JPH04267074A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH04267074A
JPH04267074A JP3028404A JP2840491A JPH04267074A JP H04267074 A JPH04267074 A JP H04267074A JP 3028404 A JP3028404 A JP 3028404A JP 2840491 A JP2840491 A JP 2840491A JP H04267074 A JPH04267074 A JP H04267074A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
solid
sulfur
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3028404A
Other languages
Japanese (ja)
Other versions
JP3038945B2 (en
Inventor
Teruhisa Kanbara
神原 輝寿
Yoshiko Sato
佳子 佐藤
Yasushi Uemachi
裕史 上町
Tadashi Tonomura
正 外邨
Kenichi Takeyama
竹山 健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3028404A priority Critical patent/JP3038945B2/en
Publication of JPH04267074A publication Critical patent/JPH04267074A/en
Application granted granted Critical
Publication of JP3038945B2 publication Critical patent/JP3038945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To aim at the safety of assembly work and safety of maintenance under the discharge condition, and obtain even and homogeneous negative electrode by forming negative electrode without using lithium, and eliminating existence of metal lithium after concluding discharge. CONSTITUTION:The mixture which is mainly composed of lithium thiolate compound, which has sulfur - lithium ion bond for generating sulfur - sulfur bond with electrolytic oxidation, and electronic ion mixed conductive high polymer is used for positive electrode. Solid lithium ion conductive electrolyte including lithium ion is used for electrolyte. Composite, which is mainly composed of metal aluminium and carbon material, is used for negative electrode. Assembly work is thereby performed safely without treating active metal lithium. Furthermore, under the discharge condition, since metal lithium does not exist practically, even if a battery is broken, danger of ignition is eliminated. Electrode area of negative electrode is enlarged without processing it into sheet- shape, and even and homogeneous negative electrode is obtained easily.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、リチウム二次電池に関
し、特に固体あるいは固形状のリチウムイオン伝導性電
解質を用いるリチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery using a solid or solid lithium ion conductive electrolyte.

【0002】0002

【従来の技術】3〜4ボルトの高電圧と、100Wh/
kg以上の高エネルギー密度が期待できるリチウム二次
電池として、負極に金属リチウムあるいはリチウム合金
を用い、正極に、リチウムイオンを可逆的に出し入れで
きる二硫化チタン、二硫化モリブデン、酸化バナジウム
、酸化コバルト等の無機物を用いた電池が提案されてい
る。
[Prior art] High voltage of 3 to 4 volts and 100Wh/
As a lithium secondary battery that is expected to have a high energy density of more than 1 kg, the negative electrode uses metallic lithium or a lithium alloy, and the positive electrode uses materials such as titanium disulfide, molybdenum disulfide, vanadium oxide, cobalt oxide, etc., which can reversibly insert and remove lithium ions. Batteries using inorganic materials have been proposed.

【0003】電解質としては、プロピレンカーボネート
、ジメトキシエタン等の非プロトン性有機溶媒に過塩素
酸リチウム、ホウフッ化リチウム等のリチウム塩を溶解
した液体電解質が専ら用いられている。この液体電解質
のイオン伝導度はニッケルカドミウム二次電池あるいは
鉛蓄電池に用いられている水溶液電解質に較べ2桁ない
し3桁小さいため、これら電池に匹敵する大きい電流を
得るためには、電極面積を大きくかつセパレータを薄く
する必要がある。
As the electrolyte, a liquid electrolyte in which a lithium salt such as lithium perchlorate or lithium fluoroborate is dissolved in an aprotic organic solvent such as propylene carbonate or dimethoxyethane is used. The ionic conductivity of this liquid electrolyte is two to three orders of magnitude lower than the aqueous electrolyte used in nickel-cadmium secondary batteries or lead-acid batteries, so in order to obtain a large current comparable to those of these batteries, the electrode area must be increased. In addition, it is necessary to make the separator thinner.

【0004】正極は、粉末状の正極活物資と導電材とバ
インダーとを混合して得られる組成物をシート状に加工
して用いられる。シート状に加工する他に、正極の電極
面積は粉末の粒径を小さくしたり、多孔質の粉末を用い
ることでも大きくすることができる。しかしながら柔ら
かくて粉末加工が難しい金属リチウムあるいはリチウム
合金は、大きな電極面積を得るには薄い箔状の加工に頼
るしかない。前記薄いシート状に加工された正極と、負
極をポリプロピレン不織布等のセパレータを介して重ね
、渦巻状に巻いて電池容器に入れ電解液を注いで組み立
てる。作業はすべて乾燥した不活性ガス中で行なわれる
[0004] The positive electrode is used by processing a composition obtained by mixing a powdered positive electrode active material, a conductive material, and a binder into a sheet shape. In addition to processing into a sheet, the electrode area of the positive electrode can be increased by reducing the particle size of the powder or using porous powder. However, metal lithium or lithium alloys are soft and difficult to process into powder, and the only way to obtain a large electrode area is to rely on processing them into thin foils. The positive electrode processed into a thin sheet shape and the negative electrode are stacked with a separator such as a polypropylene nonwoven fabric interposed therebetween, wound into a spiral shape, placed in a battery container, and assembled by pouring an electrolytic solution. All operations are carried out under dry, inert gas.

【0005】[0005]

【発明が解決しようとする課題】リチウム二次電池を組
み立てる上で大切なことは、電解質と接触する電極は全
表面にわたって均一かつ均質にすることである。正極は
、正極活物質、導電材、バインダーの組成物で普通与え
られ、化学的に安定な正極活物質を選び、かつ均一に混
合さえすれば比較的均質なものが得られる。
[Problems to be Solved by the Invention] When assembling a lithium secondary battery, it is important to make the electrodes that come into contact with the electrolyte uniform and homogeneous over the entire surface. A positive electrode is usually provided with a composition of a positive electrode active material, a conductive material, and a binder, and a relatively homogeneous material can be obtained by selecting a chemically stable positive electrode active material and uniformly mixing the positive electrode active material.

