JPS62117278A - Photo-secondary cell - Google Patents

Photo-secondary cell

Info

Publication number
JPS62117278A
JPS62117278A JP60256970A JP25697085A JPS62117278A JP S62117278 A JPS62117278 A JP S62117278A JP 60256970 A JP60256970 A JP 60256970A JP 25697085 A JP25697085 A JP 25697085A JP S62117278 A JPS62117278 A JP S62117278A
Authority
JP
Japan
Prior art keywords
positive electrode
polarization
black powder
zrs2
mainly composed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60256970A
Other languages
Japanese (ja)
Inventor
Teruhisa Kanbara
神原 輝寿
Tadashi Tonomura
正 外邨
Satoshi Sekido
聰 関戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECH RES ASSOC CONDUCT INORG COMPO
Original Assignee
TECH RES ASSOC CONDUCT INORG COMPO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECH RES ASSOC CONDUCT INORG COMPO filed Critical TECH RES ASSOC CONDUCT INORG COMPO
Priority to JP60256970A priority Critical patent/JPS62117278A/en
Publication of JPS62117278A publication Critical patent/JPS62117278A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Photovoltaic Devices (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To obtain a larger discharge current by employing a material mainly composed of a compound of ZrS2 and Pb black powder as a positive electrode material. CONSTITUTION:The photo-secondary cell in the caption comprises a negative electrode mainly composed of metal copper, a Cu<+> ion conductive solid state electrolyte and a positive electrode mainly composed of a compound of ZrS2 and Pb black powder and can be charged by radiating the light onto the positive electrode. Main cause of polarization is the activating energy for moving the charge on a contact face between the electrolyte and the positive electrode material. The lower the activating energy, the quicker the electrons are passed and received thus reducing the polarization. When Pb black powder is mixed into ZrS2, the above activating energy will lower resulting in reduced polarization.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電力ではなく、光で充電できる二次電池すな
わち太陽電池と二次電池を併せた働きをする電池に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a secondary battery that can be charged with light rather than electricity, that is, a battery that functions as a combination of a solar cell and a secondary battery.

従来の技術 光で充電する二次電池の試みは、例えば、金子工夫、エ
レクトロニクス、P9了〜104(S59・10)の総
説で示されたように数多くなされているが、実用されて
いるのは太陽電池で通常の二次電池を充電する方式のも
のである。このように太陽電池で発電した電力を二次電
池に貯える二段階型の他に、n型T 102のような半
導体からなる電極を、白金のような金属、あるいはp型
GaPのような半導体からなる電極と共に電解液に浸漬
して半導体電極を光で照射して電荷分離を起さ(t、(
導電帯にホール、導電帯に電子を生ずる)、光誘起した
電荷で電解液中の物質を酸化、還元して活物質として貯
え、放電時にこれを使用する試みもなされているが、未
だ実用の域に達していない。
Conventional technology Many attempts have been made to develop secondary batteries that can be charged with light, as shown in the review of Kaneko Tsuyoshi, Electronics, P9 Ryo~104 (S59/10), but only a few have been put into practical use. It uses solar cells to charge regular secondary batteries. In addition to the two-stage type that stores power generated by solar cells in a secondary battery, there are also electrodes made of a semiconductor such as n-type T102 made of a metal such as platinum or a semiconductor such as p-type GaP. The semiconductor electrode is immersed in an electrolytic solution together with the electrode, and the semiconductor electrode is irradiated with light to cause charge separation (t, (
There have also been attempts to oxidize and reduce substances in the electrolyte with photo-induced charges (generating holes in the conductive band and electrons in the conductive band) and storing this as an active material, which is then used during discharge, but this has not yet been put to practical use. The area has not been reached.

