolytic solution. Attempts have also been made to store this as an active material and use the entire container during discharge, but this has not yet reached the level of practical use. In order to cause the subsequent oxidation/reduction reaction to occur with photo-excited charges, the oxidation/reduction potential of the substance in the electrolyte must be above the upper end of the valence band of the semiconductor electrode, and the reduction potential be below the lower end of the conductive band. In order to achieve as much charge separation as possible through zero-element excitation, it is necessary that the bandgap of the semiconductor electrode be small; however, if the bandgap is too small, the condition (2) cannot be satisfied and the subsequent The electrochemical reaction that occurs does not proceed efficiently. Therefore, ■
The bandgap of a semiconductor that satisfies the conditions of , for example n-type 3i (~1
.. 1+5V), n-type 04MUS (~1,35ev),
CdS (~2.4 eV) has the problem that it itself participates in reactions and corrodes, and the only one that is stable in an aqueous solution is TiO2, which can only be used with ultraviolet light.
, ZnO, and other materials with a band gap of 3.0 to 3.2 eV are currently used.

また最近、IV、V、Vl族の遷移金属のジカルコゲナ
イトを正極材料に開用する二次電池の研究が多く行なわ
れて来ている。その多くはLi fjl負き材料とし、
有機電解質を用いるものである。
Recently, much research has been carried out on secondary batteries using dichalcogenite, a transition metal of the IV, V, and Vl groups, as a positive electrode material. Many of them are negative materials for Li fjl,
It uses an organic electrolyte.

ごく最近、これらの遷移金属のジカルコゲナイトが電力
ばかりでなく、光によってもイオン2出し入れすること
ができると報告されている。例えば、エイチ トリピッ
チ、°フォトエレクトロケミカル エナジー コンバー
ジョン インヴオルヴイング トランジション メタル
 デイ−スティソ アンド インターカレーション オ
プレイヤー コンバウンス゛、“ストラフチア−アンド
 ボンディング(H、Tributch= photo
electrochemicalenergy con
versioninvolving Tr2Lnsit
ion metal d −5tate andint
ercalation of 1ayer compo
unds 、”5tructure and Bond
ing 49 、162〜166′82)は自他の研究
を総合して総説的に光で充電できる電池の可能tt’を
述べている。その中で太陽光を利用するということを考
慮すると、Lii負極とする電池では充電に必要なエネ
ルギーが大き過ぎて効率の高い充電が出来ない。効率の
上から負極はもっと責な酸化・還元電位をもつCuのよ
うなものに置き換える方がよいことを予言している。こ
のことは上記■、■の条件から容易に考えられることで
ある。また、光充電の過程において電啄は半導体性をと
り続けることが必要でFeとかCuのZrS2とかHf
52へのインターカレーションを取扱った、ピー、ジー
、ヤコプ池ジャーナルフィジックス シー(ソリッド 
ステイト フィジックス(B、 G、  Jacob 
、 et al J、Phys、C3(Solid  
5tate  Phys  )12,2189.’了9
))を引用して、これらの二硫化物が光電極として有望
なことを述べている。
Very recently, it has been reported that dichalcogenites of these transition metals can transport ions in and out not only by electric power but also by light. For example, H Tripich, Photoelectrochemical Energy Conversion Involving Transition Metal De-Stiso and Intercalation Oplayer Combine, Straftia and Bonding (H, Tributch = photo
electrochemical energy con
version involving Tr2Lnsit
ion metal d-5tate andint
ercalation of 1ayer compo
unds,”5structure and Bond
ing 49, 162-166'82) summarized the research of his own and others and described the possibility of a battery that can be charged with light. Considering the use of sunlight, batteries with Lii negative electrodes require too much energy to charge, making it impossible to charge them with high efficiency. From the standpoint of efficiency, it is predicted that it would be better to replace the negative electrode with something like Cu, which has a more aggressive oxidation/reduction potential. This can be easily considered from the conditions (1) and (2) above. In addition, in the process of photocharging, it is necessary for the electric current to maintain its semiconducting properties, and therefore
P.G. Jacobike Journal Physics Sea (Solid) dealing with intercalation to 52
State Physics (B, G, Jacob
, et al J, Phys, C3 (Solid
5tate Phys) 12,2189. 'Ryo9
)) states that these disulfides are promising as photoelectrodes.

