JPS62117277A - Photo-secondary cell - Google Patents

Photo-secondary cell

Info

Publication number
JPS62117277A
JPS62117277A JP60256969A JP25696985A JPS62117277A JP S62117277 A JPS62117277 A JP S62117277A JP 60256969 A JP60256969 A JP 60256969A JP 25696985 A JP25696985 A JP 25696985A JP S62117277 A JPS62117277 A JP S62117277A
Authority
JP
Japan
Prior art keywords
positive electrode
polarization
mainly composed
battery
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60256969A
Other languages
Japanese (ja)
Other versions
JPH0564437B2 (en
Inventor
Teruhisa Kanbara
神原 輝寿
Tadashi Tonomura
正 外邨
Satoshi Sekido
聰 関戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECH RES ASSOC CONDUCT INORG COMPO
Original Assignee
TECH RES ASSOC CONDUCT INORG COMPO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECH RES ASSOC CONDUCT INORG COMPO filed Critical TECH RES ASSOC CONDUCT INORG COMPO
Priority to JP60256969A priority Critical patent/JPS62117277A/en
Publication of JPS62117277A publication Critical patent/JPS62117277A/en
Publication of JPH0564437B2 publication Critical patent/JPH0564437B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a larger discharge current by employing a material mainly composed of NbxZrSy (0<x<1, 1.8<=y<=2.1) or a compound of NbS2 and ZrS2 as a positive electrode material. CONSTITUTION:A negative electrode mainly composed of metal copper, a Cu<+> ion conductive solid state electrolyte and a positive electrode mainly composed of sulfide of Nb and Zr are laminated sequentially, and the obtained cell can be recharged by irradiating the light onto the positive electrode. Main cause of polarization of cell is the activating energy for moving the charges on a contacting face between an electrolyte and a positive electrode material. The lower the activating energy, the quicker the electrons are passed and received, thereby the polarization as a cell becomes lower. When ZrS2 is doped with Nb, the activating energy will lower so as to reduce the polarization.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電力ではなく、光で充電できる二次電池、す
なわち太陽電池と二次電池を併せた1動きをする電池に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a secondary battery that can be charged with light rather than electricity, that is, a single-movement battery that is a combination of a solar cell and a secondary battery.

従来の技術 光で充電する二次電池の試みは、1タリえば、金子工夫
、エレクトロニクス、P97〜1o4(Ss9゜1o)
の総説で示されたように数多くなされているが、実用さ
れているのは太陽電池でiIハ常の二次iij M全充
電する方式のものである。このように太陽電池で発電し
た電力を二次電池に貯える二段階型の他に、n型Ti○
2のような半導体からなる電極を、白金のような金属、
あるいはp型G a P のような半導体からなる電極
と共に電解液に浸漬して半導体電極を光で照射して電荷
分離を起こさす(導電帯にホール、導電帯して電子を生
ずる)、光誘起した電荷で電解液中の物質を酸化、還元
して活物質として貯え、放電時にこれを使用する試みも
なされているが、未だ実用の域に達していない。
Conventional technology One example of an attempt to create a secondary battery that can be charged with light is Kaneko Tsuyoshi, Electronics, P97~1o4 (Ss9゜1o)
As shown in the review article, many have been made, but the one that is in practical use is a system that fully charges the secondary battery using solar cells. In addition to the two-stage type that stores electricity generated by solar cells in a secondary battery, there is also an n-type Ti○
An electrode made of a semiconductor such as 2, a metal such as platinum,
Alternatively, the semiconductor electrode is immersed in an electrolytic solution together with an electrode made of a semiconductor such as p-type GaP, and the semiconductor electrode is irradiated with light to cause charge separation (holes in the conductive band, electrons are generated in the conductive band), photo-induced Attempts have been made to oxidize and reduce substances in the electrolyte with the generated charge and store them as active materials, and use this during discharge, but this has not yet reached the level of practical use.