光励起した電荷で、後続する酸化、還元反応を行わせる
には、■ 電解質中の物質の酸化、還元電位が、半導体
電極の導電帯の」二端より上部、還元電位が導電帯の下
端より下部)にある、■ 光励起により出来るだけ多く
の電荷分離を行なわせるに、半導体電極のバンドギャッ
プが小さいことが必要であるが、バンドギャップが余り
小さいと■の条件が満足できず後続する電気化学反応が
進行しない。それゆえ、■及び■の条件を満たし、太陽
光または螢光灯の光を吸収して反応を効率よく進めるの
に望ましい半導体のバンドギャップは、1〜2.5 e
v程度であるが、そのようなバンドギャップをもつ半導
体、例1えばn型Si 1.1 eV、n型GaAs 
〜1.36 eV 、 CdS 〜2,4 eVは何れ
もそれ自体が反応に関与して腐食してし2寸う問題点を
有しており、水溶液電解質中で安定なものは紫外光しか
利用できないT i02 、 Z n○などバンドギャ
ップが3.0〜3.2 eVの材料に限られるのが現状
である。
In order for the photo-excited charge to carry out the subsequent oxidation and reduction reactions, the oxidation and reduction potentials of the substances in the electrolyte must be above the two ends of the conductive band of the semiconductor electrode, and the reduction potential must be below the bottom end of the conductive band. ), it is necessary for the band gap of the semiconductor electrode to be small in order to perform as much charge separation as possible by photoexcitation, but if the band gap is too small, the condition in ■ will not be satisfied and the subsequent electrochemical reaction will be delayed. is not progressing. Therefore, the band gap of a semiconductor that satisfies the conditions (1) and (2), absorbs sunlight or fluorescent lamp light, and is desirable for the reaction to proceed efficiently is 1 to 2.5 e.
However, semiconductors with such a band gap, such as n-type Si 1.1 eV, n-type GaAs
~1.36 eV and CdS ~2.4 eV both have the problem of being involved in reactions and corroding, and those that are stable in aqueous electrolytes can only be used with ultraviolet light. Currently, the band gap is limited to materials with a band gap of 3.0 to 3.2 eV, such as T i02 and Z n○, which cannot be used.

また、最近、IV、V、Vl族の遷移金属のジカルコゲ
ナイトを正極材料に使用する二次電池の研究が多く行な
われて来ている。その多くはLiを負極材料とし、有機
電解質を用いるものである。
Further, recently, much research has been conducted on secondary batteries using dichalcogenite, a transition metal of the IV, V, and Vl groups, as a positive electrode material. Most of them use Li as the negative electrode material and an organic electrolyte.

ごく最近、これらの遷移金属のジカルコゲナイドが電流
ばかりでなく、光によってもイオンを出し入れすること
ができると報告されている。例えばエイチ トリピッチ
、パフォトエレクトロケム エナジー コンバージョン
 ・インヴオルヴイング トランジション メタル デ
ィー スタイン アンド インターカレーション コン
パウンド オプ レイヤー コンバンヅ、″  ストラ
フチア−アンド ボンデ、インク(H,Tributc
h、” Photoelectrochem ener
gyconversion  involving  
ttansition  metald−states
  and  1ntercalation  com
pound oflayar  conpounds”
、5tructure and Bonding49.
162〜1es’s2)は自他の研究を総合して総説的
に光で充電できる電池の可能性を述べている。その中で
太陽光を利用するということを考慮すると、Liを負極
とする電池では充電に必要なエネルギーが大き過ぎて効
率の高い充電が出来ない。効率の−Fから負極はもっと
責な酸化1選元電位をもつCuのようなものに置き換え
る力がよいことを予言している。このことは上記■、■
の条件から容易に考えられることである。また、光充電
の過程において電極は半導性をとり続けることが必要で
FeとかCuのZ r S 2とかHf52へのインタ
ーカレーションを取扱った、ビージー ヤコブ他 ジャ
ーナル フィジックス シー (ソリッド スデイト 
フィジックス(B、 G、 Yacob 、 et a
l  T。
Very recently, it has been reported that these transition metal dichalcogenides can transport ions in and out not only by electric current but also by light. For example, H. Tripich, Pafoto Electrochem Energy Conversion Involving Transition Metal D Stein and Intercalation Compound Op Layer Combunds, Straftia & Bonde, Inc. (H, Tributc)
h,” Photoelectrochem ener
gyconversion involving
ttansion metal-states
and1ntercalation com
“pound oflayar compounds”
, 5structure and Bonding49.
162-1es's2) synthesizes his own and others' research and outlines the possibility of batteries that can be charged with light. Considering the use of sunlight, batteries with Li as the negative electrode require too much energy to charge, making it impossible to charge them with high efficiency. The -F efficiency predicts that it would be better to replace the negative electrode with something like Cu, which has a more negative oxidation selectivity potential. This is mentioned above ■,■
This is easily conceivable from the following conditions. In addition, it is necessary for the electrode to maintain semiconductivity during the process of photocharging, and the intercalation of Fe or Cu into ZrS2 or Hf52 was discussed in the journal Physics Sea by B.G. Jacob et al.
Physics (B, G, Jacob, et a
lT.