【0006】しかしながら負極は、厚さが数μmから数
10μmの金属リチウムあるいはリチウム合金箔を多段
の圧延工程を経て均一かつ均質に加工することは困難で
あるし、また電池組立工程において局部的に引っ張りを
受け均一に組み立てることが困難である。そして、電池
充放電に際しては負極面内においてリチウムの溶解析出
反応が不均一に進行し、充放電サイクルを繰り返すに従
い不均一さが大きくなりついには局部的に電流が集中し
、樹枝状にリチウム析出が起こり、セパレータを突き破
り正極とつながり内部短絡を引き起こす。内部短絡する
と大電流が流れ電池が加熱し、有機溶剤の蒸気圧が上が
り電池が破裂し、金属リチウムが大気に晒され水と反応
し、水素を発生し発火に至る。きわめて危険である。 本発明はこのような課題を解決するもので、安全性の高
いリチウム二次電池を提供することを目的とする。
However, it is difficult to uniformly and uniformly process lithium metal or lithium alloy foil, which has a thickness of several micrometers to several tens of micrometers, through a multi-stage rolling process for the negative electrode. Difficult to assemble uniformly due to tension. During battery charging and discharging, the dissolution and precipitation reaction of lithium progresses non-uniformly within the surface of the negative electrode, and as the charge and discharge cycles are repeated, the non-uniformity increases until the current concentrates locally, causing lithium to precipitate in a dendritic manner. occurs, breaking through the separator and connecting with the positive electrode, causing an internal short circuit. When an internal short circuit occurs, a large current flows, heating up the battery, increasing the vapor pressure of the organic solvent, and causing the battery to burst. Metallic lithium is exposed to the atmosphere and reacts with water, generating hydrogen and igniting. Extremely dangerous. The present invention solves these problems and aims to provide a highly safe lithium secondary battery.

【0007】[0007]

【課題を解決するための手段】この課題を解決するため
本発明のリチウム二次電池は、金属リチウムあるいはリ
チウム合金を負極に用いることなく組み立てることがで
き、また、放電終了後は金属リチウムが実質的に存在し
ないリチウム二次電池とするために、電解酸化により硫
黄−硫黄結合を生成する硫黄−リチウムイオン結合を有
するリチウムチオレート化合物と、イオン電子混合導電
性高分子とを主体とする混合物を用いる正極活物質と、
電池充電によりリチウムチオレート化合物からのリチウ
ムイオンが均一に析出するように金属アルミニウムある
いはその合金と炭素材料とを主体とする組成物を用いる
負極と、溶解性のリチウムチオレート化合物を正極に固
定するために、通常の電池使用温度範囲(ー20〜60
℃)で固体あるいは固形状であるリチウムイオン伝導性
電解質を用いる電解質とを具備したもので好適には、正
極活物質または負極組成物の少なくとも一方にはリチウ
ムイオンを含む固体あるいは固形状のリチウムイオン伝
導性電解質を混合するものである。
[Means for Solving the Problem] In order to solve this problem, the lithium secondary battery of the present invention can be assembled without using metallic lithium or a lithium alloy for the negative electrode, and also has a structure in which metallic lithium is substantially removed after discharging. In order to create a lithium secondary battery that does not currently exist, we created a mixture mainly consisting of a lithium thiolate compound having a sulfur-lithium ion bond that generates a sulfur-sulfur bond through electrolytic oxidation, and an ion-electronic mixed conductive polymer. The positive electrode active material used,
A negative electrode using a composition mainly composed of metal aluminum or its alloy and a carbon material and a soluble lithium thiolate compound are fixed to the positive electrode so that lithium ions from the lithium thiolate compound are uniformly deposited when the battery is charged. Therefore, the normal battery operating temperature range (-20 to 60
℃), and preferably, at least one of the positive electrode active material or the negative electrode composition contains a solid or solid lithium ion containing lithium ion. It is a mixture of conductive electrolytes.

【0008】[0008]

【作用】この構成により本発明のリチウム二次電池は、
不活性ガス中での取扱が必要な金属リチウムあるいはそ
の合金を電池構成時に必要としないので安全に組立作業
が行なえる。電池を保存する際、放電状態で保存すれば
、放電状態では電池中に金属リチウムが実質上ないので
、電池が破壊された際においても発火することはない。
[Function] With this configuration, the lithium secondary battery of the present invention has
Since metallic lithium or its alloy, which must be handled in an inert gas, is not required when constructing the battery, assembly work can be performed safely. When storing a battery, if it is stored in a discharged state, there is virtually no metallic lithium in the battery in the discharged state, so even if the battery is destroyed, it will not catch fire.

【0009】さらに、金属アルミニウムあるいはその合
金と炭素材料を主体とする組成物を負極に用いることで
薄いシート状に加工しなくても粉末状、繊維状、多孔体
等の材料を用いることで電極面積を大きくすることがで
き、比較的容易に大面積の均一かつ均質な負極とするこ
とが出来る。
Furthermore, by using a composition mainly composed of metal aluminum or its alloy and carbon material for the negative electrode, it is possible to form an electrode using materials such as powder, fiber, or porous material without having to process it into a thin sheet. The area can be increased, and a uniform and homogeneous negative electrode with a large area can be produced relatively easily.

【0010】金属リチウムは、充電により電池内におい
て金属アルミニウムあるいはその合金あるいは炭素材料
の表面またはそれらの内部の少なくとも一方に均一かつ
均質に形成される。電解質からリチウムイオンが直接析
出するので、酸素等の不純物が混入することなく金属リ
チウムが形成される。従って、繰り返し充放電に際して
、電流の集中が起こり難く、内部短絡を有効に防止でき
る。
[0010] Metallic lithium is uniformly and homogeneously formed on at least one of the surfaces or insides of metal aluminum, its alloy, or carbon material within the battery by charging. Since lithium ions are directly deposited from the electrolyte, metallic lithium is formed without contamination with impurities such as oxygen. Therefore, during repeated charging and discharging, concentration of current is less likely to occur, and internal short circuits can be effectively prevented.

【0011】また、電解(充電)で生成した金属リチウ
ムと電解質とはきわめて良好に接続されるので、放電に
際し分極を小さくすることができ大きな電流を得ること
が出来る。この作用は、正極または負極の少なくとも一
方にリチウムイオン伝導性の固体あるいは固形電解質を
添加混合することでさらに有効となる。中でもポリエー
テル化合物と層状化合物とリチウム塩を主体とする特定
のリチウムイオン伝導性電解質組成物の添加混合が特に
有効である。
[0011] Furthermore, since the metallic lithium produced by electrolysis (charging) and the electrolyte are very well connected, polarization can be reduced during discharging and a large current can be obtained. This effect becomes more effective by adding and mixing a lithium ion conductive solid or solid electrolyte to at least one of the positive electrode and the negative electrode. Among these, addition and mixing of a specific lithium ion conductive electrolyte composition mainly consisting of a polyether compound, a layered compound, and a lithium salt is particularly effective.