光励起し、た電荷で、後続する酸化、還冗反眠、を行わ
せるには、■電解質中の物質の酸化、還元な位が、半導
体電極の導電帯の上端より」二部、還元型fI′1が’
Ffi 7C帯の下端より下部にある、(■尤QJ起ン
ζより出来るだけ多ぐの電荷分離を行なわせるシ′(′
、半導体*極のバンドギャップが小さいこと、が必要で
あるが、バンドギャップが余り小さいと■の条件が満足
できず後続する電気化学反応が進行しない。それゆえ、
■及び■の条件を満たし、太陽光または螢光灯の光を吸
収して反応を効率よく進めるのに望ましい半導体のバン
ドギャップは、1〜2.5eV  程度であるが、その
ようなバンドギャップをもつ半導体、(n型S i 〜
1.1 eV 、 n型G a A s〜1.35 e
V 、CdS 〜2.4eV)は何れもそれ自体が反応
に関与(7て腐食してし塘う問題点を有しており、水溶
液電解質中で安定なものは紫外光しか利用できないTi
O2,ZnOなどバンドギャップが3.0〜3.2eV
の材料に限られるのが現状である。
In order to cause the subsequent oxidation and redundancy to occur with photo-excited charges, the oxidation and reduction portions of the substances in the electrolyte are separated from the upper end of the conductive band of the semiconductor electrode by two-part, reduced-form fI. '1 is'
Below the lower end of the Ffi 7C band, the filter that causes as much charge separation as possible from the
, it is necessary that the bandgap of the semiconductor * pole be small, but if the bandgap is too small, the condition (2) cannot be satisfied and the subsequent electrochemical reaction will not proceed. therefore,
The bandgap of a semiconductor that satisfies the conditions ① and ②, absorbs sunlight or fluorescent lamp light, and promotes reactions efficiently is approximately 1 to 2.5 eV. A semiconductor with (n-type S i ~
1.1 eV, n-type Ga As ~ 1.35 e
V, CdS ~2.4eV) are both involved in the reaction (7) and have the problem of corrosion, and the only stable one in an aqueous electrolyte is Ti, which can only be used with ultraviolet light.
Band gap of O2, ZnO, etc. is 3.0 to 3.2 eV
Currently, it is limited to the following materials.

また、最近、It/ 、V 、■族の遷移金棺のジカル
コゲナイトを正極材料に使用する二次電池の研究が多く
行なわれて来ている。その多くはLi を負極材料とし
、有機市解質を用いるものである。
Further, recently, much research has been conducted on secondary batteries using transition gold dichalcogenites of the It/, V, and ■ groups as positive electrode materials. Most of them use Li as the negative electrode material and organic solute.

ごく最近、これらの遷移金属のジカルコゲナイドが電流
ばかりでなく、光によってもイオンを出し入れすること
ができ、例えば、エイチ トリピッチ “)t l−エ
レクトロクム エナジー コンバージョン イ/ヴオル
ヴイング I・ランジション メタル ディー スタイ
ン アンド ・インターカレーシヨン コンパウンド 
オブ レイヤーコンバンヅ、パ  ストラフチア−アン
ド ボンディング(H,Tributch、”Phot
oelectrochemenergy conver
sion involving transition
metal d−states and 1nterc
alation compoundof 1ayer 
compounds”、5tructure andB
onding 49 、162〜166’82 )は自
他の研究を総合して総説的に光で充電できる電池の可能
性を述べている。その中で太陽光を利用するということ
を考慮すると、Li を負極とする電池では充電に必要
なエネルギーが大き過ぎて効率の高い充電が出来ない。
Very recently, dichalcogenides of these transition metals have been shown to be able to transfer ions in and out not only by electric current but also by light, for example. and intercalation compound
Of Layer Combinations, Pass Straftia and Bonding (H, Tributch, “Photo
oelectrochemistry converter
sion involving transition
metal d-states and 1nterc
alation compound of 1 ayer
"compounds", 5structure andB
Onding 49, 162-166'82) synthesized his own and others' research and summarized the possibility of batteries that can be charged with light. Considering the use of sunlight, batteries with Li as the negative electrode require too much energy to charge efficiently.

効率の上から負極はもっと責な酸化、還元電位をもつC
uのようなものに置き換える方がよいことを予言してい
る。このことは上記■、■の条件から容易に考えられる
ことである。
From the standpoint of efficiency, the negative electrode is C, which has a more severe oxidation and reduction potential.
It predicts that it would be better to replace it with something like u. This can be easily considered from the conditions (1) and (2) above.

ンターカレーンヨンを取扱った、ビー ジー ヤコブ他
 ジャーナル フィジックス シ (ソリッド ステイ
ト フィジックス) (B、G、Yacob 、at 
 al 、J 、Phys。
B.G. Jacob et al.'s Journal Physics (Solid State Physics), which deals with intercalary lanes (B, G, Jacob, at
al., J., Phys.

C,(Solid 5tate Phys)12.21
89 (’79))を引用して、これらの二硫化物が光
電極として有望なことを述べている。
C, (Solid 5tate Phys) 12.21
89 ('79)), states that these disulfides are promising as photoelectrodes.

発明が解決しようとする問題点 発明者らは先にn型Z r S 2及びHf52全用い
た光で充電できる二次電池を提供した。しかしながら、
上記材料を正極としたものでは放電に際しての、電池と
しての分極が大きい欠点を有していた。
Problems to be Solved by the Invention The inventors have previously provided a light-chargeable secondary battery that uses both n-type Z r S 2 and Hf52. however,
A battery using the above-mentioned material as a positive electrode has the disadvantage that the battery is highly polarized during discharge.

問題点を解決するだめの手段 電池の正極材料として、N b x Z r S y 
(0< x (1。
Means to solve the problem As a positive electrode material for batteries, N b x Z r S y
(0< x (1.

1.8≦y−≦2.1)iだはNbS2とZ r S 
2の混合物を主体とする材料を用いる。
1.8≦y−≦2.1) i is NbS2 and Z r S
A material mainly consisting of a mixture of 2 is used.

作   用 電、也の分極の大きな原因として、電解質と正り1メ質
との接触面((おける電荷移動の活性化エネルギーがあ
る。これ:寸つ1す、市11イ質中を]虫ってき7′こ
Cu+ )、i正ト〉物″71から電子を受は取りCu
となって正極物質中に貯えられ、この電子の流れが電池
としての機能なのであるが、このCu+ と正極物質と
の間の電子の授受の際に消費するエネルギーの小t 1
を荷移動の活性化エネルギーと言うのである。そして勿
論この活性化エネルギーが低い方が電子の授受は敏速に
行なわれ、電池としての分(夕も小さくなる。Z r 
S 2にNbをドープすると上述の活性化エネルギーが
低下し、結果的に分極が小さくなった。
A major cause of the polarization of the working electric current is the activation energy of charge transfer at the interface between the electrolyte and the material. 7'Cu
is stored in the positive electrode material, and this flow of electrons is the function of the battery, but the energy consumed when transferring electrons between Cu+ and the positive electrode material is small t 1
is called the activation energy of cargo movement. Of course, the lower the activation energy, the more quickly the electron transfer will take place, and the smaller the battery's charge (event) will be.Z r
When S 2 was doped with Nb, the above-mentioned activation energy was lowered, resulting in smaller polarization.

実施例 以下本発明の実施例について説明する。Example Examples of the present invention will be described below.

(実施例1) 電池を構成する材料は下記の通りである。(Example 1) The materials constituting the battery are as follows.

正  極:Nbo、1ZrS2粉末+RbCu41..
5Cl!3.5粉末(重量比 2:3)・・・・・・・
・・・・・・・・・・・・ 6omq固俟園質: Rb
Cu411.5C63,5粉末 ・・=−−−−・−5
0m9負  % : Cu粉末+Cu 1.59 S粉
末+RbCu4I、 、5C13,5粉末(重量比 4
:19:5)・・・・・・・・・・・・ ’30m9上
記[1ヨ極粉末と固体電解質と負極粉末とを層状に三層
(7こ約3トンごつ圧力でプレスし、直径1o朋の電池
ベレットとし、第3図に示すように構成した。1は上記
の正極層、2は固体電解質層、3は負極層であり、4は
透明電極で工n203にS n O2をドープしたもの
をガラスの上に蒸着したものを用イタ。5は集電体でス
チレン・ブタジェンゴムに線径が7〜8μ、長さが30
〜100μの炭素繊維を分散させた導電ゴムを用いた。
Positive electrode: Nbo, 1ZrS2 powder + RbCu41. ..
5Cl! 3.5 powder (weight ratio 2:3)...
・・・・・・・・・・・・ 6omq quality: Rb
Cu411.5C63,5 powder...=------5
0m9 Negative %: Cu powder + Cu 1.59 S powder + RbCu4I, 5C13,5 powder (weight ratio 4
:19:5)・・・・・・・・・・・・'30m9 Above [1] Three layers of yode powder, solid electrolyte, and negative electrode powder (7 pieces were pressed at a pressure of about 3 tons, A battery pellet with a diameter of 10 mm was constructed as shown in Fig. 3. 1 is the above-mentioned positive electrode layer, 2 is a solid electrolyte layer, 3 is a negative electrode layer, 4 is a transparent electrode, and S n O2 is injected into the hole 203. It is a doped material that is vapor-deposited on glass. 5 is a current collector made of styrene-butadiene rubber with a wire diameter of 7 to 8 μm and a length of 30 μm.
A conductive rubber in which carbon fibers of ~100 μm were dispersed was used.

6はリード線、7は高絶縁性樹脂を用いたパッケージで
ある。
6 is a lead wire, and 7 is a package using a highly insulating resin.