Phys、 C,(Solid 5tate Phys
)12 、2189(°了9))を引用して、これらの
二硫化物が光電極として有望なことを述べている。
Phys, C, (Solid 5tate Phys
) 12, 2189 (°了9)) and states that these disulfides are promising as photoelectrodes.

発明が解決しようとする問題点 発明者らは先にn型Z r S 2及びHf52 を用
いた光で充電できる二次電池を提案した。しかしながら
、上記材料を正極としたものでは放電に際しての、電池
としての分極が大きい欠点を有していた。
Problems to be Solved by the Invention The inventors previously proposed a light-chargeable secondary battery using n-type Z r S 2 and Hf52. However, batteries using the above-mentioned materials as positive electrodes have the drawback of large polarization during discharge.

間、1点を解決するだめの手段 電池の正極材料として、Z r S 2にPdブラック
粉体の混合物を主体とする材料を用いる。
However, as a solution to one point, a material mainly consisting of a mixture of Z r S 2 and Pd black powder is used as the positive electrode material of the battery.

作   用 電池の分極の大きな原因として、電解質と正極物質との
接触面における電荷移動の活性化エネルギーがある。こ
ればつ寸り、電解質中を通ってき/でCu+は正極物質
から電子を受は取りCuとなって正極物質中に貯えられ
、この電子の流れが電池としての機能なのでちるが、こ
のCu+と正極物質との間の電子の授受の際に消費する
エネルギーの事を電荷移動の活性化エネルギーと言うの
である。
A major cause of battery polarization is the activation energy of charge transfer at the interface between the electrolyte and cathode material. As it passes through the electrolyte, Cu+ receives electrons from the positive electrode material, becomes Cu, and is stored in the positive electrode material.This flow of electrons functions as a battery. The energy consumed when transferring electrons to and from a substance is called the activation energy of charge transfer.

そして勿論この活性化エネルギーが低い方が電子の授受
は敏速に行なわれ、電池としての分極も小さくなる。Z
 r S 2 K P d  ブラック粉体を混合する
と上述の活性化エネルギーが低下し、結果的(・こ分極
が小さくなった。) 実施例 〈実施例1〉 電池を構成する材料は下記の通りである。
Of course, the lower the activation energy, the more quickly electrons can be exchanged, and the polarization of the battery will be smaller. Z
r S 2 K P d When the black powder is mixed, the activation energy mentioned above is lowered, and as a result, the polarization is reduced. Example (Example 1) The materials constituting the battery are as follows. be.