【0012】0012

【実施例】以下本発明の一実施例のリチウム二次電池に
ついて図面を基にして説明する。本実施例のリチウムチ
オレートとしては、米国特許第4,833,048号に
述べられている一般式(R(S)y)nで表されるジス
ルフィド化合物の還元体のリチウム塩を用いることがで
きる。Rは脂肪族基、芳香族基、Sは硫黄、yは1以上
の整数、nは2以上の整数である。例えば、C2N2S
(SLi)2で表される2,5−ジメルカプト−1,3
,4−リチウムチオレートで表されるジエチルジチオカ
ルバメート等、電解酸化によりリチウムイオンを遊離す
るとともに硫黄−硫黄結合が生成し、これにより高分子
化するものが用いられる。
[Embodiment] A lithium secondary battery according to an embodiment of the present invention will be described below with reference to the drawings. As the lithium thiolate in this example, it is possible to use a lithium salt of a reduced product of a disulfide compound represented by the general formula (R(S)y)n described in U.S. Pat. No. 4,833,048. can. R is an aliphatic group or an aromatic group, S is sulfur, y is an integer of 1 or more, and n is an integer of 2 or more. For example, C2N2S
2,5-dimercapto-1,3 represented by (SLi)2
, 4-lithium thiolate, etc., which liberate lithium ions through electrolytic oxidation and generate sulfur-sulfur bonds, thereby forming polymers.

【0013】本実施例のイオン電子混合伝導性高分子と
しては、側鎖にエチレンオキサイドを有するポリチオフ
ェンやポリピロール、またこれらの高分子化合物にヨー
素等のアニオンをドープしたもの等が有効に用いられる
。また、多孔性のフィブリル構造をとることができ、細
孔中にジスルフィド化合物を保持できるものが更に好ま
しい。
[0013] As the ion-electronic mixed conductive polymer in this example, polythiophene or polypyrrole having ethylene oxide in the side chain, or a polymer compound of these doped with an anion such as iodine, etc. can be effectively used. . Further, it is more preferable to use a material that can have a porous fibril structure and retain a disulfide compound in its pores.

【0014】炭素材料としては、天然黒鉛、人造黒鉛、
無定形炭素、繊維状、粉末状、石油ピッチ系、石炭コー
クス系のいずれも用いることができる。粒子あるいは繊
維の大きさは、直径あるいは繊維径が0.01〜10ミ
クロン、繊維長が数μmから数mm までが好ましい。
[0014] As the carbon material, natural graphite, artificial graphite,
Any of amorphous carbon, fibrous, powder, petroleum pitch type, and coal coke type can be used. The particles or fibers preferably have a diameter or fiber diameter of 0.01 to 10 microns and a fiber length of several micrometers to several mm.

【0015】金属アルミニウムあるいはその合金として
は、Al,Al−Fe,Al−Si,Al−Zn,Al
−Li等の超急冷により得られたフレーク状のもの、空
気中あるいは窒素等の不活性ガス中で機械的な粉砕によ
り得られた球状あるいは無定形の粉末等が用いられる。 粒子の大きさは、直径1μm〜100μmが好ましい。
Metal aluminum or its alloys include Al, Al-Fe, Al-Si, Al-Zn, Al
-Flake-like materials obtained by ultra-quenching such as -Li, spherical or amorphous powders obtained by mechanical pulverization in air or inert gas such as nitrogen, etc. are used. The particle size is preferably 1 μm to 100 μm in diameter.

【0016】炭素材料とアルミニウムあるいはアルミニ
ウム合金粉末との混合割合は、アルミニウムあるいはア
ルミニウム合金粉末1部に対し炭素材料粉末0.01〜
5部、好ましくは0.05〜0.5部である。炭素材料
が0.01部以下であるとアルミニウムあるいはアルミ
ニウム合金粉末との均一分散が困難になり、炭素粉末が
凝集しアルミニウムあるいはアルミニウム合金粒子間の
電導が不良になり電極として有効に働かなくなる。また
5部以上になるとアルミニウムあるいはアルミニウム合
金粉末粒子が炭素粒子で厚く覆われてしまい、電解質と
の接触が断たれ、電位が不安定になったり分極が大きく
なったりする。
The mixing ratio of carbon material and aluminum or aluminum alloy powder is 0.01 to 1 part of carbon material powder to 1 part of aluminum or aluminum alloy powder.
5 parts, preferably 0.05 to 0.5 parts. If the amount of carbon material is less than 0.01 part, it will be difficult to uniformly disperse the aluminum or aluminum alloy powder, the carbon powder will agglomerate, and the conductivity between the aluminum or aluminum alloy particles will be poor, making it ineffective as an electrode. If the amount exceeds 5 parts, the aluminum or aluminum alloy powder particles will be thickly covered with carbon particles, and contact with the electrolyte will be cut off, resulting in unstable potential and increased polarization.

【0017】リチウムイオンを含む固体あるいは固形の
リチウムイオン伝導性電解質としては、LiI,Li3
N−LiI−B2O3,LiI−H2O,Li−βAl
2O3等の無機イオン伝導体、無機のリチウム塩を溶解
したポリエチレンオキサイドよりなる高分子電解質、L
iClO4を溶解したプロピレンカーボネートを含有す
るポリアクリロニトリル膜よりなる固形電解質膜等を用
いることができる。 中でも、正極または負極の少なく
とも一方に電解質を混合する場合、ポリアミン化合物に
エチレンオキサイドおよびブチレンオキサイドを付加し
たポリエーテル化合物と、イオン交換性の層状化合物と
リチウム塩よりなる固形電解質組成物が好適に用いられ
る。 この固形電解質組成物は、構成成分の一つであるポリエ
ーテル化合物が界面活性作用を有し、正極または負極の
少なくとも一方にこの組成物が均一に分散混合するよう
に作用し、分極を小さくする。
Solid or solid lithium ion conductive electrolytes containing lithium ions include LiI, Li3
N-LiI-B2O3, LiI-H2O, Li-βAl
A polymer electrolyte made of polyethylene oxide in which an inorganic ion conductor such as 2O3 and an inorganic lithium salt are dissolved, L
A solid electrolyte membrane made of a polyacrylonitrile membrane containing propylene carbonate in which iClO4 is dissolved can be used. Among these, when mixing an electrolyte in at least one of the positive electrode or the negative electrode, a solid electrolyte composition consisting of a polyether compound obtained by adding ethylene oxide and butylene oxide to a polyamine compound, an ion exchange layered compound, and a lithium salt is preferably used. It will be done. In this solid electrolyte composition, the polyether compound, which is one of the constituent components, has a surface-active effect, and acts to uniformly disperse and mix the composition in at least one of the positive electrode and the negative electrode, reducing polarization. .