しかしながら、先の総説は艮望を述べているだけであっ
てこの種の電池の実用上の問題全解決したものではない
。言い換えると、総説で述べられたものだけでは後述す
るように実用に足る電池はできない。ましてや、Cu 
イオン導電性固体電解質を用いる本発明の全固体の光二
次電池について何ら触れられておらず、これ全実用化す
るための後述するような問題点の解消については何の示
唆も与えていない。
However, the above review merely states expectations and does not completely solve the practical problems of this type of battery. In other words, it is not possible to create a battery that is sufficient for practical use using only the materials described in the review article, as will be described later. Moreover, Cu
There is no mention of the all-solid-state photosecondary battery of the present invention using an ion-conductive solid electrolyte, and no suggestion is given about solving the problems described below in order to put this into practical use.

発明が解消しようとする問題点 本発明は、n型遷移金属ジカルコゲナイトを用いた電極
から光によるCu イオンのデインターカレーションを
利用して充電を行なう点においてはTributchの
予想する所と何ら変わらない。ところでこれらn型半導
体電極で溶液電解質を用いる場合には、光の作用によっ
てカチオンをデインターカレーションするか、アニオン
をインターカレーションすることが知られている。それ
らの反応が進行するか否かは、半導体電極側の禁止帯内
にアルインターカレーションのエネルギーレベルとフェ
ルミレベルと各イオンの酸化・還元電位11C1゜E2
 が第6図に示すような相対位置にあるか否かによって
決定される。言い換えると、カチオンのデインターカレ
ーションによって充電できるようにするには、カチオン
の酸化・還元電位に、(A/A)がEXと!、の間にあ
り、アニオンの酸化・還元電る場合には、動き得るのは
CU イオンのみであるから、アニオンのインターカレ
ーション反応は進行しない。それ故にカチオンの酸化・
還元電位の相対位置にのみ注目し、これが第6図の条件
を満足すればよい。従って材料選択のための制約がそれ
だけ少ない利点を有する。しかしながら、その−方で正
極の主体材料としてMB2(Ml″iT工、Zr。
Problems to be Solved by the Invention The present invention is different from what Tributch expected in that charging is performed by utilizing deintercalation of Cu ions by light from an electrode using n-type transition metal dichalcogenite. does not change. By the way, when a solution electrolyte is used in these n-type semiconductor electrodes, it is known that cations are deintercalated or anions are intercalated by the action of light. Whether these reactions proceed or not depends on the energy level of Al intercalation, the Fermi level, and the oxidation/reduction potential of each ion within the forbidden band on the semiconductor electrode side.
is determined by whether or not they are in relative positions as shown in FIG. In other words, in order to enable charging by deintercalation of cations, (A/A) must be EX and the oxidation/reduction potential of cations! , and when the anion is oxidized or reduced, only the CU ion can move, so the anion intercalation reaction does not proceed. Therefore, the oxidation of cations
Paying attention only to the relative positions of the reduction potentials, it is sufficient if this satisfies the conditions shown in FIG. Therefore, there is an advantage that there are fewer restrictions on material selection. However, on the other hand, MB2 (Ml''iT, Zr) is used as the main material of the positive electrode.

Hfのいずれか)を用いると、60°C以上の高温で光
を照射するとMB2が分解するという欠点を有していた
Hf) had the disadvantage that MB2 decomposed when irradiated with light at a high temperature of 60° C. or higher.

