JPS60260163A - Semiconductor element for photochemical reaction - Google Patents
Semiconductor element for photochemical reactionInfo
- Publication number
- JPS60260163A JPS60260163A JP59114652A JP11465284A JPS60260163A JP S60260163 A JPS60260163 A JP S60260163A JP 59114652 A JP59114652 A JP 59114652A JP 11465284 A JP11465284 A JP 11465284A JP S60260163 A JPS60260163 A JP S60260163A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor
- region
- film
- reaction
- electric field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 116
- 238000006552 photochemical reaction Methods 0.000 title claims description 31
- 230000005684 electric field Effects 0.000 claims abstract description 31
- 238000006243 chemical reaction Methods 0.000 claims description 22
- 239000000696 magnetic material Substances 0.000 claims description 7
- 238000007254 oxidation reaction Methods 0.000 claims description 6
- 238000006722 reduction reaction Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 230000001939 inductive effect Effects 0.000 claims description 3
- 239000007809 chemical reaction catalyst Substances 0.000 claims 2
- 238000006479 redox reaction Methods 0.000 claims 1
- 239000000969 carrier Substances 0.000 abstract description 24
- 238000000034 method Methods 0.000 abstract description 9
- 238000010586 diagram Methods 0.000 description 19
- 230000005415 magnetization Effects 0.000 description 17
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 5
- 239000011259 mixed solution Substances 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 238000009849 vacuum degassing Methods 0.000 description 5
- 239000007806 chemical reaction intermediate Substances 0.000 description 4
- 238000005468 ion implantation Methods 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910001425 magnesium ion Inorganic materials 0.000 description 3
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910017110 Fe—Cr—Co Inorganic materials 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- -1 ZnQ FetO Chemical class 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910000828 alnico Inorganic materials 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 230000015843 photosynthesis, light reaction Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 150000004771 selenides Chemical class 0.000 description 1
- 150000004772 tellurides Chemical class 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
- Hybrid Cells (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は光エネルギーを利用して化学反応を起こす光化
学反応用半導体素子に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device for photochemical reactions that utilizes light energy to cause chemical reactions.
光化学反応を利用して光エネルギーから化学エネルギー
へのエネルギー変換を行なう技術は、太陽光エネルギー
利用技術として近年注目を集めており、特に半導体物質
を用いた光触媒反応や光電極反応については活発に研究
が進められている。Technology that converts light energy into chemical energy using photochemical reactions has attracted attention in recent years as a solar energy utilization technology, and research is particularly active on photocatalytic reactions and photoelectrode reactions using semiconductor materials. is in progress.
例えば、反応成分となる水と光化学反応用半導体を共存
させた反応系に太陽光を照射して、次式:で示される水
の光分解を行なわせる光化学反応等が、その代表的な例
である。このような反応に用いる半導体物質としては、
’1”to、 、 5rTiO,、GaP +GaAs
、 InP、 CdS、 Si等の半導体がよく研究さ
れている。For example, a typical example is a photochemical reaction in which sunlight is irradiated onto a reaction system in which water as a reaction component and a semiconductor for photochemical reaction coexist to cause photolysis of water as shown in the following formula: be. Semiconductor materials used in such reactions include:
'1''to, , 5rTiO,, GaP + GaAs
, InP, CdS, Si, and other semiconductors have been well studied.
これらの研究で用いられている半導体では、光1の照射
により半導体2内に発生した正孔(h+)と電子(e−
)からなるキャリアは、第2図(a)に示すように半導
体と反応液体との界面における表面と垂直方向の接合電
場、あるいは第2図(blに示すように金属3を半導体
表面に積層することによって形成される表面と垂直方向
の接合電場により、表面と垂直な方向への分離が試みら
れていた。In the semiconductors used in these studies, holes (h+) and electrons (e-
) can be generated by a junction electric field perpendicular to the surface at the interface between the semiconductor and the reaction liquid, as shown in Figure 2 (a), or by laminating a metal 3 on the semiconductor surface as shown in Figure 2 (bl). Separation in the direction perpendicular to the surface was attempted using the junction electric field formed in the direction perpendicular to the surface.
