JPS62117279A - Photo-secondary cell - Google Patents
Photo-secondary cellInfo
- Publication number
- JPS62117279A JPS62117279A JP60256971A JP25697185A JPS62117279A JP S62117279 A JPS62117279 A JP S62117279A JP 60256971 A JP60256971 A JP 60256971A JP 25697185 A JP25697185 A JP 25697185A JP S62117279 A JPS62117279 A JP S62117279A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- mainly composed
- charging efficiency
- photo
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000002500 ions Chemical class 0.000 claims abstract description 5
- 229910052802 copper Inorganic materials 0.000 claims abstract description 3
- 239000010949 copper Substances 0.000 claims abstract 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims abstract 2
- 239000007784 solid electrolyte Substances 0.000 claims description 7
- 239000007774 positive electrode material Substances 0.000 abstract description 6
- 229910006247 ZrS2 Inorganic materials 0.000 abstract description 4
- 239000003792 electrolyte Substances 0.000 abstract description 4
- 239000007787 solid Substances 0.000 abstract description 3
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract description 2
- 239000000843 powder Substances 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M14/00—Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
- H01M14/005—Photoelectrochemical storage cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/18—Cells with non-aqueous electrolyte with solid electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Photovoltaic Devices (AREA)
- Secondary Cells (AREA)
- Hybrid Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、電力ではなく、光で充電できる二次電池、す
なわち太陽電池と二次電池を併せた働きをする電池に関
する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a secondary battery that can be charged with light rather than electricity, that is, a battery that functions as a combination of a solar cell and a secondary battery.
従来の技術
光で充電する二次電池の試みは、例えば、金子工夫、エ
レクトロニクス、P97〜104(59−10)の総説
で示されたように数多くなされているが、実用されてい
るのは太陽電池で通常の二次電池を充電する方式のもの
である。このように太陽電池で発電した電力を二次電池
に貯える二段階型の他に−n型T iO2のような半導
体からなる電極を、白金のような金属、ちるいはp型G
a Pのような半導体からなる電極と共に電解液に浸
漬して半導体電極を光で照射して電荷分離を起させ、(
導電帯にホール、導電帯に電子を生ずる)、光誘起した
電荷で電解液中の物質を酸化、還元して活物質として貯
え、放電時にこれを使用する試みもなされているが、未
だ実用の域に達していない。Conventional technology Many attempts have been made to develop secondary batteries that can be charged using light, as shown in the review article by Kaneko, Electronics, pp. 97-104 (59-10), but the only ones that have been put into practical use are solar batteries. It uses a battery to charge a normal secondary battery. In addition to the two-stage type, which stores power generated by solar cells in a secondary battery, electrodes made of a semiconductor such as n-type TiO2 can be replaced with a metal such as platinum, or p-type G.
a The semiconductor electrode is immersed in an electrolytic solution together with an electrode made of a semiconductor such as P, and the semiconductor electrode is irradiated with light to cause charge separation.
There have also been attempts to oxidize and reduce substances in the electrolyte with photo-induced charges (generating holes in the conductive band and electrons in the conductive band) and storing this as an active material, which is then used during discharge, but this has not yet been put to practical use. The area has not been reached.
光励起した電荷で一後続する酸化・還元反応を行わせる
には、■ 電解質中の物質の酸化・還元電位が、半導体
電極の導電帯の上端より上部、還元電位が導電帯の下端
より下部にある■ 光励起により出来るだけ多くの電荷
分離を行なわせるに、半導体電極のバンドギャップが小
さいこと、が必要であるが、バンドギャップが余り小さ
いと■の条件が満足できず後続する電気化学反応が進行
しない。それゆえ、■及び■の条件を満たし、太陽光ま
たは螢光灯の光を吸収して反応を効率よく進めるのに望
ましい半導体のバンドギャップは、1〜2.eieV程
度であるが、そのようなバンドギャップをもつ半導体、
(n型St −1、1eV、n型GaAs−1,35e
V、Cd5−2.4eV)は何れもそれ自体カ反応に関
与して腐食してしまう問題点を有しており、水溶液電解
質中で安定なものは紫外光しか利用できないTio2.