【0018】ポリアミン化合物にエチレンオキサイドお
よびブチレンオキサイドを付加したポリエーテル化合物
は、ポリアミン化合物をアルカリ触媒下で100ー18
0℃、1〜10気圧でエチレンオキサイドおよびブチレ
ンオキサイドを付加反応することにより得ることができ
る。ポリアミン化合物としては、ポリエチレンイミン、
ポリアルキレンポリアミンあるいはそれらの誘導体を用
いることができる。ポリアルキレンポリアミンとして、
ジエチレントリアミン、トリエチレンテトラミン、ヘキ
サメチレンテトラミン、ジプロピレントリアミン等を挙
げることがができる。
A polyether compound obtained by adding ethylene oxide and butylene oxide to a polyamine compound is a polyether compound obtained by adding ethylene oxide and butylene oxide to a polyamine compound.
It can be obtained by addition reaction of ethylene oxide and butylene oxide at 0°C and 1 to 10 atm. Polyamine compounds include polyethyleneimine,
Polyalkylene polyamines or derivatives thereof can be used. As a polyalkylene polyamine,
Examples include diethylenetriamine, triethylenetetramine, hexamethylenetetramine, dipropylenetriamine, and the like.

【0019】エチレンオキサイドとブチレンオキサイド
の付加モル数は、ポリアミン化合物の活性水素1個当り
2〜150モルである。付加するエチレンオキサイド(
EO)とブチレンオキサイド(BO)との比は、80/
20〜10/90(=EO/BO)である。このように
して得られるポリエーテルの平均分子量は1000〜5
00万である。前記ポリエーテル化合物の添加量は、固
形電極組成物全量に対し、0.5から20%が好ましい
The number of moles of ethylene oxide and butylene oxide added is 2 to 150 moles per active hydrogen of the polyamine compound. Adding ethylene oxide (
The ratio of EO) to butylene oxide (BO) is 80/
20 to 10/90 (=EO/BO). The average molecular weight of the polyether thus obtained is 1000-5
It is 0,000,000. The amount of the polyether compound added is preferably 0.5 to 20% based on the total amount of the solid electrode composition.

【0020】イオン交換性の層状化合物としては、モン
モリロナイト、ヘクトライト、サポナイト、スメクタイ
ト等のけい酸塩を含む粘土鉱物、りん酸ジルコニウム、
りん酸チタニウム等のりん酸エステル、バナジン酸、ア
ンチモン酸、タングステン酸、あるいは、それらを第4
級アンモニウム塩等の有機カチオンあるいはエチレンオ
キサイド、ブチレンオキサイド等の有機の極性化合物で
変性したものが挙げられる。
Examples of ion-exchangeable layered compounds include clay minerals containing silicates such as montmorillonite, hectorite, saponite, and smectite, zirconium phosphate,
Phosphate esters such as titanium phosphate, vanadate, antimonic acid, tungstic acid, or quaternary
Examples include those modified with organic cations such as ammonium salts or organic polar compounds such as ethylene oxide and butylene oxide.

【0021】(実施例1)分子内に10個のN原子を含
有するポリエチレンイミンに、エチレンオキサイド(E
O)とブチレンオキサイド(BO)をEOとBOの比が
30/70となるように付加して得た、平均分子量が1
80000のポリエーテル化合物をアセトニトリルに溶
解し20重量%のポリエーテル溶液を調製した。さらに
、リチウム塩としてLiCF3SO3を10%溶解した
ポリエーテル溶液に、固形分含量が30重量%となるよ
うに平均粒径が15μmのγーりん酸ジルコニウム粉末
を添加し、40℃で24時間撹拌混合し電解質スラリー
を得た。
(Example 1) Ethylene oxide (E
O) and butylene oxide (BO) were added in such a way that the ratio of EO to BO was 30/70, and the average molecular weight was 1.
A 20% by weight polyether solution was prepared by dissolving 80,000 polyether compounds in acetonitrile. Furthermore, γ-zirconium phosphate powder with an average particle size of 15 μm was added to a polyether solution containing 10% LiCF3SO3 as a lithium salt so that the solid content was 30% by weight, and the mixture was stirred at 40°C for 24 hours. An electrolyte slurry was obtained.

【0022】前記電解質スラリーを平滑なテフロン製の
板の上でドクターブレードを用い塗布した後、130℃
の乾燥アルゴン気流中で1時間乾燥し、さらに5時間真
空乾燥することで、大きさ80×80mm、厚さ85μ
mのシート状の電解質組成物を得た。
After applying the electrolyte slurry on a smooth Teflon plate using a doctor blade, the electrolyte slurry was heated to 130°C.
By drying in an argon stream for 1 hour and vacuum drying for an additional 5 hours, the size was 80 x 80 mm and the thickness was 85 μm.
A sheet-like electrolyte composition of m was obtained.

【0023】次に、前記電解質スラリー1重量部に対し
、黒鉛化度48%、平均粒径が2μmの人造黒鉛粉末を
0.1重量部、2,5−ジメルカプト−1,3,4−リ
チウムチオレート2重量部、及び側鎖にエチレンオキサ
イドを有しヨウ素をドープしたポリピロールを1重量部
添加混合し正極スラリーを得た。
Next, to 1 part by weight of the electrolyte slurry, 0.1 part by weight of artificial graphite powder with a degree of graphitization of 48% and an average particle size of 2 μm, 2,5-dimercapto-1,3,4-lithium 2 parts by weight of thiolate and 1 part by weight of polypyrrole doped with iodine and having ethylene oxide in the side chain were added and mixed to obtain a positive electrode slurry.