しかしながら、垂直方向へ単に分離した場合前記正孔と
電子とが再結合をおこして消滅してしまいやすく、また
反応成分が前記正孔及び電子によって生成物をなす途中
のイオン、ラジカル等の反応中間体の段階でも、逆反応
をおこして元の反応成分にもどりやすい等により、反応
効率の向上が妨けられていた等の問題点があった。However, if the holes and electrons are simply separated in the vertical direction, the holes and electrons are likely to recombine and disappear, and the reaction components are reaction intermediates such as ions and radicals that are forming products with the holes and electrons. Even at the body stage, there were problems such as the tendency to cause a reverse reaction and return to the original reaction components, which hindered improvement in reaction efficiency.
本発明はかかる問題点に鑑みなされたもので、光照射に
より生成したキャリアを膜状もしくは板状をした半導体
の面内方向に分離させることによって反応効率を向上さ
せた光化学反応用半導体を購供することを目的とする。The present invention was made in view of such problems, and provides a semiconductor for photochemical reactions in which reaction efficiency is improved by separating carriers generated by light irradiation in the in-plane direction of a film-like or plate-like semiconductor. The purpose is to
本発明は、半導体内に光照射によって生じた電子、正孔
を半導体表面の面内方向に分離し、さらにはこれらキャ
リアを前記半導体内の特定の領域に誘導することによっ
て、キャリア同士の再結合あるいはこれらキャリアの半
導体表面における反応の生成物もしくはその中間体の逆
反応の抑制を可能にしようとするものである。The present invention separates electrons and holes generated in a semiconductor by light irradiation in the in-plane direction of the semiconductor surface, and furthermore guides these carriers to a specific region within the semiconductor, thereby recombining the carriers with each other. Alternatively, it is intended to make it possible to suppress the reverse reaction of reaction products or intermediates thereof on the semiconductor surface of these carriers.
以下詳細に説明を行なう。第1図に示すように半導体A
(4)と半導体B(5)を平面内で接合すると、一般に
は接合電場によって接合領域に伝導帯ならびに価電子帯
のバンドの曲がりを生じる。この接合電場によって電子
・正孔はそれぞれ逆方向にドリフトされ、これらのキャ
リアは半導体表面の面内方向に分離される。このように
接合領域においてドリフトを受けるキャリアは、接合電
場のないフラットバンド状態におけるよりも寿命が長く
なる。すなわち再結合速度が減少する。A detailed explanation will be given below. As shown in Figure 1, semiconductor A
When (4) and semiconductor B (5) are bonded in a plane, the conduction band and valence band generally bend in the bonding region due to the bonding electric field. This junction electric field causes electrons and holes to drift in opposite directions, and these carriers are separated in the in-plane direction of the semiconductor surface. Carriers that undergo drift in the junction region in this manner have a longer lifetime than in a flat band state without a junction electric field. That is, the recombination rate decreases.
しかも、第3図に例示するように半導体A(4)及び半
導体B(5)よりなる接合のくり返しを半導体内に作る
ことによって、発生した正孔や電子を半導1体表面から
みて前記接合により得られた特定の領域にそれぞれ別々
に移動して、キャリアの再結合を妨げ、さらに酸化及び
還元の反応場所を意図的に制御することが可能である。Furthermore, by creating repeated junctions in the semiconductor consisting of semiconductor A (4) and semiconductor B (5) as illustrated in FIG. 3, the holes and electrons generated are It is possible to prevent the recombination of carriers by moving them separately to specific regions obtained by the method, and furthermore, it is possible to intentionally control the reaction sites of oxidation and reduction.
したがってこのような領域をミクロなスケールでつくる
ことにより各々のキャリアの移動距離を短くして前記キ
ャリアの再結合確率を減少させ、さらに同種のキャリア
の集まった領域の表面で酸化反応あるいは還元反応を行
なうことにより反応中間体や反応生成物同士の逆反応を
防いでより反応効率を向上させることが可能である。Therefore, by creating such a region on a micro scale, the distance traveled by each carrier is shortened, reducing the probability of recombination of the carriers, and furthermore, oxidation or reduction reactions can occur on the surface of the region where carriers of the same type have gathered. By doing so, it is possible to prevent reverse reactions between reaction intermediates and reaction products and to further improve reaction efficiency.