ZnOなどバンドギャップが3.0−3.2QVの材料
に限られるのが現状である。In order for the photo-excited charge to carry out the subsequent oxidation/reduction reaction, the oxidation/reduction potential of the substance in the electrolyte must be above the top of the conductive band of the semiconductor electrode, and the reduction potential be below the bottom of the conductive band. ■ In order to perform as much charge separation as possible through photoexcitation, it is necessary that the band gap of the semiconductor electrode be small, but if the band gap is too small, the condition (■) cannot be satisfied and the subsequent electrochemical reaction will not proceed. . Therefore, in order to satisfy the conditions (1) and (2), absorb sunlight or fluorescent lamp light, and efficiently proceed with the reaction, the band gap of the semiconductor is preferably 1 to 2. A semiconductor with a band gap of about eieV,
(n-type St -1, 1eV, n-type GaAs-1, 35e
Both Tio2.
Currently, materials such as ZnO are limited to materials with a band gap of 3.0 to 3.2 QV.
また、最近、■、v、■族の遷移金属のジカルコゲナイ
ドを正極材料に使用する二次電池の研究が多く行なわれ
て来ている。その多くはLi を負極材料とし、有機
電解質を用いるものである。Further, recently, much research has been conducted on secondary batteries using dichalcogenides of transition metals of the ■, v, and ■ groups as positive electrode materials. Most of them use Li as the negative electrode material and an organic electrolyte.
ごく最近、これらの遷移金属のジカルコゲナイドが電流
ばかりでなく、光によってもイオンを出し入れすること
ができ、例えばエイチ トリピッチ、゛フォトエレクト
ロケム エナジー コンヴアージオン インヴオルグイ
ング トランジシオン メタルディースタイツ アンド
インタークレージョン コンパウンド オン レイヤ
ーコンバウンジ”、ストラフチア−アンド ボンディン
グ(H,Tr 1butch、” Photoelec
trochemenergy converqion
involving transitiontn
etald−+;tates and 1nter
calation compoundof Lay
er conpounds ”、5tructure
and Bonding49.162〜168’8
2)、は自他の研究を総合して総説的に光で充電できる
電池の可能性を述べている。その中で太陽光を利用する
ということを考慮すると−Liを負極とする電池では充
電に必要なエネルギーが大き過ぎて効率の高い充電が出
来ない。効率の上から負極はもっと責な酸化・還元電位
をもつCuのようなものに置き換える方がよいことを予
言している。このことは上記■。Very recently, dichalcogenides of these transition metals have been shown to be able to transfer ions in and out not only by electric current but also by light. John Compound on Layer Combination", Straftia and Bonding (H, Tr 1butch," Photoelec
trochemnergy conversion
involving transition
etald-+;tates and 1nter
Calation compound of Lay
er compounds”, 5structures
and Bonding49.162~168'8
2) summarizes the research of his own and others and discusses the possibility of batteries that can be charged with light. Considering the use of sunlight, batteries with -Li as the negative electrode require too much energy to charge, making it impossible to charge them with high efficiency. From the standpoint of efficiency, it is predicted that it would be better to replace the negative electrode with something like Cu, which has a more aggressive oxidation/reduction potential. This is mentioned in ■ above.
■の条件から容易に考えられることである。!、だ、光
充電の過程において電極は半導性をとり続けることが必
要でFeとかCuのZrS とかHf52へのインタ
ーカレーションを取扱った、ビー ジーヤコブ他 ジャ
ーナル オン フィシツクスジ (ソリッド ステイト
フィジックス)B。This can be easily considered from the condition (2). ! It is necessary for the electrode to maintain semiconductivity during the process of photocharging, and B.G. Jacob et al. Journal on Physics (Solid State Physics) B deals with the intercalation of Fe or Cu into ZrS or Hf52.