【0024】側鎖にエチレンオキサイドを有し、ヨウ素
をドープしたポリピロール(以下、PPEOIと略称す
る)は以下に示すの製法に従って合成した。
Polypyrrole having ethylene oxide in its side chain and doped with iodine (hereinafter abbreviated as PPEOI) was synthesized according to the production method shown below.

【0025】2−ピロールカルボン酸0.1molをア
セトニトルに溶解し0℃に冷却した後、0.1molの
臭素を滴下し、その後撹拌した後、20%炭酸ナトリウ
ム水溶液で中和し、水層をエーテルで抽出した。このエ
ーテル層を乾燥後、エーテルを除去し、2−ピロールカ
ルボン酸の3、4、5の置換位置に臭素が2置換と1置
換された混合物を得た。この混合物をキシレンとエタノ
ールアミンを20:1の体積分率で混合した混合溶液に
溶解し還流した。加熱終了後、30%酢酸水溶液で洗浄
し、有機層を分離して乾燥した。キシレンを除去後、臭
素の2置換と1置換のブロモ2−ピロールの混合物を得
た。この混合物をキシレンに再溶解し、シリカゲルのカ
ラムで分別し、3−ブロモピロールを得た。この様にし
て得られる3−ブロモピロール1molにテトラエチレ
ングリコール1molを反応させ、脱臭素酸を行ない側
鎖にエチレンオキサイドを有するポリピロールとして、
テトラエチレングリコールとピロールのエーテル化合物
を得た。その後、前記テトラエチレングリコールとピロ
ールのエーテル化合物を、ヨウ素を0.001mol/
l含有するエタノール溶液に20℃で1時間浸透させた
後、乾燥することにより目的とするPPEOIを得た。
After dissolving 0.1 mol of 2-pyrrolecarboxylic acid in acetonitrile and cooling it to 0°C, 0.1 mol of bromine was added dropwise, followed by stirring, neutralization with a 20% aqueous sodium carbonate solution, and the aqueous layer was Extracted with ether. After drying this ether layer, the ether was removed to obtain a mixture in which bromine was substituted twice and once at the 3, 4, and 5 substitution positions of 2-pyrrolecarboxylic acid. This mixture was dissolved in a mixed solution of xylene and ethanolamine at a volume fraction of 20:1 and refluxed. After heating, the mixture was washed with a 30% acetic acid aqueous solution, and the organic layer was separated and dried. After removing xylene, a mixture of 2-substituted and 1-substituted bromo-2-pyrroles of bromine was obtained. This mixture was redissolved in xylene and fractionated using a silica gel column to obtain 3-bromopyrrole. 1 mol of 3-bromopyrrole obtained in this way is reacted with 1 mol of tetraethylene glycol to perform debromic acid, resulting in polypyrrole having ethylene oxide in the side chain.
An ether compound of tetraethylene glycol and pyrrole was obtained. Thereafter, the ether compound of tetraethylene glycol and pyrrole was mixed with iodine in an amount of 0.001 mol/
The desired PPEOI was obtained by infiltrating an ethanol solution containing 1 hour at 20° C. for 1 hour and then drying.

【0026】正極スラリーを平滑なテフロン製の板の上
でドクターブレードを用い塗布した後、130℃の乾燥
アルゴン気流中で1時間乾燥し、さらに5時間真空乾燥
することで、大きさ80×80mm、厚さ160μmの
シート状の正極組成物を得た。
[0026] After applying the positive electrode slurry on a smooth Teflon plate using a doctor blade, it was dried in a dry argon stream at 130°C for 1 hour, and then vacuum-dried for 5 hours to obtain a size of 80 x 80 mm. A sheet-like positive electrode composition having a thickness of 160 μm was obtained.

【0027】さらに、ポリエーテル溶液に平均粒径が1
8μmの純度99.98%の金属アルミニウム粉末1重
量部と、黒鉛化度48%、平均粒径が2μmの人造黒鉛
粉末0.1重量部との混合粉末を固形分含量が50%と
なるように加え、40℃で24時間混合し負極スラリー
を得た。負極スラリーと電極スラリーとを固形分比が1
:2となるようにアルミナボールミル中で24時間混合
して電極組成物スラリーを得た。電極組成物スラリーを
平滑なテフロン製の板の上でドクターブレードを用い塗
布した後、130℃の乾燥アルゴン気流中で1時間乾燥
し、さらに5時間真空乾燥することで、大きさ80×8
0mm、厚さ180μmのシート状の負極組成物を得た
Furthermore, if the polyether solution has an average particle size of 1
A mixed powder of 1 part by weight of 8 μm metal aluminum powder with a purity of 99.98% and 0.1 part by weight of artificial graphite powder with a degree of graphitization of 48% and an average particle size of 2 μm was prepared so that the solid content was 50%. and mixed at 40° C. for 24 hours to obtain a negative electrode slurry. The solid content ratio of the negative electrode slurry and the electrode slurry is 1.
:2 in an alumina ball mill for 24 hours to obtain an electrode composition slurry. After applying the electrode composition slurry on a smooth Teflon plate using a doctor blade, it was dried in a dry argon stream at 130°C for 1 hour, and then vacuum-dried for 5 hours to form a sheet with a size of 80 x 8.
A negative electrode composition in the form of a sheet having a diameter of 0 mm and a thickness of 180 μm was obtained.

【0028】ひきつずきに、フッソ樹脂と炭素粉末とを
主体とする混合物より形成された厚さ50μmのカーボ
ンシート、正極組成物、電解質組成物、負極組成物、カ
ーボンシートの順に重ね、温度150℃、圧力200k
g/cm2の条件で熱加圧した後、28×28mmの大
きさに裁断して素電池とした。
Subsequently, a carbon sheet with a thickness of 50 μm formed from a mixture mainly composed of fluorocarbon resin and carbon powder, a positive electrode composition, an electrolyte composition, a negative electrode composition, and a carbon sheet were stacked in this order, and the temperature was increased. 150℃, pressure 200k
After heat-pressing under conditions of g/cm2, the material was cut into a size of 28 x 28 mm to form a unit cell.