このようなキャリアを分離する半導体の接合は従来から
知られているn−n+型、p−1型のホモ接合、p−n
型あるいはp−1−n型のホモ接合、そしてp−n型あ
るいはnn+1)−p型のへテロ接合のいずれをも利用
することができる。また、半導体と金属の接合を使って
も、本発明の目的とす・る−合電場を作ることは可能で
ある。Semiconductor junctions that separate carriers are conventionally known n-n+ type, p-1 type homojunctions, p-n
Homozygous type or p-1-n type, and heterozygous p-n type or nn+1)-p type can be used. Further, even by using a junction between a semiconductor and a metal, it is possible to create the combined electric field that is the object of the present invention.
以上のように接合電場を用いてキャリアを半導体表面の
面内方向に分離することになって本発明の目的は達せら
れるが、さらKこの平面的に分離されたキャリアを半導
体表面と垂直な方向、すなわち半導体表面あるいは裏面
へ移動させれば一層の反応効率の改善が可能になる。こ
のような半導体表面と垂直な方向へのキャリアの移動に
ついても、先に述べた種々の半導体−半導体接合あるい
は半導体金属接合等からなる垂直接合電場を利用するこ
とができる。すなわち、例えば平面的に分離されて電子
が集まってくる領域において、電子を半導体表面へ移動
させたい場合には、第4図に示すようKこの領域に表面
方向に電子をドリフトさせるような垂直接合電場を半導
体A′(4り及び半導体A”(4つにより作っておけば
よい。正孔についても同様であり、ざらにドリフトの方
向は接合電場の向きで制御することができる。As described above, the object of the present invention is achieved by separating carriers in the in-plane direction of the semiconductor surface using a junction electric field. In other words, if it is moved to the front or back surface of the semiconductor, the reaction efficiency can be further improved. For such movement of carriers in a direction perpendicular to the semiconductor surface, a vertical junction electric field formed from the various semiconductor-semiconductor junctions or semiconductor metal junctions described above can be used. That is, for example, if you want to move electrons to the semiconductor surface in a region that is separated in a plane and where electrons gather, you can use a vertical junction that allows electrons to drift toward the surface in this region, as shown in Figure 4. It is sufficient to create an electric field using four semiconductors A' (4) and semiconductor A'' (4).The same applies to holes, and the direction of drift can be roughly controlled by the direction of the junction electric field.
あるいは半導体内部を面内方向に移動するキャリアに、
前記面内方向で前記キャリアの移動方向と直交する方向
に磁場を作用させることにより、ローレンツ力の作用に
よって前記キャリアがその移動方向及び磁場の方向の双
方に垂直な方向にドリフトされる現象を用いて、膜厚方
向に前記キャリアをドリフト−させることも可能である
。この磁場を半導体膜内部に誘起する手段としては外部
磁場をかけるほかに磁性膜上に半導体膜を積層するか、
あるいは半導体膜を面と平行の方向に磁性膜ではさむこ
とによっても可能でちる。この時、外部磁場あるいけ磁
性膜中の磁化の方向は半導体膜中に形成された接合電場
と直交していることが効率上からも望ましい。そして、
その磁場の向きとしては、例えば次の2通りがあげられ
る。1つは第5図(a)に示すように、正孔及び電子が
半導体膜14中につくられた接合電場によりそれぞれ一
■8方向、vx力方向移動しそこへ同一面内で前記−■
X及び■xと垂直な方向に磁場−BY及びByをかける
ことにより、正孔及び電子は共に紙面に対して垂直方向
F2O力を受けて紙面垂直上方にドリフトする。Or carriers moving in the plane inside the semiconductor,
By applying a magnetic field in a direction perpendicular to the moving direction of the carrier in the in-plane direction, the carrier is drifted in a direction perpendicular to both the moving direction and the direction of the magnetic field due to the action of Lorentz force. It is also possible to cause the carriers to drift in the film thickness direction. In addition to applying an external magnetic field, methods for inducing this magnetic field inside the semiconductor film include stacking a semiconductor film on a magnetic film,
Alternatively, this can be achieved by sandwiching the semiconductor film between magnetic films in a direction parallel to the plane. At this time, it is desirable from the standpoint of efficiency that the direction of magnetization in the external magnetic field or in the magnetic film is perpendicular to the junction electric field formed in the semiconductor film. and,
For example, the following two directions can be cited as the direction of the magnetic field. One is as shown in FIG. 5(a), where holes and electrons move in the direction of the 1.8 direction and the direction of the vx force, respectively, due to the junction electric field created in the semiconductor film 14, and move there in the same plane to the above-mentioned -.