問題点を解決するための手段 そこで本発明は、正極の主体材料としてMoX2(但し
XはS 、 Ss 、 Teのいずれか)全周いたもの
である。
Means for Solving the Problems According to the present invention, the main material of the positive electrode is MoX2 (where X is any one of S, Ss, and Te) all around the cathode.

作用 MB2(MはTi 、 Zr 、 Ifのいずれか)及
びMoX2 (XはS 、 Ss 、 Teのいずれか
)のバンド構造をそれぞれ第5図(a)、第5図(b)
に示す。第5図<’a−>−x見ると分かるようにMB
2に光を照射した場合、SのP軌道にホールが生じる。
The band structures of MB2 (M is Ti, Zr, If) and MoX2 (X is S, Ss, Te) are shown in Figures 5(a) and 5(b), respectively.
Shown below. Figure 5<'a->-xAs you can see, MB
When 2 is irradiated with light, a hole is generated in the P orbit of S.

SのP軌道はMB2の価電子帯、つまりMB2の化学結
合をなしている部分であり、そこにホールが生じると、
雰囲気温度が高い場合、MB2の化学結合が切れ、結果
的にMB2の分解になる。ところが第5図(b)を見る
と分かるように、MoX2 K光を照射した場合、ホー
ルが生成されるのはMoとXの相互作用により生じてい
るt2g軌道であるから、ここにホールが生じてもMo
X2の化学結合が切れる事はない。
The P orbital of S is the valence band of MB2, that is, the part that forms the chemical bond of MB2, and when a hole is created there,
When the ambient temperature is high, the chemical bonds of MB2 are broken, resulting in decomposition of MB2. However, as can be seen from Figure 5(b), when MoX2K light is irradiated, holes are generated in the t2g orbit caused by the interaction between Mo and X, so holes are generated here. Mo Mo
The chemical bond of X2 never breaks.

上記のように正極の主体材料としてMoX2 (XはS
 、 Se 、 Teいずれか)を用いると、光の照射
による分解が起こらなくなる。
As mentioned above, the main material of the positive electrode is MoX2 (X is S
, Se, or Te), decomposition due to light irradiation will not occur.

実施例 以下、本発明を実施例で詳述する。Example Hereinafter, the present invention will be explained in detail with reference to Examples.

〈実施例1〉 電池を構成する材料は下記の通りである。<Example 1> The materials constituting the battery are as follows.

正極: MoSe2粉末+RbCuaIt5C:ハ5粉
末(重量比2:3)・・・・・・・・・・・・・・・6
0■固体電解質: RbC;u411.5+dJ15粉
末 ・=・soq負極:Cu粉末+Cu、、59S粉末 −l−RbCu4ItsCJ、xs粉末(重量比4:1
9:5)・・・・・・50■上記正極粉末と固体電解質
と負極粉末とを層状の電池ペレットとし、第1図に示す
ように構成した。図中1は上記の正極層、2は固体電解
質層、3は負極層である。4は透明電極でIn2O3に
5n02 fドープしたものをガラス基板の上に蒸着し
たもの全周いた。5は負極側の集電体でスチレン・ブタ
ジェンゴムに直径が7〜8μm1長さが30〜100μ
mの炭素繊維を分散させた導電ゴムを用いた。6はリー
ド線、7は高絶縁性樹脂を用いたパッケージである。8
は光充電の際の逆電流防止のためのダイオードである。
Positive electrode: MoSe2 powder + RbCuaIt5C:Ha5 powder (weight ratio 2:3) 6
0■ Solid electrolyte: RbC; u411.5+dJ15 powder ・=・soq negative electrode: Cu powder + Cu, 59S powder-l-RbCu4ItsCJ, xs powder (weight ratio 4:1
9:5)...50 ■ The above positive electrode powder, solid electrolyte, and negative electrode powder were made into a layered battery pellet, which was constructed as shown in FIG. In the figure, 1 is the above-mentioned positive electrode layer, 2 is the solid electrolyte layer, and 3 is the negative electrode layer. No. 4 was a transparent electrode in which In2O3 doped with 5n02f was deposited on a glass substrate all around the circumference. 5 is a current collector on the negative electrode side made of styrene-butadiene rubber with a diameter of 7 to 8 μm and a length of 30 to 100 μm.
A conductive rubber having m carbon fibers dispersed therein was used. 6 is a lead wire, and 7 is a package using a highly insulating resin. 8
is a diode to prevent reverse current during photocharging.