【0029】最後に合成ゴムと炭素繊維を主体とする厚
さ10μmの熱接着性導電性フィルムを介し、厚さ30
μmの電極リードを兼ねる銅箔を素電池の両面に熱接着
した後、素電池全体を厚さ38μmのポリエチレンテレ
フタレート膜と、厚さ50μmのアルミニウム箔と、厚
さ50μmのポリエチレン膜を主体とするラミネートフ
ィルムにより封止し電池Aを造った。
Finally, a heat-adhesive conductive film with a thickness of 10 μm mainly made of synthetic rubber and carbon fiber is interposed, and a film with a thickness of 30 μm is inserted.
After thermally bonding copper foil that also serves as μm electrode leads to both sides of the cell, the entire cell is made up of a 38 μm thick polyethylene terephthalate film, a 50 μm thick aluminum foil, and a 50 μm thick polyethylene film. Battery A was produced by sealing with a laminate film.

【0030】(比較例1)2,5−ジメルカプト−1,
3,4−リチウムチオレートに代えて、これをLiBF
4を1モル溶解したアセトニトリル中でAg/AgCl
電極に対し1.0Vの電位で電解酸化したリチウムイオ
ンを含有しないジスルフィド化合物を用い、負極に厚さ
200μmのアルミニウム含有量が30原子%のリチウ
ム合金板を用いた以外は、実施例1と同様にして電池B
を造った。
(Comparative Example 1) 2,5-dimercapto-1,
Instead of 3,4-lithium thiolate, this was replaced with LiBF.
Ag/AgCl in acetonitrile in which 1 mol of 4 was dissolved.
Same as Example 1, except that a disulfide compound containing no lithium ions that was electrolytically oxidized at a potential of 1.0 V was used for the electrode, and a lithium alloy plate with a thickness of 200 μm and an aluminum content of 30 at% was used for the negative electrode. and battery B
was created.

【0031】(実施例2)2,5−ジメルカプト−1,
3,4−リチウムチオレート粉末1重量部、平均粒径が
 0.3  ミクロンのフィブリル構造をもった多孔性
の側鎖にエチレンオキサイドを有し、ヨウ素をドープし
たポリチオフェン0.2重量部、カーボンブラック0.
1重量部、LiI−Li3N−B2O3(モル=1:1
:1)粉末1重量部を低密度ポリエチレン(エクセレン
VL−200、密度=0.9、住友化学工業製)を6重
量%溶解したトルエン溶液とを、乾燥した正極組成物中
の低密度ポリエチレンの含量が5容積%となるように混
合したのち、200メッシュのナイロンネット上に塗布
、乾燥し大きさ80×80mm、厚さ約155μmの正
極組成物を造った。
(Example 2) 2,5-dimercapto-1,
1 part by weight of 3,4-lithium thiolate powder, 0.2 part by weight of polythiophene doped with iodine and having ethylene oxide in the side chain of a porous fibril structure with an average particle size of 0.3 microns, carbon Black 0.
1 part by weight, LiI-Li3N-B2O3 (mol = 1:1
:1) 1 part by weight of the powder was mixed with a toluene solution containing 6% by weight of low-density polyethylene (Exelen VL-200, density=0.9, manufactured by Sumitomo Chemical Industries, Ltd.) dissolved in the low-density polyethylene in the dried positive electrode composition. After mixing to a content of 5% by volume, the mixture was coated on a 200-mesh nylon net and dried to produce a positive electrode composition with a size of 80 x 80 mm and a thickness of about 155 μm.

【0032】また、LiI−Li3N−B2O3粉末と
6重量%の低密度ポリエチレントルエン溶液とを乾燥し
た電解質組成物中の低密度ポリエチレンの含量が35容
積%となるように混合したのち、200メッシュのナイ
ロンネット上に塗布、乾燥し大きさ80×80mm、厚
さ約90μmの電解質組成物を得た。さらに、平均粒径
が18μmの純度99.98%の金属アルミニウム粉末
1重量部と、黒鉛化度90%、平均粒径が0.6μmの
人造黒鉛粉末0.1重量部と、LiI−Li3N−B2
O3粉末0.5重量部と、同様のトルエン溶液とを乾燥
した負極組成物中の低密度ポリエチレンの含量が7.5
容積%となるように混合したのち、200メッシュのナ
イロンネット上に塗布、乾燥し大きさ80×80mm、
厚さ約190μmの負極組成物を得た。正極組成物、電
解質組成物、負極組成物を用いて実施例1と同様にして
電池Cを造った。
[0032] Also, after mixing LiI-Li3N-B2O3 powder and a 6% by weight low density polyethylene toluene solution so that the content of low density polyethylene in the dry electrolyte composition was 35% by volume, a 200 mesh It was coated on a nylon net and dried to obtain an electrolyte composition with a size of 80 x 80 mm and a thickness of about 90 μm. Furthermore, 1 part by weight of metallic aluminum powder with a purity of 99.98% and an average particle size of 18 μm, 0.1 part by weight of an artificial graphite powder with a degree of graphitization of 90% and an average particle size of 0.6 μm, and LiI-Li3N- B2
The content of low density polyethylene in the negative electrode composition obtained by drying 0.5 parts by weight of O3 powder and a similar toluene solution was 7.5 parts by weight.
After mixing to give the same volume percentage, apply it on a 200 mesh nylon net and dry it to a size of 80 x 80 mm.
A negative electrode composition having a thickness of about 190 μm was obtained. Battery C was manufactured in the same manner as in Example 1 using a positive electrode composition, an electrolyte composition, and a negative electrode composition.

【0033】側鎖にエチレンオキサイドを有しヨウ素を
ドープしたポリチオフェン(以下、PTEOIと略称す
る)は以下に示すの製法に従って合成した。
Polythiophene having ethylene oxide in its side chain and doped with iodine (hereinafter abbreviated as PTEOI) was synthesized according to the production method shown below.