By applying magnetic fields -BY and By in the direction perpendicular to X and x, holes and electrons both receive an F2O force perpendicular to the plane of the paper and drift upward perpendicular to the plane of the paper.
他方第5図(blに示すように半導体膜14中に生じる
磁場−By及びBy をかけることにより正孔及び電子
はそれぞれFZ及び−Fz力方向力を受けて正孔は紙面
垂直上方に、電子は紙面垂直下方にドリフトする。汐、
下/f、伯
このような磁場を誘記するのに用いることのできる磁性
膜の例としては膜内の磁化ベクトルの向きによって次の
2種類があげられる。1つは第6図(a)に示すように
磁性膜6の膜面内方向に容易に磁化する磁性体でここで
はこれを水平磁化膜と呼ぶ。一方、第7図(alに示す
ように磁性膜の膜面に垂直な方向に磁化容易軸を持つ磁
性体は、一般に垂直磁化膜としてよく知られているもの
である。On the other hand, by applying the magnetic fields -By and By generated in the semiconductor film 14 as shown in FIG. drifts vertically downwards on the paper.
As examples of magnetic films that can be used to attract such magnetic fields, there are the following two types depending on the direction of the magnetization vector within the film. One is a magnetic material that is easily magnetized in the in-plane direction of the magnetic film 6, as shown in FIG. 6(a), and is herein referred to as a horizontally magnetized film. On the other hand, a magnetic material having an axis of easy magnetization in a direction perpendicular to the film surface of the magnetic film, as shown in FIG. 7 (al), is generally well known as a perpendicular magnetization film.
水平磁化膜を用いる場合には、第6図(b)に示すよう
な磁気回路のギャップを利用することで、隣接する半導
体膜中に磁場を誘起することができる。When horizontally magnetized films are used, a magnetic field can be induced in adjacent semiconductor films by utilizing gaps in the magnetic circuit as shown in FIG. 6(b).
すなわち、一様な磁性膜上に半導体膜を積層すれば下地
の磁性膜とは逆向きの磁場が半導体中に誘起され、また
磁性膜で半導体膜を面内方向にはさめば、磁性膜と同じ
向きの磁場が半導体膜中に誘起される。この水平磁化膜
を強力な一様外部磁界あるいは微細な磁気タヘッドを用
いて、同図(C)。In other words, if a semiconductor film is stacked on a uniform magnetic film, a magnetic field in the opposite direction to that of the underlying magnetic film is induced in the semiconductor, and if a semiconductor film is sandwiched between magnetic films in the in-plane direction, the magnetic field A magnetic field in the same direction is induced in the semiconductor film. This horizontally magnetized film is grown using a strong uniform external magnetic field or a fine magnetic head (Figure (C)).
(d)のように磁化すれば、本発明にかかるところの磁
場を半導体膜中に誘起することができる。By magnetizing as shown in (d), the magnetic field according to the present invention can be induced in the semiconductor film.
一方、垂直磁化膜を用いる場合には、第7図(b)のよ
うに隣り合う磁区間に膜に水平な外部磁場が作られるの
で、垂直磁化磁気ヘッドを用いてこのような磁区をコン
トロールすれば同図(C1および(d>に示すような磁
場を半導体膜中に誘起することができる。On the other hand, when a perpendicularly magnetized film is used, an external magnetic field that is horizontal to the film is created between adjacent magnetic regions as shown in Figure 7(b), so it is necessary to control such magnetic domains using a perpendicularly magnetized magnetic head. For example, a magnetic field as shown in (C1 and (d)) in the same figure can be induced in the semiconductor film.
この場合同図(e)に示すように垂直磁化膜層の下にさ
らに高透磁率磁性体7、例えばパーマロイ等よりなる水
平磁化膜を積層すれば馬蹄形磁化モードが形成され、一
層残留磁化が強まることは垂直磁化記録媒体の研究で既
によく知られており、本発明においてもこの方法を利用
することができる。In this case, if a horizontal magnetization film made of a high permeability magnetic material 7, such as permalloy, is further laminated under the vertical magnetization film layer as shown in FIG. This is already well known in research on perpendicular magnetization recording media, and this method can also be used in the present invention.