G、 Yacob、et al 、1 、Phys 、
C,(Solid 5tatePhys)12 、21
89 (’ 79 )を引用して、こで伍L5
れらの二硫化物が光電極として有望なことを述へ発明が
解決しようとする問題点
発明者らは先にn型ZrS 及びHf52を用いた光
で充電できる二次電池を提案した。しかじなから、上記
材料を正極としたものでは光充電に際しての、電池とし
ての充電効率が低いという欠点を有していた。G., Jacob, et al., 1, Phys.
C, (Solid 5tatePhys) 12, 21
89 ('79), we state that these disulfides are promising as photoelectrodes.Problems to be solved by the inventionThe inventors previously developed n-type ZrS and Hf52. We proposed a secondary battery that can be charged using the light used. However, batteries using the above-mentioned materials as positive electrodes have the drawback of low charging efficiency as a battery during photocharging.
問題点を解決するための手段
電池の正極材料として、Cu xZ r 52(0<x
<0.15)を主体とする材料を用いる。Means for solving the problems Cu xZ r 52 (0<x
<0.15) is used.
作 用
Z r S 2はCu+(オン導電率が4 X 1 o
−9S/C!1tと小さく、これは光充電の際の充電効
率を下げる一つの原因となる。ところがこれにCuをあ
らかじめ熱的にインターカレートさせておくと、イオン
導電率が犬きく増加し、これにより光充電の充電効率を
向上させることができる。The action Z r S 2 is Cu + (on conductivity is 4 x 1 o
-9S/C! It is small at 1 t, which is one of the causes of lowering the charging efficiency during optical charging. However, if Cu is thermally intercalated in advance, the ionic conductivity increases significantly, thereby improving the charging efficiency of photocharging.
実施例 次に本発明の実施例について述べる。Example Next, embodiments of the present invention will be described.
〈実施例1〉 電池を構成する材料は下記の通りである。<Example 1> The materials constituting the battery are as follows.
正 極:Cu、、、ZrS2粉末
+RbCu4 工1.5”3.5粉末(重量比2:3)
・・ ・・・・・・・・・・・・・・・13 Q In
q固体電解質:RbCu411.5Ct3.5粉末 −
−50、’lq負 極:Cu粉末+Cu 1.59
S粉末+RbCu411.5Ct3,5粉末(重量比4
:19:5)・・・・・・・・・ ・ ・・
5 Q mダ上記正極粉末と固体電解質と負極粉末
とを層状に三層に約3トンの圧力でプレスし、直径10
ffiffの電池ペレットとし、第2図に示すように構
成した。Positive electrode: Cu,..., ZrS2 powder + RbCu4 1.5" 3.5 powder (weight ratio 2:3)
・・・・・・・・・・・・・・・・・・13 Q In
q Solid electrolyte: RbCu411.5Ct3.5 powder -
-50,'lq Negative electrode: Cu powder + Cu 1.59
S powder + RbCu411.5Ct3,5 powder (weight ratio 4
:19:5)・・・・・・・・・ ・ ・・
5 Q m da The above positive electrode powder, solid electrolyte and negative electrode powder were pressed into three layers under a pressure of about 3 tons, and the diameter was 10.
ffiff battery pellets were constructed as shown in FIG.
1は正極層、2は固体電解質層、3は負極層であり−4
は透明電極で工n203にS n O2をドープしたも
のをガラスの上に蒸着したものを用いた。5は集電体で
スチレン・ブタジェンゴムに線径カフ〜8μ771.