上記電池に対して、放電と光充電のくり返しを行なった
時の電池電圧の時間変化を第2図に示した。−雰囲気温
度は60°Cとし、放電は100μAで1時間、光充電
の除の光源には、10oWのXe  ランプ全円い、光
源までの距n&全5oc!rLとして1時間光を照射し
た。図中Q印は本実施例、口印はZrS2 k正極の主
体材料とした比較例であり、これから分かるように、6
0′Cの環境下における充放電特性は本実施例の方が著
しく向上している。
FIG. 2 shows the change in battery voltage over time when the above battery was repeatedly discharged and photocharged. -The ambient temperature is 60°C, the discharge is 100 μA for 1 hour, and the light source except for photo-charging is a 10oW Xe lamp.The distance to the light source is n & total 5oc! Light was irradiated for 1 hour as rL. In the figure, the mark Q indicates this example, and the mark indicates a comparative example in which ZrS2k was used as the main material for the positive electrode.
The charging and discharging characteristics in an environment of 0'C are significantly improved in this example.

〈実施例2〉 正極として、MoS2粉末+RbCuaItsCJxs
粉末+Pd ブラック粉末及びアセチレンブラックを重
量比で2 : 3 : 0.05 : o、1で混合し
たものを60η庚い、他は上記実施例1とまったく同じ
条件で電池を作製した。この電池全10にΩでの定抵抗
負荷放電と、元充電のくり返しを行なった時の電池電圧
の時間変化を示したものが第3図である。放電と光充電
は共′に、1時間のくり返しであり、雰囲気温度は80
°Cとした。図中○印は本実施例、口印はZrS2 k
用いた比較例である。導電材としてここではPdブラッ
ク粉末とアセチレンブラックを用いたが、Pd ブラッ
クに代えてPtブラック全用いることもでき、アセチレ
ンブラックのような炭素粉末を単独で固体電解質ととも
に加えることもできる。
<Example 2> As a positive electrode, MoS2 powder + RbCuaItsCJxs
Powder + Pd A battery was prepared under exactly the same conditions as in Example 1 above, except that a mixture of black powder and acetylene black in a weight ratio of 2:3:0.05:o, 1 was boiled for 60η. FIG. 3 shows the change in battery voltage over time when all 10 batteries were subjected to constant resistance load discharge at Ω and repeated charging. Both discharging and photocharging are repeated for 1 hour, and the ambient temperature is 80°C.
It was set to °C. In the figure, the circle mark indicates this example, and the mouth mark indicates ZrS2k.
This is a comparative example. Although Pd black powder and acetylene black were used here as the conductive material, all Pt black can be used instead of Pd black, and carbon powder such as acetylene black can also be added alone together with the solid electrolyte.

〈実施例3〉 正極としテMoTe2 +RbCu4I 1.s Cj
+x5 k重量比で2:3に混合したもの’r60yy
i[fい、他は上記実施例1とまったく同じ条件で電池
全炸裂した。この電池’510にΩでの定抵抗負荷放電
と、光光電のくり返し2行なった時の電池電圧の時間変
化を第4図に示した。放電と元充電は共に1時間のくり
返しであり、雰囲気温度は60°Cとした。図中O印は
本実施例、口印はZr5z k用いた比較例の結果であ
る。
<Example 3> Positive electrode: MoTe2 +RbCu4I 1. s Cj
+x5 k mixed at a weight ratio of 2:3'r60yy
The battery completely exploded under the same conditions as in Example 1 above. Figure 4 shows the change in battery voltage over time when this battery '510 was subjected to two cycles of constant resistance load discharge at Ω and photovoltage. Both discharging and original charging were repeated for 1 hour, and the ambient temperature was 60°C. In the figure, the O mark is the result of this example, and the open mark is the result of the comparative example using Zr5zk.