【0034】まずチオフェン酢酸をアセトニトリル中で
過塩素酸テトラノルマルブチルアンモニウムを支持電解
質として黒鉛電極上に電解重合することによりポリチオ
フェン酢酸を合成し、得られた黒色のポリマーを電気化
学的に脱ドープした後、塩化チオニルで酸クロリド化し
た後、ポリエチレングリコールモノメチルエーテルのジ
クロロエタン溶液を加え、加熱還流を行なうことにより
ポリチオフェン酢酸−ポリエチレンオキシドグラフトポ
リマーを得た。その後、前記ポリチオフェン酢酸−ポリ
エチレンオキシドグラフトポリマーをヨウ素を、0.0
01mol/l含有するエタノール溶液に20℃で1時
間浸透させた後、乾燥することにより目的とするPTE
OIを得た。
First, polythiophene acetic acid was synthesized by electrolytically polymerizing thiophene acetic acid in acetonitrile with tetran-butylammonium perchlorate as a supporting electrolyte on a graphite electrode, and the resulting black polymer was electrochemically dedoped. Thereafter, the mixture was acid chloridated with thionyl chloride, and a dichloroethane solution of polyethylene glycol monomethyl ether was added, followed by heating under reflux to obtain a polythiophene acetic acid-polyethylene oxide graft polymer. Then, the polythiophene acetic acid-polyethylene oxide graft polymer was added with 0.0 iodine.
The desired PTE is obtained by soaking in an ethanol solution containing 0.01 mol/l at 20°C for 1 hour and then drying.
Obtained OI.

【0035】(比較例2)2,5−ジメルカプト−1,
3,4−リチウムチオレートに代えて、これをLiBF
4を1モル溶解したアセトニトリル中でAg/AgCl
電極に対し1.0Vの電位で電解酸化したリチウムイオ
ンを含有しないジスルフィド化合物、負極にアルミニウ
ム含有量が30原子%の厚さ200μmのリチウム合金
板を用いた以外は、実施例2と同様にして電池Dを造っ
た。
(Comparative Example 2) 2,5-dimercapto-1,
Instead of 3,4-lithium thiolate, this was replaced with LiBF.
Ag/AgCl in acetonitrile in which 1 mol of 4 was dissolved.
Example 2 was carried out in the same manner as in Example 2, except that a disulfide compound containing no lithium ions was electrolytically oxidized at a potential of 1.0 V to the electrode, and a 200 μm thick lithium alloy plate with an aluminum content of 30 at% was used as the negative electrode. I made Battery D.

【0036】このようにして造った実施例1の電池A,
比較例1の電池B、実施例2の電池C、比較例2の電池
Bについて、65℃で、3.6ボルトの一定電圧を17
時間印加後、65℃で、1μA,10μA,100μA
,500μA,1mAの電流で各々3秒間放電し、その
際の電池電圧を記録することで電流電圧特性を評価した
。結果を図1に示す。  実施例の電池Aおよび電池C
は、比較例の電池Bおよび電池Dに較べると電圧の低下
が小さく、大きな電流が得られる。
[0036] Battery A of Example 1 produced in this manner,
Battery B of Comparative Example 1, Battery C of Example 2, and Battery B of Comparative Example 2 were subjected to a constant voltage of 3.6 volts at 65°C for 17
After time application, at 65℃, 1μA, 10μA, 100μA
, 500 μA, and 1 mA for 3 seconds each, and the current-voltage characteristics were evaluated by recording the battery voltage at that time. The results are shown in Figure 1. Example battery A and battery C
In comparison with Battery B and Battery D of Comparative Examples, the drop in voltage is smaller and a larger current can be obtained.

【0037】[0037]

【発明の効果】以上の実施例の説明で明らかなように、
本発明のリチウム二次電池によれば電解酸化により硫黄
−硫黄結合を生成する硫黄−リチウムイオン結合を有す
るリチウムチオレート化合物と、電子イオン混合導電性
高分子との混合物を主体とする正極を用い、負極に金属
アルミニウムあるいはその合金と炭素材料とを主体とす
る組成物を用いることで、化学的に活性な金属リチウム
あるいはその合金を電池組立時に扱うことなくリチウム
二次電池を安全に組み立てることができる。こうして組
み立てたリチウム二次電池は、電池を保存する際、放電
状態で保存すれば、放電状態では電池中に金属リチウム
が実質上ないので、電池が破壊された際においても発火
することはない利点を有している。さらに、金属リチウ
ムあるいはその合金を負極とする従来の電池に較べ、大
きな電流を取り出すことができる。
[Effects of the Invention] As is clear from the above description of the embodiments,
According to the lithium secondary battery of the present invention, a positive electrode mainly composed of a mixture of a lithium thiolate compound having a sulfur-lithium ion bond that generates a sulfur-sulfur bond through electrolytic oxidation and an electron-ion mixed conductive polymer is used. By using a composition mainly composed of metallic aluminum or its alloy and carbon material for the negative electrode, it is possible to safely assemble a lithium secondary battery without handling chemically active metallic lithium or its alloy during battery assembly. can. The lithium secondary battery assembled in this way has the advantage that if it is stored in a discharged state, there is virtually no metallic lithium in the battery in the discharged state, so it will not catch fire even if the battery is destroyed. have. Furthermore, compared to conventional batteries that use metallic lithium or its alloy as a negative electrode, a larger current can be extracted.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例のリチウム二次電池および比
較例のリチウム二次電池の電池の電流ー電圧特性を示す
グラフ
FIG. 1 is a graph showing the battery current-voltage characteristics of a lithium secondary battery according to an example of the present invention and a lithium secondary battery according to a comparative example.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電解酸化により硫黄−硫黄結合を生成する
硫黄−リチウムイオン結合を有するリチウムチオレート
化合物と、イオン電子混合導電性高分子を主体とする混
合物を用いる正極活物質と、リチウムイオンを含む固体
あるいは固形のリチウムイオン伝導性電解質を用いる電
解質と、金属アルミニウムあるいはその合金と炭素材料
を主体とする組成物を用いる負極とを具備したリチウム
二次電池。
Claim 1: A positive electrode active material using a mixture mainly consisting of a lithium thiolate compound having a sulfur-lithium ion bond that generates a sulfur-sulfur bond through electrolytic oxidation, and an ion-electronic mixed conductive polymer; A lithium secondary battery comprising an electrolyte using a solid or solid lithium ion conductive electrolyte containing aluminum, and a negative electrode using a composition mainly composed of metal aluminum or its alloy and a carbon material.
【請求項2】リチウムイオンを含む固体あるいは固形の
リチウムイオン伝導性電解質を正極活物質または負極組
成物の少なくとも一方に混合した請求項1記載のリチウ
ム二次電池。
2. The lithium secondary battery according to claim 1, wherein a solid or solid lithium ion conductive electrolyte containing lithium ions is mixed into at least one of the positive electrode active material and the negative electrode composition.
【請求項3】リチウムイオンを含む固体あるいは固形の
リチウムイオン伝導性電解質が、ポリアミン化合物にエ
チレンオキサイドまたはプロピレンオキサイドの少なく
とも一方を付加したポリエーテル化合物と、イオン交換
性の層状化合物と、式LiXで表されるリチウム塩(X
は強酸のアニオンである)を少なくとも含有する固形の
組成物である請求項1または2記載のリチウム二次電池
3. A solid or solid lithium ion conductive electrolyte containing lithium ions comprises a polyether compound obtained by adding at least one of ethylene oxide or propylene oxide to a polyamine compound, an ion exchange layered compound, and a compound having the formula LiX. The represented lithium salt (X
The lithium secondary battery according to claim 1 or 2, wherein the lithium secondary battery is a solid composition containing at least an anion of a strong acid.
JP3028404A 1991-02-22 1991-02-22 Lithium secondary battery Expired - Fee Related JP3038945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3028404A JP3038945B2 (en) 1991-02-22 1991-02-22 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3028404A JP3038945B2 (en) 1991-02-22 1991-02-22 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH04267074A true JPH04267074A (en) 1992-09-22
JP3038945B2 JP3038945B2 (en) 2000-05-08