正  極:  Z r S 2粉末+Pd粉末+RbC
u 4工+、sC#3.5粉末(MftJ=ヒ2 :0
.02  :  3 )   ・ =、、、、60mq
固体電解質;  Rb Cu 4I4.scl 3.s
粉末  ・−=−50mq負   i:  Cu粉末+
Cu1.5aS粉末十RbCu4 工j、5”3.5扮
未(重量比 4:19:5 )・・・・・・・・50m
ダ 上記正極粉末と固体電解質と負極粉末とを層状に三層に
約3トンの圧力でプレスし、直径1ommの電池ペレッ
トとし、第3図に示すように構成した。1は上記の正極
層、2け固体電解質層、3(・→負極層であり、4は透
明電極でI n 203にSnO2含ドーフしたものを
ガラスの」二に蒸着したものを用いた。517i(i%
電休体スチレン・ブタジエンコ゛ムに線径が7〜8I1
m、長さが30〜100μmの炭素繊維を分散させた導
電ゴムを用いた1つらはリード線、7は高絶縁性樹脂を
用いたパッケージである。
Positive electrode: Z r S 2 powder + Pd powder + RbC
u 4 engineering+, sC#3.5 powder (MftJ=Hi2:0
.. 02:3) ・=,,,,60mq
Solid electrolyte; Rb Cu 4I4. scl3. s
Powder ・-=-50mq negative i: Cu powder +
Cu1.5aS powder 10RbCu4, 5" 3.5mm (weight ratio 4:19:5)...50m
The above positive electrode powder, solid electrolyte, and negative electrode powder were pressed into three layers under a pressure of about 3 tons to form a battery pellet with a diameter of 1 omm, as shown in FIG. 3. 1 is the above-mentioned positive electrode layer, 2 solid electrolyte layers, 3 (・→ negative electrode layer), and 4 is a transparent electrode in which In 203 doped with SnO2 is vapor-deposited on a glass plate. 517i (i%
Electrically suspended styrene-butadiene comb with wire diameter of 7 to 8I1
One is a lead wire made of conductive rubber in which carbon fibers are dispersed and has a length of 30 to 100 μm, and 7 is a package made of highly insulating resin.

上記電池を200 /JAで放電しながら、光照射のo
n−offの繰り返しを行なった時の、閉路電圧の時間
変化を示したものが、第1図である。光源には100W
のXsランプを用い、距離5oCMで照射した。そして
この電池の放電特性を第2図に示す。放電電流は200
μAで、第1図と同様○印は本実施例、目印はZ r 
S 2を正極の主体材料と比較例であり、これを見ると
本実施例の放電特性は著しく向上した事がわかる。
While discharging the above battery at 200/JA, light irradiation
FIG. 1 shows the change in closed circuit voltage over time when the n-off cycle is repeated. 100W for light source
Irradiation was performed using an Xs lamp at a distance of 5oCM. The discharge characteristics of this battery are shown in FIG. The discharge current is 200
In μA, as in Fig. 1, the ○ mark indicates this example, and the mark indicates Z r
S2 is used as the main material of the positive electrode as a comparative example, and it can be seen that the discharge characteristics of this example were significantly improved.

〈実施例2〉 正極としてZrS  +Pd+RbCu4I、−504
3.。
<Example 2> ZrS +Pd+RbCu4I, -504 as positive electrode
3. .

を重量比2 : 0.04 : 3で混合したものを6
09使い、他は上記実施例1とまったく同じ条件で作製
した電池を50にΩ定抵抗負荷の放電をしながら、光照
射のon−offを行なった侍の閉路電圧の時間変化を
示したものが第4図である。
were mixed at a weight ratio of 2:0.04:3.
This graph shows the time change in the Samurai closed-circuit voltage when light irradiation was turned on and off while discharging a battery using 09 and using the same conditions as in Example 1 above with a constant resistance load of 50Ω. is shown in Figure 4.

なお・、上記正極月1のZ r S 2は不定比化合物
であり、これがZr5y(’−8へY≦2.1)であ−
)でも同様の結果を得る事(づ−言うまでもない5つま
た固体電解質金剛いた理由は、電解質が液体の場合正極
上の接合面で光が照射されると、カチオンとアニオンの
両者が反応に関与し、そこで正極材料の腐食がおこるの
であるが、水元二次電池に用いた固体電解質の場合反応
するのはCu+のみであり、正極材料の腐食はおこらな
い点にある。
In addition, Z r S 2 of the above positive polar moon 1 is a non-stoichiometric compound, and this is Zr5y (Y≦2.1 to '-8).
), but the reason for using a solid electrolyte is that when the electrolyte is a liquid, when light is irradiated at the junction surface on the positive electrode, both cations and anions participate in the reaction. However, in the case of solid electrolytes used in water-based secondary batteries, only Cu+ reacts, and corrosion of the positive electrode material does not occur.