なお、上記正極材料のMoX2 (但しXはS、Ss。In addition, the above positive electrode material MoX2 (where X is S or Ss.

Teいずれか)は不定比化合物であり、これがMoXY
(1,6≦Y≦2.1)であり、n型である限り、同様
の結果が得られることは言うまでもない。
Te) is a non-stoichiometric compound, which is MoXY
(1,6≦Y≦2.1), and it goes without saying that similar results can be obtained as long as the material is n-type.

発明の効果 本発明は以上のように正極にMoXz k主体とした材
料を用いることで、高温度中での元充電の際の正極の分
解をなくす事が出来た。
Effects of the Invention As described above, in the present invention, by using a material mainly composed of MoXz k for the positive electrode, it was possible to eliminate the decomposition of the positive electrode during pre-charging at high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における光二次電池の構成略図
、第2図、第3図及び第4図は本発明の実施例の光電池
の特性を示す図、第6図a、bはMS2及びMoX2の
バンド構造を示した図、第6図は元充電の原理図゛でち
る。 1・・・・・・正甑層、2・・・・・・固体電解質層、
3・・・・・・負極層、4・・・・・・透明電極、5・
・・・・・集電体、6・・・・・・リード線、7・・・
・・・密封パッケージ、8・・・・・ダイオードO 代理人の氏名 弁理士 中 尾 敏 男 ほか1名3−
%j毀看 →−−−録祠室S≦ 5−一一円7目ぐり:イ5 r−−−リー5・引( 7−g士丁ハニノr−ジ 8−−一タ゛°儲−y 斧 第2図 智 開 (袋間) 第3図 盲 百 哨1) 第4図 !18  間 (搏閣) 第5図 (α) 、7″)2才Zi 第6図 Eζ−一一イ2;−Fイト 酎−7エルル1ル
FIG. 1 is a schematic diagram of the structure of a photovoltaic battery according to an embodiment of the present invention, FIGS. 2, 3, and 4 are diagrams showing the characteristics of a photovoltaic cell according to an embodiment of the present invention. FIG. 6 is a diagram showing the band structure of MoX2 and MoX2, and FIG. 6 is a diagram showing the principle of original charging. 1... Positive layer, 2... Solid electrolyte layer,
3... Negative electrode layer, 4... Transparent electrode, 5...
...Current collector, 6...Lead wire, 7...
... Sealed package, 8 ... Diode O Name of agent: Patent attorney Toshio Nakao and 1 other person 3-
%j viewing→---Recording shrine S≦ 5-11 yen 7 mark: 5 r---Lee 5 pull ( 7-g officer 8--1 ゛° profit- y Ax No. 2 Wisdom Open (Fukuroma) No. 3 Blind 100 Sho 1) No. 4! 18 (Rikkaku) Fig. 5 (α), 7″) 2-year-old Zi Fig. 6 Eζ-11i 2;-F Itochu-7 Elle 1ru

Claims (3)