ここで用いる磁性体材料としては残留磁束密度が大むく
かつ保磁力の大きいような材料がふされしく、水平磁化
磁性体としては永久磁石材料としてよく知られるMK鋼
(Fe−N 1−A1合金)、新KS鋼(Fe−Co−
N i −Al−’f i合金)、アルニコ磁石(Fe
−At−N i −Co−(:’ u−T i合金)、
Pt−Co合金、F e−Cr−Co合金、フェライト
磁石、希土類−〇〇磁石等が挙げられる。また、垂直磁
化磁性体としてはCo−Cr膜が代表的な例として挙げ
られる。The magnetic material used here is preferably a material with a large residual magnetic flux density and a large coercive force, and the horizontally magnetized magnetic material is MK steel (Fe-N 1-A1 alloy), which is well known as a permanent magnet material. ), new KS steel (Fe-Co-
N i -Al-'f i alloy), alnico magnet (Fe
-At-Ni-Co-(:'u-Ti alloy),
Examples include Pt-Co alloy, Fe-Cr-Co alloy, ferrite magnet, and rare earth magnet. A typical example of the perpendicularly magnetized magnetic material is a Co--Cr film.
もちろん、これらのように半導体表面と垂直な方向へ正
孔や電子を移動させるのに垂直接合電場と前記磁場を共
に用いることも可能である。Of course, it is also possible to use both the vertical junction electric field and the magnetic field to move holes and electrons in a direction perpendicular to the semiconductor surface.
臥1凭白
本発明の重要な特徴の一つは、電子および正孔の反応を
それぞれ特定の領域すなわち環元反応のおこる部位及び
酸化反応のおこる部位に限定できる点にあるが、この領
域にさらに目的とする反応の触媒として作用する物質を
設置すれば反応効率は一段と向上する。このような触媒
物質としてはPt、 Au、 Ru、 Os、 Rh、
Fe、 Ni、 Co等をはじめとする遷移金属およ
びそれらの酸化物が挙げられる。One of the important features of the present invention is that the reactions of electrons and holes can be limited to specific regions, that is, the site where the ring element reaction occurs and the site where the oxidation reaction occurs. Furthermore, if a substance that acts as a catalyst for the desired reaction is installed, the reaction efficiency will be further improved. Such catalyst materials include Pt, Au, Ru, Os, Rh,
Examples include transition metals such as Fe, Ni, Co, etc., and their oxides.
また、本発明に用いる半導体物質としてはSi。Further, the semiconductor material used in the present invention is Si.
Ge およびInP、 GaP、 5ISn3P21
AJtAs、 GaAs、 CdS。Ge and InP, GaP, 5ISn3P21
AJtAs, GaAs, CdS.
’1Zns、 Cu2 S、 WS2. CdSe、
Zn5e、 WSe、、 CdTe、 ZnTe。'1Zns, Cu2S, WS2. CdSe,
Zn5e, WSe, CdTe, ZnTe.
TiO2,5rTi03. ZnQ FetO,等の金
属リン化物、金属砒化物、金属硫化物、金属セレン化物
、金属テルル化物、金属酸化物、ならびにこれらの半導
体釜3元又は4元に組み合せた半導体、例えばGaA7
As、 InGaAs、 InGaAsP+ GaA/
AsP、 CuIn51. CuInSe2等が挙げら
れる。TiO2,5rTi03. Metal phosphides, metal arsenides, metal sulfides, metal selenides, metal tellurides, metal oxides such as ZnQ FetO, and semiconductors in which these semiconductors are combined into ternary or quaternary elements, such as GaA7
As, InGaAs, InGaAsP+ GaA/
AsP, CuIn51. Examples include CuInSe2.
以下本発明にかかる光化学反応用半導体のいくつかを実
施例に基づいて詳細に説明する。Hereinafter, some of the semiconductors for photochemical reactions according to the present invention will be explained in detail based on Examples.