上記電池を200μAで放電しながら、光照射のon−
offの繰り返しを行なった時の、閉路電圧の時間変化
を示したものが、第1図である。○印は本発明の実施例
であり、0印はZ r S 2を正極の主体材料とする
比較例である。光源には100WのXs ランプを用い
、距離!5ocrnで照射した。そしてこの電池の放電
特性を第2図に示す。放電電流は200μAであり、○
印9口印は第1図と同様である。これを見ると本実施例
の放電特性は著しく向上している事がわかる。
While discharging the above battery at 200 μA, light irradiation was applied on-
FIG. 1 shows the change in the closed circuit voltage over time when the circuit is repeatedly turned off. ○ marks are examples of the present invention, and 0 marks are comparative examples in which Z r S 2 is the main material of the positive electrode. A 100W Xs lamp is used as the light source, and the distance! Irradiation was performed at 5ocrn. The discharge characteristics of this battery are shown in FIG. The discharge current is 200μA, ○
The seal 9 is the same as in Figure 1. Looking at this, it can be seen that the discharge characteristics of this example are significantly improved.

(実施例2) 正極としてNbS2粉末+Z r S 2粉末+RbC
u4■L5C1粉末を・屯はhb’ : 1: 3で混
合し/1−もの3.5 金60m9使い、イ1.!2は一1暦尼実施例とまった
く同じ条件で作製した61j池を上記同様20011八
″7′:放電(−ながら、光照射のon−offを行な
った時の閉路電圧の時間変化を示したものが第4図であ
り、−ま/こその放電特性を示したものが第5図である
。実施例1と同様に放電特性の著しい向上が児られる。
(Example 2) NbS2 powder + ZrS2 powder + RbC as positive electrode
Mix u4■L5C1 powder with hb': 1:3 / 1-3.5 gold 60m9, i1. ! 2 shows the time change of the closed circuit voltage when light irradiation was turned on and off while the 61j cell was manufactured under exactly the same conditions as the 11th example. Figure 4 shows the results, and Figure 5 shows the discharge characteristics of -ma/so.As with Example 1, the discharge characteristics are significantly improved.

なお、上記正極材料のZ r S 2及びNbS2は不
定比化合物であり、これがZ r Sy 、 Nb5y
 (1.8””’J。
In addition, Z r S 2 and NbS2 of the above-mentioned positive electrode material are non-stoichiometric compounds, which are Z r Sy , Nb5y
(1.8””’J.

Y≦2.1)であっても同様の結果を得る事は言うまで
もない。
It goes without saying that similar results can be obtained even if Y≦2.1).

また、固体電解質を用いた理由は、電解質が液体の場合
、正極との接合面で光が照射されると、カチオンとアニ
オンの両者が反応に関与し、そこで正極材料の腐食がお
こるのであるが、本丸二次電池に用いた固体電解質の場
合、反応するのばCu+のみであり、正極材料の腐食は
おこらない点にある。
In addition, the reason for using a solid electrolyte is that when the electrolyte is a liquid, when light is irradiated at the joint surface with the positive electrode, both cations and anions participate in the reaction, which causes corrosion of the positive electrode material. In the case of the solid electrolyte used in the Honmaru secondary battery, only Cu+ reacts, and corrosion of the positive electrode material does not occur.

発明の効果 本発明は以上のように正極にNbxzrSアかN b 
S  −Z r S 2混合系の材料を用いる事で電池
の放電の際の分極を著しく低減せしめ、より大きい放電
電流を得る事が出来る。
Effects of the Invention As described above, the present invention uses NbxzrS or Nb for the positive electrode.
By using the S-ZrS2 mixed material, polarization during battery discharge can be significantly reduced and a larger discharge current can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は実施例1の特性図、第3図は実施例
1.2の電池の構成図、第4図及び第5図は実施例2の
特性図である。 1・・・正極、2・・・・・・固体電解質、3・・・・
・負極、4・・・・・透明電極、6・・・・・集電体、
6・・・・リード線、7・・・・・密封パッケージ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 をン20J6θ2?θノ〃 時開(分) 箒2図 0      /      2     3    
4     S文型時M (特開p 第3図 光    /正極 7在封パツ酪ダ 第4図 0     ?0    4θ     bo    
  so     iジθ符  開 ・′光) 第5図 0     7      こ      3    
 4    .5狡i待閉 (詩1閲)
1 and 2 are characteristic diagrams of Example 1, FIG. 3 is a configuration diagram of the battery of Example 1.2, and FIGS. 4 and 5 are characteristic diagrams of Example 2. 1...Positive electrode, 2...Solid electrolyte, 3...
・Negative electrode, 4...Transparent electrode, 6... Current collector,
6... Lead wire, 7... Sealed package. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 20J6θ2? θ〃 Time opening (minutes) Broom 2 figure 0 / 2 3
4 S sentence pattern time M (Unexamined Patent Publication P Figure 3 light/positive electrode 7 enclosed Patsuburida Figure 4 0 ?0 4θ bo
so i di θ sign open ・'light) Fig. 5 0 7 this 3
4. 5 Cunning (1 review of poem)