発明の効果 本発明は以上のように正極にZ r S 2どPdブラ
ック粉体の混合物を生体とした材料を用いる事で電池の
放電の際の分極全署しく低減せしめた事により、より大
きい放電電流を得る事が出来た。
Effects of the Invention As described above, the present invention uses a material made of a living body of a mixture of Z r S 2 and Pd black powder for the positive electrode, thereby drastically reducing the overall polarization during battery discharge. I was able to obtain a discharge current.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の一実施例の光電池の特性図
、第3図は同電池の構成図、第4図は本発明の異なる実
施例の光電池の特性図である。 1・・・・正極、2・・・・・固体電解質、3・・・・
・・負極、4・・・・透明電極、5−・・・・・集電体
、6・・・・・・リード線、7 ・ 密封パッケージ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 特 開 (特開) 第2図 族電吟闇 (痔閲) 第3図 光 官圭↑バッケーシ
1 and 2 are characteristic diagrams of a photovoltaic cell according to an embodiment of the present invention, FIG. 3 is a configuration diagram of the same cell, and FIG. 4 is a characteristic diagram of a photovoltaic cell according to a different embodiment of the present invention. 1...Positive electrode, 2...Solid electrolyte, 3...
... Negative electrode, 4 ... Transparent electrode, 5 - ... Current collector, 6 ... Lead wire, 7 - Sealed package. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure Tokukai (Tokkai) Figure 2 Denginnya (Hemorrhoid Review) Figure 3 Light Officer Kei ↑ Bakkeshi

Claims (1)

【特許請求の範囲】[Claims] 金属銅を主体とする負極と、Cu^+イオン導電性固体
電解質と、ZrS_2とPdブラック粉体の混合物を主
体とする正極とから構成され、前記正極に光を照射する
ことにより充電可能であることを特徴とする光二次電池
It is composed of a negative electrode mainly made of metallic copper, a Cu^+ ion conductive solid electrolyte, and a positive electrode mainly made of a mixture of ZrS_2 and Pd black powder, and can be charged by irradiating the positive electrode with light. A photo secondary battery characterized by:
JP60256970A 1985-11-15 1985-11-15 Photo-secondary cell Pending JPS62117278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60256970A JPS62117278A (en) 1985-11-15 1985-11-15 Photo-secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60256970A JPS62117278A (en) 1985-11-15 1985-11-15 Photo-secondary cell

Publications (1)

Publication Number Publication Date
JPS62117278A true JPS62117278A (en) 1987-05-28

Family

ID=17299898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60256970A Pending JPS62117278A (en) 1985-11-15 1985-11-15 Photo-secondary cell

Country Status (1)

Country Link
JP (1) JPS62117278A (en)

Similar Documents

Publication Publication Date Title
JP2002516643A (en) Particulate interfaces for electrolyte cells and electrolysis processes
US4128704A (en) Photoelectrochemical energy storage system
Jasinski et al. Cathodic discharge of nickel sulfide in a propylene carbonate‐LiClO4 electrolyte
US5346785A (en) Photochargeable air battery
Heth Energy on demand: A brief history of the development of the battery
KR102334440B1 (en) Secondary battery for hydrogen evolution
KR101858933B1 (en) Heterogeneous metal nanowire electrode and preparing method thereof
JPS62117278A (en) Photo-secondary cell
Takada et al. Lithium ion conductive glass and its application to solid state batteries
JPS62259360A (en) Photoelectric secondary cell
JPS62259359A (en) Photoelectric secondary cell
JPS62117277A (en) Photo-secondary cell
US20230327108A1 (en) Silver-doped sulfur cathode material for rechargeable lithium battery
JPH06275312A (en) Full solid lithium battery
JPH10214628A (en) Lead acid-battery and its manufacture
CN114094110B (en) Graphite cathode for solid lithium ion battery
JPS62117279A (en) Photo-secondary cell
JPS62117276A (en) Photo secondary cell
JPS60198066A (en) Alkaline storage battery
JPS634557A (en) Photo-secondary battery
JPH0578147B2 (en)
JP2738708B2 (en) Rechargeable battery
JPS60230367A (en) Battery electrode and secondary battery
US3553025A (en) Fuel cell with an electrode comprising barium tantalum bronze or strontium niobium bronze
FI70490C (en) ELEKTRODER FOER BLYACKUMULATOR SAMT FOERFARANDE FOER FRAMSTAELLNING AV EN ELEKTROD