、長さが30〜100μnLの炭素1−哉椎を分散させ
た導′−ゴムを用いた。6はリード線、了は高絶縁性情
i脂を用いたパッケージである。上記電池を200μA
で放電し、起電圧が0.1ボルトまで下がった時を時間
軸の原点として、光照射を行なった時の、閉路電圧の時
間変化を示したものが、第1図である。○印は本実施例
、目印はZ r S 2を正極の主体材料とする比較例
である。光源には100WのXs ランプを用い、距離
501で照射した。第1図を見るとわかるようにZ r
S2にくらべCu o : 1Z r S 2を正極
の主体材料に用いた本実施例は、光照射後の電圧のもど
りが早く−これはつまり充電効率がより高いことを示し
ているものである。なおZ r S 2中のCuモル量
とイオン導電率の関係を次表に示す。イオン導電率が大
きくなるということは光充電の充電効率を向上させるこ
とになる。1 is a positive electrode layer, 2 is a solid electrolyte layer, 3 is a negative electrode layer, and -4
A transparent electrode was used in which N203 doped with SnO2 was deposited on glass. 5 is a current collector made of styrene-butadiene rubber with a wire diameter cuff ~8μ771.
A conductive rubber in which carbon fibers having a length of 30 to 100 μnL were dispersed was used. 6 is a lead wire, and R is a package using highly insulating resin. The above battery is 200μA
Fig. 1 shows the change in closed circuit voltage over time when light irradiation was performed, with the time axis set at the origin of the time axis when the electromotive voltage decreased to 0.1 volt. The circle mark indicates this example, and the mark indicates a comparative example in which ZrS2 is the main material of the positive electrode. A 100 W Xs lamp was used as a light source, and irradiation was performed at a distance of 501 cm. As you can see from Figure 1, Z r
Compared to S2, the present example in which Cu o: 1Z r S 2 was used as the main material of the positive electrode had a faster voltage recovery after irradiation with light, which means that the charging efficiency was higher. The relationship between the molar amount of Cu in Z r S 2 and ionic conductivity is shown in the following table. An increase in ionic conductivity improves the charging efficiency of photocharging.
表
〈実施例2〉
正極としてCuo、。5ZrS2+RbCu4I、、5
C4,5を重量比2:3で混合したものを6 Q Mq
使い一他は上記〈実施例1〉とまったく同じ条件で作製
した電池をsoKΩ定抵抗負荷の放電をしながら、第1
図と同じ光照射を行なった時の閉路電圧の時間変化を示
しだものが第3図である。Table <Example 2> Cuo as the positive electrode. 5ZrS2+RbCu4I, 5
A mixture of C4,5 at a weight ratio of 2:3 is 6 Q Mq
The battery was manufactured under exactly the same conditions as in Example 1 above, and the first battery was discharged under a soKΩ constant resistance load.
FIG. 3 shows the change in closed circuit voltage over time when the same light irradiation as shown in the figure was performed.
なお、正、負極材料は粉末だけではなくスパッタ膜、C
VD膜等であってもよい。また固体電解質を用いた理由
は、電解質が液体の場合正極との接合面で光が照射され
ると、カチオンとアニオンの両者が反応に関与し、そこ
で正極材料の腐食がおこるのであるが一水元二次電池に
用いた固体電解質の場合反応するのはCu+のみであり
、正極材料の腐食はおこらない点にある。なお上記正極
材料のCu xZ r S 2はZrとSの不定比化合
物であり、これがCu、Zr5y(1,8:SY≦2.
1)であッテも同様の結果を得る事は言うまでもない。Note that the positive and negative electrode materials include not only powder but also sputtered films, C
It may also be a VD film or the like. The reason for using a solid electrolyte is that when the electrolyte is a liquid, when light is irradiated at the joint surface with the positive electrode, both cations and anions participate in the reaction, which causes corrosion of the positive electrode material. In the case of the solid electrolyte used in the original secondary battery, only Cu+ reacts, and the positive electrode material does not corrode. Note that Cu xZ r S 2 of the above positive electrode material is a non-stoichiometric compound of Zr and S, and this is Cu, Zr5y (1,8:SY≦2.
It goes without saying that the same result can be obtained with 1).
発明の効果
光照射後の電圧の上昇はZ r S 2を正極の主体材
料とするものにくらべはるかに大きい。これは光充電の
充電効率がはるかに大きいことを意味する。Effects of the Invention The increase in voltage after light irradiation is much larger than that in a case where ZrS2 is the main material of the positive electrode. This means that the charging efficiency of optical charging is much greater.