Claims (3)

【特許請求の範囲】[Claims] (1)金属銅を主体とする負極と、Cu^+イオン導電
性固体電解質と、NbとZrの硫化物を主体とする正極
を順次積層し、前記正極に光を照射することにより充電
可能であることを特徴とする光二次電池。
(1) A negative electrode mainly made of metallic copper, a Cu^+ ion conductive solid electrolyte, and a positive electrode mainly made of sulfides of Nb and Zr are sequentially laminated, and the battery can be charged by irradiating the positive electrode with light. A photo secondary battery characterized by the following.
(2)硫化物はNb_xZrS_y(0<x<1、1.
8≦y≦2.1)であることを特徴とする特許請求の範
囲第1項記載の光二次電池。
(2) Sulfide is Nb_xZrS_y (0<x<1, 1.
8≦y≦2.1) The photosecondary cell according to claim 1, wherein 8≦y≦2.1.
(3)硫化物はNbS_2とZrS_2の混合物である
ことを特徴とする特許請求の範囲第1項記載の光二次電
池。
(3) The photo secondary cell according to claim 1, wherein the sulfide is a mixture of NbS_2 and ZrS_2.
JP60256969A 1985-11-15 1985-11-15 Photo-secondary cell Granted JPS62117277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60256969A JPS62117277A (en) 1985-11-15 1985-11-15 Photo-secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60256969A JPS62117277A (en) 1985-11-15 1985-11-15 Photo-secondary cell

Publications (2)

Publication Number Publication Date
JPS62117277A true JPS62117277A (en) 1987-05-28
JPH0564437B2 JPH0564437B2 (en) 1993-09-14

Family

ID=17299884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60256969A Granted JPS62117277A (en) 1985-11-15 1985-11-15 Photo-secondary cell

Country Status (1)

Country Link
JP (1) JPS62117277A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107097542B (en) 2012-03-05 2019-05-17 株式会社汤山制作所 Medicament packaging device, colour band ambulation control method, ribbon spool and ribbon cartridge

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111280A (en) * 1982-12-14 1984-06-27 Matsushita Electric Ind Co Ltd Secondary photocell
JPS60260163A (en) * 1984-06-06 1985-12-23 Toshiba Corp Semiconductor element for photochemical reaction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111280A (en) * 1982-12-14 1984-06-27 Matsushita Electric Ind Co Ltd Secondary photocell
JPS60260163A (en) * 1984-06-06 1985-12-23 Toshiba Corp Semiconductor element for photochemical reaction

Also Published As

Publication number Publication date
JPH0564437B2 (en) 1993-09-14

Similar Documents

Publication Publication Date Title
US5346785A (en) Photochargeable air battery
DE2220258A1 (en) Activated aluminum anode for electrochemical energy converter cell
EP0026845B1 (en) Electrochemical generator with non-aqueous electrolyte, and manufacturing process
WEI et al. Progress and Prospects on Multifunctional Coating Separators for Lithium-Sulfur Battery
JPS62117277A (en) Photo-secondary cell
KR101858933B1 (en) Heterogeneous metal nanowire electrode and preparing method thereof
JPS62259360A (en) Photoelectric secondary cell
CN110048129A (en) Metal-air battery metal electrode material and its preparation method and application
JP2726285B2 (en) Rechargeable battery
JPS634557A (en) Photo-secondary battery
JPS62259359A (en) Photoelectric secondary cell
JPS62117278A (en) Photo-secondary cell
JPS62117279A (en) Photo-secondary cell
JPS634558A (en) Photo-secondary battery
JPH0564436B2 (en)
Shcherbakova et al. Metal hydride use for solar energy accumulation
US20230327108A1 (en) Silver-doped sulfur cathode material for rechargeable lithium battery
JPH02197059A (en) Solid type hydrogen battery and manufacture thereof
JPH0578147B2 (en)
JPH05135800A (en) Lithium secondary battery
JPS62176053A (en) Zinc alkaline battery
JP2511905B2 (en) Optical secondary battery
CN117174839A (en) Zinc cathode material for water-based zinc ion battery and preparation method thereof
JP3473221B2 (en) Negative electrode for alkaline storage battery and battery using the same
Gong et al. GONG et al.