Family

ID=12247727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3028404A Expired - Fee Related JP3038945B2 (en) 1991-02-22 1991-02-22 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3038945B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018714A1 (en) * 1993-02-12 1994-08-18 Valence Technology, Inc. Electrodes for rechargeable lithium batteries
GB2338709A (en) * 1998-06-23 1999-12-29 Toyo Kasei Kogyo Co Ltd 2,5-dimercapto-1,3,4-thiadiazole dilithium dihydrate
US6340539B1 (en) 1998-06-23 2002-01-22 Toyo Kasei Kogyo Company Limited 2,5-Dimercapto-1,3,4-thiadiazole dilithium salt and its dihydrate and their manufacture, and a secondary lithium battery and positive electrode-active material comprising the same
CN103022420A (en) * 2011-09-27 2013-04-03 力神迈尔斯动力电池系统有限公司 Slurry homogenizing method for positive electrode of lithium-ion power battery
KR20190037019A (en) * 2017-09-28 2019-04-05 주식회사 엘지화학 Polymer material for lithium secondary battery and manufacturing methods thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018714A1 (en) * 1993-02-12 1994-08-18 Valence Technology, Inc. Electrodes for rechargeable lithium batteries
US5656394A (en) * 1993-02-12 1997-08-12 Valence Technology, Inc. Electrodes for rechargeable lithium batteries
GB2338709A (en) * 1998-06-23 1999-12-29 Toyo Kasei Kogyo Co Ltd 2,5-dimercapto-1,3,4-thiadiazole dilithium dihydrate
EP1069119A1 (en) * 1998-06-23 2001-01-17 Toyo Kasei Kogyo Company Limited 2,5-dimercapto-1,3,4-thiadiazole dilithium salt and its dihydrate and their manufacture
US6340539B1 (en) 1998-06-23 2002-01-22 Toyo Kasei Kogyo Company Limited 2,5-Dimercapto-1,3,4-thiadiazole dilithium salt and its dihydrate and their manufacture, and a secondary lithium battery and positive electrode-active material comprising the same
GB2338709B (en) * 1998-06-23 2003-10-29 Toyo Kasei Kogyo Co Ltd 2,5-dimercapto-1,3,4-thiadiazole dilithium salt and its dihydrate and their manufacture
CN103022420A (en) * 2011-09-27 2013-04-03 力神迈尔斯动力电池系统有限公司 Slurry homogenizing method for positive electrode of lithium-ion power battery
KR20190037019A (en) * 2017-09-28 2019-04-05 주식회사 엘지화학 Polymer material for lithium secondary battery and manufacturing methods thereof
CN111033835A (en) * 2017-09-28 2020-04-17 株式会社Lg化学 Polymer material for lithium secondary battery and method for producing same
EP3664199A4 (en) * 2017-09-28 2020-11-11 LG Chem, Ltd. Lithium secondary battery polymer material and manufacturing method therefor
CN111033835B (en) * 2017-09-28 2023-05-09 株式会社Lg新能源 Lithium secondary battery polymer material and method for producing same

Also Published As

Publication number Publication date
JP3038945B2 (en) 2000-05-08

Similar Documents

Publication Publication Date Title
US5324599A (en) Reversible electrode material
DE69830077T2 (en) CATHODES WITH ELECTROACTIVE SULFUR COMPOUNDS AND THOSE USING SECONDARY BATTERIES
JP2715778B2 (en) Reversible electrode material
Zaghib et al. Electrochemistry of anodes in solid‐state Li‐ion polymer batteries
US6174621B1 (en) Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
RU2269841C2 (en) Primary (non-rechargeable) and secondary (rechargeable) magnesium base batteries
JP2001052747A (en) Lithium secondary battery
EP1088356A1 (en) Microporous electrode or separator for use in a non-aqueous battery, and method of manufacturing
TW518790B (en) Films for electrochemical components and a method for production thereof
KR100462668B1 (en) Polymer cell
JP4561041B2 (en) Lithium secondary battery
JP3879140B2 (en) Lithium polymer secondary battery
JPH04267074A (en) Lithium secondary battery
JP2606632B2 (en) Lithium secondary battery
JP3496287B2 (en) Battery using ion-conductive polymer compound
JPS63314766A (en) Organic electrolyte cell having activated carbon metal oxide composite as positive electrode
JP2605989B2 (en) Lithium secondary battery
JPH05314964A (en) Lithium secondary battery
JPH05135800A (en) Lithium secondary battery
JPH05135799A (en) Lithium secondary battery
JPH05135801A (en) Lithium secondary battery
WO2020046444A1 (en) Lithium metal secondary battery containing an electrochemically stable anode-protecting layer
JPH06310173A (en) Electrochemical device and secondary battery
JPH05135798A (en) Lithium secondary battery
JPH04179049A (en) Negative electrode for battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees