JPS60230367A - Battery electrode and secondary battery - Google Patents

Battery electrode and secondary battery

Info

Publication number
JPS60230367A
JPS60230367A JP59085379A JP8537984A JPS60230367A JP S60230367 A JPS60230367 A JP S60230367A JP 59085379 A JP59085379 A JP 59085379A JP 8537984 A JP8537984 A JP 8537984A JP S60230367 A JPS60230367 A JP S60230367A
Authority
JP
Japan
Prior art keywords
electrode
battery
material layer
metal
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59085379A
Other languages
Japanese (ja)
Inventor
Hiroshi Fukuzaki
福崎 弘
Yuzo Yamamoto
裕三 山本
Hiroshi Yashima
八嶋 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP59085379A priority Critical patent/JPS60230367A/en
Publication of JPS60230367A publication Critical patent/JPS60230367A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent dendritic growth of metal to obtain high power by making a battery electrode by forming a porous non-conductive material layer on the surface of a conductive substrate, and immersing it in an electrolyte with a counter electrode to form a secondary battery. CONSTITUTION:A porous non-conductive material layer comprising glass or ceramic is formed on the surface of a conductive substrate comprising metal, carbon, or conductive high polymer compound by surface treatment or bonding to form a battery electrode 2. The electrode 2 is faced with a counter electrode 4 such as a carbon electrode or titanium electrode with a separator 3 interposed, and they are immersed in an electrolyte to form a secondary battery. By performing electrochemical reaction in pores in a porous material layer, and repeating charge and discharge in a range in which deposition of metal is limited in pores, dendritic growth of metal is prevented and high power and high energy density battery can be obtained.

Description

【発明の詳細な説明】 本発明は霜、池用電極及びこれを利用した二次電池に関
し、更に詳細には、電極表面に形成せしめられた多孔性
非電導性物質層の空隙を利用して電気化学反応をおこな
う電池用電極並びにこれと対極及び電解液で構成される
二次電池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode for frost and ponds and a secondary battery using the same. The present invention relates to a battery electrode that performs an electrochemical reaction, and a secondary battery composed of the same, a counter electrode, and an electrolyte.

近年エレクトロニクス関連機器の発達や多機能化に伴い
、高性能バッテリーへの要求が高まっている。中でもリ
チウム電池はその高出力、亮エネルギー密度という特性
が注目を集めており、リチウム使用によるコスト高も電
池を二次電池化する事によシ克服すべく研究がなされて
きた。しかしリチウムの二次電池化の研究は充放電の繰
り返しによるリチウム極自身の劣化、iわゆるデンドラ
イトの生成という大きな障害に阻まれて達成されていな
い。また最近ウッドメタルにリチウムを吸蔵する事にニ
ジデンドライトの生成を抑制したリチウム二次電池の開
発が報告されているが、ウッドメタル自身が数種の重金
稿の合金でろるため、リチウム電池の重要な特徴である
高エネルギー密度が犠牲となっている。
In recent years, with the development and multifunctionality of electronics-related equipment, the demand for high-performance batteries has increased. Among these, lithium batteries have attracted attention for their characteristics of high output and low energy density, and research has been conducted to overcome the high cost of using lithium by converting the batteries into secondary batteries. However, research into making lithium secondary batteries has not been achieved due to the major obstacle of deterioration of the lithium electrode itself due to repeated charging and discharging, and the formation of so-called dendrites. Recently, the development of a lithium secondary battery that suppresses the formation of rainbow dendrite by absorbing lithium in wood metal has been reported, but since wood metal itself is made up of several types of heavy metal alloys, lithium batteries are important. The high energy density, which is a characteristic feature, is sacrificed.

斯る実情において本発明者らは、高出力、高エネルギー
密度という特性を有し、しかもデンドライトの生成のな
い二次電池全得べく、特Ell極に着目して研究をおこ
なっていたところ、電極表面に多孔性物質層を形成し、
該層の空隙を利用して電気化学反応を行なわせしめれば
上記要求を満足する二次電池が得られることを見出し、
本発明を完成した。
Under these circumstances, the present inventors were conducting research focusing on special Ell electrodes in order to obtain a secondary battery that has the characteristics of high output and high energy density and does not generate dendrites. Forming a porous material layer on the surface,
It was discovered that a secondary battery that satisfies the above requirements could be obtained by utilizing the voids in the layer to carry out an electrochemical reaction,
The invention has been completed.