【特許請求の範囲】[Claims] (1)銅を主体とする負極と、Cu^+イオン導電性固
体電解質と、n型MoX_2(但しXはS、Se、Te
のいずれか)を主体とする正極とから構成され、前記正
極に光を照射することにより充電させることを特徴とす
る光二次電池。
(1) A negative electrode mainly composed of copper, a Cu^+ ion conductive solid electrolyte, and an n-type MoX_2 (where X is S, Se, Te
1. A photo secondary cell comprising a positive electrode mainly composed of any one of the above, and is charged by irradiating the positive electrode with light.
(2)n型MoX_2(但しXはS、Se、Teいずれ
かに炭素粉末とCu^+イオン導電性固体電解質とを加
えた正極を用いる特許請求の範囲第1項記載の光二次電
池。
(2) The photo secondary battery according to claim 1, which uses a positive electrode of n-type MoX_2 (where X is S, Se, or Te, to which carbon powder and Cu^+ ion conductive solid electrolyte are added).
(3)n型MoX_2(但しXはS、Se、Teいずれ
かにPd又はPt粉末とCu^+イオン導電性固体電解
質とを加えた正極を用いる特許請求の範囲第1項記載の
光二次電池。
(3) A photo secondary battery according to claim 1, which uses a positive electrode made of n-type MoX_2 (where X is S, Se, or Te, to which Pd or Pt powder and Cu^+ ion conductive solid electrolyte are added) .
JP61148779A 1986-06-25 1986-06-25 Photo-secondary battery Pending JPS634557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61148779A JPS634557A (en) 1986-06-25 1986-06-25 Photo-secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61148779A JPS634557A (en) 1986-06-25 1986-06-25 Photo-secondary battery

Publications (1)

Publication Number Publication Date
JPS634557A true JPS634557A (en) 1988-01-09

Family

ID=15460481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61148779A Pending JPS634557A (en) 1986-06-25 1986-06-25 Photo-secondary battery

Country Status (1)

Country Link
JP (1) JPS634557A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107919464A (en) * 2017-10-27 2018-04-17 长江大学 A kind of lithium ion battery telluride molybdenum anode material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107919464A (en) * 2017-10-27 2018-04-17 长江大学 A kind of lithium ion battery telluride molybdenum anode material and preparation method thereof
CN107919464B (en) * 2017-10-27 2018-08-17 长江大学 A kind of lithium ion battery telluride molybdenum anode material and preparation method thereof

Similar Documents

Publication Publication Date Title
Liu et al. A photo-assisted reversible lithium-sulfur battery
Yu et al. The applications of semiconductor materials in air batteries
Wang et al. A Renewable Light‐Promoted Flexible Li‐CO2 Battery with Ultrahigh Energy Efficiency of 97.9%
Paolella et al. Li-ion photo-batteries: challenges and opportunities
JP2004241228A (en) Plastic film electrode and photoelectric cell using it
Zheng et al. Recent advances in cadmium sulfide-based photocatalysts for photocatalytic hydrogen evolution
EP0553023B1 (en) Photochargeable air battery
Dong et al. Photoassisted Li-ion de-intercalation and Niδ+ valence conversion win-win boost energy storage performance in Ni/CdS@ Ni3S2-based Li-ion battery
Tributsch Photo-electrochemical studies on intercalation and semiconducting intercalation compounds
CN112750548B (en) Radioactive three-dimensional nanostructure spoke volt electrochemical cell
US4119768A (en) Photovoltaic battery
Momeni et al. Fabrication and photo/electrochemical properties of cobalt-manganese binary metal sulfides deposited on titania nanotubes: Efficient and stable photoelectrodes for photo-assisted charging supercapacitors
JPS634557A (en) Photo-secondary battery
Sun et al. Advanced photo-rechargeable lithium-and zinc-ion batteries: Progress and prospect
US20130186768A1 (en) Articles, devices, systems, and methods for solar energy storage and/or utilization
JPS62259360A (en) Photoelectric secondary cell
Yi et al. Bi/Bi2O3/TiO2 Heterojunction Photocathode for High-Efficiency Visible-Light-Driven Lithium-Sulfur Batteries: Advancing Light Harvesting and Polysulfide Conversion
Qiang et al. Optoelectronic and photo‐charging properties of CH3NH3PbI3/LiFePO4 system
JPS634558A (en) Photo-secondary battery
Hada et al. Energy conversion and storage in solid-state photogalvanic cells.
JPH0564437B2 (en)
JPS62259359A (en) Photoelectric secondary cell
US4138532A (en) N-methylphenazine photogalvanic cell
JPH0578147B2 (en)
JPH0564436B2 (en)