つまり、あらかじめCu をZ r S 2にインター
カレートさせることによりイオン導電率を太きくしてオ
・<事で充電効率も向上する。In other words, by intercalating Cu into Z r S 2 in advance, the ionic conductivity is increased and the charging efficiency is also improved.
第1図は本発明の一実施例の光二次電池の特性図、第2
図は同党二次電池の構成図、第3図は本発明の異なる実
施例の光二次電池の特性図である。
1・・・・正極、2・・・・・固体電解質、3・・・・
・・負極、4・・・・透明電極、5・・・・・・集電体
、6・・・・リード線、7・・・・密封パッケージ。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第
1 図
時 間 (分つ
第2図
光
第3図
θ こ 4 6 δ
10峙 聞 (分うFIG. 1 is a characteristic diagram of a photo secondary battery according to an embodiment of the present invention, and FIG.
The figure is a block diagram of a secondary battery of the same type, and FIG. 3 is a characteristic diagram of a secondary photovoltaic battery according to a different embodiment of the present invention. 1...Positive electrode, 2...Solid electrolyte, 3...
... Negative electrode, 4... Transparent electrode, 5... Current collector, 6... Lead wire, 7... Sealed package. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure Time (Division 2 Figure 3 Light Figure 3 θ This 4 6 δ
10 questions
Claims (1)
電解質と、Cu_xZrS_2(0<x<0.15)で
表わされる硫化物を主体とする正極を順次積層し、前記
正極に光を照射することにより充電可能であることを特
徴とする光二次電池。A negative electrode mainly composed of metallic copper, a Cu^+ ion conductive solid electrolyte, and a positive electrode mainly composed of a sulfide represented by Cu_xZrS_2 (0<x<0.15) are laminated in sequence, and the positive electrode is irradiated with light. A photo secondary battery characterized by being rechargeable by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60256971A JPS62117279A (en) | 1985-11-15 | 1985-11-15 | Photo-secondary cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60256971A JPS62117279A (en) | 1985-11-15 | 1985-11-15 | Photo-secondary cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62117279A true JPS62117279A (en) | 1987-05-28 |
JPH0578912B2 JPH0578912B2 (en) | 1993-10-29 |
Family
ID=17299914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60256971A Granted JPS62117279A (en) | 1985-11-15 | 1985-11-15 | Photo-secondary cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62117279A (en) |
-
1985
- 1985-11-15 JP JP60256971A patent/JPS62117279A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0578912B2 (en) | 1993-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105280883B (en) | Metal lithium polar plate | |
US10511055B2 (en) | Metal plating-based electrical energy storage cell | |
US3615828A (en) | Secondary power-producing cell | |
JPS62117279A (en) | Photo-secondary cell | |
JPH04171681A (en) | Photochemical secondary battery | |
JPS62259360A (en) | Photoelectric secondary cell | |
JPS62259359A (en) | Photoelectric secondary cell | |
JPS62117276A (en) | Photo secondary cell | |
JPS59111280A (en) | Secondary photocell | |
JPS62117277A (en) | Photo-secondary cell | |
JPS61118974A (en) | Secondary cell chargeable with light | |
JPS62117278A (en) | Photo-secondary cell | |
JPH06275312A (en) | Full solid lithium battery | |
JPS634557A (en) | Photo-secondary battery | |
JPS61271758A (en) | Total solid photo secondary battery | |
JPS634558A (en) | Photo-secondary battery | |
JPH07245125A (en) | Secondary battery capable of generating power | |
JPS6012677A (en) | Solid electrolyte secondary battery | |
JP2511905B2 (en) | Optical secondary battery | |
US408287A (en) | Secondary battery | |
JP2801599B2 (en) | Rechargeable battery | |
JPS5920757Y2 (en) | silver oxide battery | |
JPH0477422B2 (en) | ||
JP2738708B2 (en) | Rechargeable battery | |
CN118782871A (en) | Integrated photo-assisted secondary battery |