すなわち本発明は、電導性基体の表面に多孔性非電導性
物質層を形成せしめてなる電池用電極及び該電極と対極
とを電解液中に浸漬してなる二次電池を提供するもので
ある。
That is, the present invention provides a battery electrode formed by forming a porous non-conductive material layer on the surface of a conductive substrate, and a secondary battery formed by immersing the electrode and a counter electrode in an electrolytic solution. .

本発明の電極は、電導性基体の表面を処理し、多孔性非
電導層とするか、電導性基体と多孔性物質膜を接合する
ことによシ調製される。電導性基体としては、電導性を
有する材料であれば何でも′All用でき、金桟、炭素
材料、導電性筒分子化合物等が用いられる。また、本発
明で用いる多孔性非電導性物質としては、ガラス、上2
ミックス、有機ポリマーフィルム等の電気絶縁性を有し
、しかも多孔性であるか、多孔化加工可能寿すべての材
料が挙けられる。電極表面等の多孔化は、微粒子の焼結
、化学侵蝕、電鱗酸化、イオンス、Qツタリング等の現
在一般におこなわれている表面多孔化技術を利用するこ
とができ、その孔の大きさは、IOX 〜1mIn%好
ましくは100 X〜10μmでるる。また、電導性基
体と多孔性非電性物質膜の接合は、金稿の蒸着、溶融金
楓の含浸、イオン注入等の技術によシおこなわれる。こ
のようにして調製される電極のうち、電池自体の軽量化
の面から、アルミナ、有機フィルム等を利用したものが
好ましく、特に、アルミニウム金属箔(板)を常法によ
り陽極酸化し、表面管多孔性アルミナ膜としたものが好
ましい。々お、本発明の電極においては、原則として孔
の底部に電導性基体が露出していることが必要であるが
、実質的に電子伝導性を示す程度の非電導性薄膜、例え
ば30ム以下の厚さのアルミナ層があってもさしつかえ
ない。
The electrode of the present invention is prepared by treating the surface of a conductive substrate to form a porous non-conductive layer, or by bonding a conductive substrate and a porous material membrane. As the conductive substrate, any material can be used as long as it has conductivity, and examples include metal bars, carbon materials, and conductive cylindrical molecular compounds. In addition, examples of porous non-conductive materials used in the present invention include glass,
All materials that have electrical insulation properties, such as mixes and organic polymer films, are porous or can be made porous. To make the electrode surface porous, it is possible to use the surface porosity technology commonly used at present, such as sintering of fine particles, chemical erosion, electrode scale oxidation, ionization, and Q-tuttering, and the size of the pores is as follows. IOX ~1 mIn% preferably 100X~10 μm. Further, the conductive substrate and the porous non-electric material film are bonded by techniques such as metal vapor deposition, molten maple impregnation, and ion implantation. Among the electrodes prepared in this way, from the viewpoint of reducing the weight of the battery itself, it is preferable to use alumina, organic film, etc. A porous alumina membrane is preferred. In the electrode of the present invention, in principle, it is necessary that the conductive substrate be exposed at the bottom of the hole, but a non-conductive thin film that exhibits substantial electronic conductivity, for example, 30 μm or less, is required. It is acceptable to have an alumina layer with a thickness of .

また、本発明の二次電池を構成するには、上記電極と対
極とt電解液に浸漬すれば良い。
Further, to construct the secondary battery of the present invention, the above electrode and counter electrode may be immersed in a t-electrolyte.

対極としては、炭素電極、二硫化チタン電極、硫化鉄電
極、五酸化、2ナゾウム電極等の充放電可能な電極が使
用される。更に電−液社、電解質を溶媒に溶解せしめる
ことによシ調製される。電解質の電極活物質としては、
現在知られているいずれのものをも使用することができ
るが、好ましくはアルカリ金属、亜鉛、鉛等の金属、特
にリチウム、亜鉛等のデンドライト形成の容易な金属で
ある。また、電解質の対イオンとしては、過塩素酸イオ
ン、6フツ化リンイオン、67フ化タリウムイオン、6
フツ化ヒ素イオン、6フッ化アンチモンイオン、ハロゲ
ンイオン、硝酸イオン、硫酸イオン、4酸化レニウムイ
オン等が挙けられる。
As the counter electrode, a chargeable and dischargeable electrode such as a carbon electrode, a titanium disulfide electrode, an iron sulfide electrode, a pentoxide electrode, a dinasium electrode, etc. is used. Further, it is prepared by dissolving an electrolyte in a solvent. As an electrode active material for electrolyte,
Although any currently known metals can be used, metals such as alkali metals, zinc, and lead are preferred, particularly metals that easily form dendrites such as lithium and zinc. In addition, counter ions of the electrolyte include perchlorate ion, phosphorus hexafluoride ion, thallium 67 fluoride ion,
Examples include arsenic fluoride ion, antimony hexafluoride ion, halogen ion, nitrate ion, sulfate ion, rhenium tetraoxide ion, and the like.

更Ktた、溶媒としては、水の他、ゾロビレンカーダネ
ート、γ−ブチロラクトン、ジメトキシエタン、THF
、ジオキサン、アセトニトリル等の一般の有機電池用溶
媒を挙けることができる。
In addition to water, the solvent used was zolobylene cardanate, γ-butyrolactone, dimethoxyethane, THF.
, dioxane, acetonitrile, and other common solvents for organic batteries.

本発明の二次電池の構成の一例を挙げれば第1図の通シ
である。すなわち、本発明の電極2と対極4をセ、eレ
ータ−3をはさんで対向させる。これら電極は、電解液
に浸漬し、密閉される。
An example of the structure of the secondary battery of the present invention is shown in FIG. That is, the electrode 2 of the present invention and the counter electrode 4 are placed opposite to each other with the e-lator 3 in between. These electrodes are immersed in electrolyte and sealed.

叙上の本発明の二次電池を用iて充電をおこなえは電極
活物質は電子伝導可能な本発明電極の空孔の底(電導性
基体の近傍)のみで析出し、底部から順次空隙を埋めて
行くような析出の仕方をする。よって仁の空隙内に金鴫
が析出する範囲で充放電を繰シ返す限り、尖端部への電
流の集中によるデンドライトの生成や析出した活物質の
欠落による充放電効率の低下を抑える事が可能となる。
When charging is performed using the secondary battery of the present invention described above, the electrode active material precipitates only at the bottom of the pores (near the conductive substrate) of the electrode of the present invention that can conduct electrons, and gradually fills the voids from the bottom. Precipitate in a manner that fills the area. Therefore, as long as charging and discharging are repeated within the range where gold droplets are deposited in the voids of the core, it is possible to suppress the formation of dendrites due to concentration of current at the tip and the decrease in charging and discharging efficiency due to lack of precipitated active material. becomes.

したがつて、本発明電極を用いた電池により高出力、高
エネルギー密度でメ夛、シかもデンドライトの生成のな
い電池が実用可能となった。
Therefore, by using the electrode of the present invention, a battery with high output, high energy density, and no formation of dendrites has become practical.

次に実施例を挙げ、本発明を説明する。Next, the present invention will be explained with reference to Examples.

実施例1゜ 高純度アルミニウノ・金属(99,99%厚さ100μ
rn)を0,4Mリン酸中で陽極酸化しく 30mA/
cm” 、 140’7 18分)、表面に多孔性のア
ルミナNIIを10μm形成せしめる。この電極(1×
2cIn)′E!び対極としての活性炭素繊維(クラレ
ケミカル製CH−20,2×2m)とを用い、1.0 
M Li BF4 fロビレンカーボネート′に電解液
として電池を構成した。この電池の定電流充放電特性(
30分間、300μA充−) #i第2図の通りであり
、リチウムの充放電による安定した電位が観測された。
Example 1 High purity aluminum Uno metal (99.99% thickness 100μ
rn) in 0.4 M phosphoric acid at 30 mA/
cm", 140'7 18 minutes), and 10 μm of porous alumina NII was formed on the surface. This electrode (1×
2cIn)′E! Using activated carbon fiber (CH-20, manufactured by Kuraray Chemical Co., Ltd., 2 x 2 m) as a counter electrode,
A battery was constructed using M Li BF4 f robylene carbonate' as the electrolyte. Constant current charge/discharge characteristics of this battery (
Charging at 300 μA for 30 minutes) #i As shown in Figure 2, a stable potential due to charging and discharging of lithium was observed.

この電池を充電後分解し、アルミナ極空隙を観察すると
リチウム金属が均一に析出しておシ、予想通シアルミナ
の空隙中に析出した事が確認された。
When this battery was disassembled after charging and the alumina electrode voids were observed, it was confirmed that lithium metal was deposited uniformly and, as expected, deposited in the alumina voids.

実施例2゜ 高純度アルミニウム金属(99,991厚さ30074
m)を14重量%硫酸中で陽極酸化(30ma/1wP
 50V 30分)し、表面に多孔性のアルミナ層を2
0μm形成せしめた。この電極(1×2α)と対極とし
ての活性炭素繊維(クラレケミカル製0H−152X2
y++ ) t−m−0、5M Lie104プロピレ
ンカーlネートを電解液として電池を構成した。この電
池の定電流充放電のサイクル特性は第3図のとおシでら
る。
Example 2 High purity aluminum metal (99,991 thickness 30074
m) in 14 wt% sulfuric acid (30 ma/1 wP
50V for 30 minutes) and then apply two porous alumina layers to the surface.
A thickness of 0 μm was formed. This electrode (1×2α) and activated carbon fiber (0H-152X2 manufactured by Kuraray Chemical Co., Ltd.) as a counter electrode
y++) t-m-0, a battery was constructed using 5M Lie 104 propylene carnate as the electrolyte. The constant current charging/discharging cycle characteristics of this battery are shown in FIG.

実施例3゜ 素焼きの上2ミックスコンデンサー用セッター(2工R
ON−He日本碍子製)の片面にアルミニウムを溶射し
電極とする。この電極と対極としての活性炭素繊維(0
H−202X21:tn)とを用い、1、QMLiBF
4ゾロピレンカーIネートを電解液としてN電池を構成
した。
Example 3゜ Unglazed top 2 mix condenser setter (2nd R
ON-He (manufactured by Nippon Insulator) was thermally sprayed with aluminum on one side to form an electrode. This electrode and activated carbon fiber (0
H-202X21:tn), 1, QMLiBF
An N battery was constructed using 4zolopyrene carnate as an electrolyte.

この電池の定電流充放電特性は第4図のとおシである。The constant current charging and discharging characteristics of this battery are as shown in FIG.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明二次電池のsM、の−例を示す図面で
るる。 第2図は、定電流(300μム)で充放電をおこなった
ときの時間と両極間電圧の関係を示す図面でるる。 第3図は、定電流(100μA)で充放電を繰シ返した
ときの時間と両極間電圧の関係を示す図面である。 第4図は、定電流(500μA)で充放電を行なったと
きの時間と両極間電圧の関係を示す図面であろう 1−−−m−白金リード線 2−−−−一本発明電極 3−一−−−セノQレータ− 4−−−−一対極 5−−−−−クリップ 6−−−−−テフロン板 7−−−−−テフロンボルト 8−一−−−テフロンナツト 第1図 第2図 第3図
FIG. 1 is a drawing showing an example of the sM of the secondary battery of the present invention. FIG. 2 is a diagram showing the relationship between the time and the voltage between the electrodes when charging and discharging are performed at a constant current (300 μm). FIG. 3 is a diagram showing the relationship between time and voltage between electrodes when charging and discharging are repeated at a constant current (100 μA). FIG. 4 is a diagram showing the relationship between time and voltage between electrodes when charging and discharging at a constant current (500 μA) 1---m-platinum lead wire 2----1 electrode of the present invention 3 -1----Seno Q-lator- 4-----One pair of electrodes 5-----Clip 6-----Teflon plate 7-----Teflon bolt 8--1---Teflon nut Fig. 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1、 電導性基体の表面に多孔性非電導性物質層を形成
せしめてなる電池用電極。 2 多孔性非電導性物質層が、多孔性セラミックスの層
でおる特許請求の範囲第1項記載の電極。 ユ 多孔性非電導性物質層がセラミックス粒子の焼結体
層である特許請求の範囲第1項記載の電極。 4、t4性基体がアルミニウム金稿であり、多孔性非電
導性物質層がアルミナの層でらる特許請求の範囲第1項
記載の電極。 5、電導性基体の表面に多孔性非電導性物質層を形成せ
しめてなる電極と対極とを電解液中に浸漬してなる二次
電池。 6、 対極が炭素電極、二硫化チタン電極、硫化鉄電極
、五酸化パナゾウム電極のいずれかである特許請求の範
囲第5項記載の二次電池。
[Claims] 1. A battery electrode comprising a porous non-conductive material layer formed on the surface of a conductive substrate. 2. The electrode according to claim 1, wherein the porous non-conductive material layer is a porous ceramic layer. The electrode according to claim 1, wherein the porous non-conductive material layer is a sintered body layer of ceramic particles. 4. The electrode according to claim 1, wherein the T4 substrate is an aluminum mold and the porous non-conductive material layer is an alumina layer. 5. A secondary battery comprising an electrode formed by forming a porous non-conductive material layer on the surface of a conductive substrate and a counter electrode immersed in an electrolytic solution. 6. The secondary battery according to claim 5, wherein the counter electrode is any one of a carbon electrode, a titanium disulfide electrode, an iron sulfide electrode, and a panazome pentoxide electrode.
JP59085379A 1984-04-27 1984-04-27 Battery electrode and secondary battery Pending JPS60230367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59085379A JPS60230367A (en) 1984-04-27 1984-04-27 Battery electrode and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59085379A JPS60230367A (en) 1984-04-27 1984-04-27 Battery electrode and secondary battery

Publications (1)

Publication Number Publication Date
JPS60230367A true JPS60230367A (en) 1985-11-15

Family

ID=13857091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59085379A Pending JPS60230367A (en) 1984-04-27 1984-04-27 Battery electrode and secondary battery

Country Status (1)

Country Link
JP (1) JPS60230367A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0693792A1 (en) * 1994-07-19 1996-01-24 Canon Kabushiki Kaisha Rechargeable batteries having a specific anode and process for the production of them
JP2005515601A (en) * 2002-01-19 2005-05-26 ハンビッツァー,ギュンター Rechargeable electrochemical cell
JP2010509719A (en) * 2006-11-14 2010-03-25 フォルツ・インテレクチュアル・プロパティ・アー・ゲー Rechargeable electrochemical cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0693792A1 (en) * 1994-07-19 1996-01-24 Canon Kabushiki Kaisha Rechargeable batteries having a specific anode and process for the production of them
JP2005515601A (en) * 2002-01-19 2005-05-26 ハンビッツァー,ギュンター Rechargeable electrochemical cell
US7901811B2 (en) 2002-01-19 2011-03-08 G. Hambitzer Rechargeable electrochemical battery cell
JP2010509719A (en) * 2006-11-14 2010-03-25 フォルツ・インテレクチュアル・プロパティ・アー・ゲー Rechargeable electrochemical cell

Similar Documents

Publication Publication Date Title
Zhao et al. In situ formation of highly controllable and stable Na 3 PS 4 as a protective layer for Na metal anode
US6699619B2 (en) Negative electrode of a lithium secondary battery with a two-layered inorganic solid electrolytic material
CN110291666B (en) Lithium metal negative electrode, method of preparing the same, and lithium secondary battery comprising the same
CN110176591B (en) Aqueous zinc ion secondary battery and preparation method of anode based on organic electrode material
WO2011108716A1 (en) Process for production of negative electrode precursor material for battery, negative electrode precursor material for battery, and battery
JP2005505102A (en) Current collector structure and method for improving the performance of lead acid batteries
US10177368B2 (en) Anode compartment with a collector made of amorphous-alloy
KR102519360B1 (en) A metal negative electrode, a method for manufacturing the metal negative electrode, and a secondary battery having the metal negative electrode
KR20190026873A (en) Metal plating-based electrical energy storage cell
US4861690A (en) Lightweight battery construction
JPH01235167A (en) Rechargeable cell
KR20200081305A (en) Electrode comprising particle, method for fabricating the same, and lithium secondary battery
US4140589A (en) Method for lead crystal storage cells and storage devices made therefrom
KR100240743B1 (en) Lithium secondary battery using battery separators having conductive coating
KR101858933B1 (en) Heterogeneous metal nanowire electrode and preparing method thereof
JPS60230367A (en) Battery electrode and secondary battery
JPH05234583A (en) Negative electrode for lithium secondary battery and lithium secondary battery using it
KR102671198B1 (en) Separator coating layer for lithium metal battery, separator for lithium metal battery, and lithium metal battery comprising the same
JPS60167268A (en) Manufacture of grid for lead-acid battery
Zhao et al. Designing porous and stable Au-coated Ni nanosheets on Ni foam for quasi-symmetrical polymer Li–air batteries
SE443261B (en) ELECTRODES FOR ACCUMULATOR CELLS, ACCUMULATOR DEVICE WITH SUCH ELECTRODES PROCEDURE FOR MANUFACTURING THE ELECTRODES AND MATERIAL COMPOSITION
JPH06150905A (en) Composite metal electrode and manufacture thereof
KR102291207B1 (en) Negative electrode structure for a secondary battery, a negative electrode comprising the same, a secondary battery comprising the same and a manufacturing method
JPH10214628A (en) Lead acid-battery and its manufacture
JPH0362456A (en) Battery