実施例1
半絶縁性のGaAsウェハーを用いて、選択イオン打ち
こみ法により3iイオンでn領域8 + Mgイオンで
p領域10を形成し、表面と平行な方向にp−1−n接
合による接合電場を形成した。この光化学反応用半導体
のバンドプロファイルを第8図(a)K示した。さらに
このウェハー上に同図(b) K示すように触媒物質と
してp t、 R,uo、 l−窓材として8i02を
デポジシg/して、それぞれPi層11.Sho。Example 1 Using a semi-insulating GaAs wafer, a selective ion implantation method was used to form an n region 8 with 3i ions + a p region 10 with Mg ions, and a junction electric field due to a p-1-n junction was applied in a direction parallel to the surface. was formed. The band profile of this semiconductor for photochemical reaction is shown in FIG. 8(a)K. Further, on this wafer, as shown in FIG. 6(b), PT, R, UO, and 8I02 as a window material were deposited as a catalyst material, and a Pi layer 11. Sho.
層12.几uO,層13を設けて光化学反応用半導体素
子とした。Layer 12. A photochemical reaction semiconductor device was prepared by providing a uO layer 13.
この光化学反応用半導体素子を水・メタノール混合溶液
中に浸漬し、真空脱気下において光1として2KWHg
ランプを3時間照射したところ水の分解反応により0.
5μmolの水素が発生した。This semiconductor element for photochemical reaction was immersed in a mixed solution of water and methanol, and under vacuum degassing, the light 1 was 2KWHg.
When the lamp was irradiated for 3 hours, the water decomposition reaction resulted in 0.
5 μmol of hydrogen was generated.
まだ比較例として半絶縁性のGaAsウェハーの表面上
に、Pt層とRu O,層を市松模様状に形成した光化
学反応用半導体素子を作製した。この光化学反応用半導
体素子を水−メタノール混合溶液中に浸漬し、真空脱気
下において2KWHg ランプを3時間照射したところ
、水の分解反応により0,2μmolの水素が発生した
。As a comparative example, a semiconductor device for photochemical reaction was fabricated in which a Pt layer and a Ru2O layer were formed in a checkered pattern on the surface of a semi-insulating GaAs wafer. When this semiconductor element for photochemical reaction was immersed in a water-methanol mixed solution and irradiated with a 2 KWHg lamp for 3 hours under vacuum degassing, 0.2 μmol of hydrogen was generated by a water decomposition reaction.
実施例2
半絶縁性のGaAs ウニ/・−を用いて選択イオン打
ちこみ法によりSiイオンでn領域8、Mgイオンでp
領域10を形成し、表面と平行な方向にp−1−n接合
電場を形成した。この時前記n領域およびp領域を形成
する際の打ちこみ電流加速電圧およびその後のアニーリ
ングプロセスをコントロールすることによってそれぞれ
の領域で表面から内部にむかりてn+−n−i、 p”
−p−iとなるように不純物密度を変化させ、表面に垂
直な方向の接合電場を形成した。この半導体のバンドプ
ロファイルを第9図ta>に示した。さらに、この接合
電場を形成したウェハー上に、同図(blに示すように
、n領域表面にpt層11、p領域表面にRub、層1
3、その他の領域にSiへ層12を形成して光化学反応
用半導体素子と1−た。このような光化学反応用半導体
素子に光照射をすると光生成した電子および正孔は、表
面に平行な方向に分離されながら、かつ共に表面へ輸送
される。Example 2 Using semi-insulating GaAs uni/・-, selective ion implantation was performed to form n region 8 with Si ions and p region with Mg ions.
A region 10 was formed to form a p-1-n junction electric field in a direction parallel to the surface. At this time, by controlling the implanted current accelerating voltage when forming the n region and the p region and the subsequent annealing process, n+-n-i, p'' are formed from the surface to the inside in each region.
The impurity density was changed so that -p-i, and a junction electric field in the direction perpendicular to the surface was formed. The band profile of this semiconductor is shown in FIG. Furthermore, on the wafer on which this junction electric field was formed, as shown in the same figure (bl), a PT layer 11 is placed on the n-region surface, a Rub layer 1 is placed on the p-region surface,
3. A layer 12 was formed on Si in other regions to form a semiconductor element for photochemical reaction. When such a semiconductor element for a photochemical reaction is irradiated with light, photogenerated electrons and holes are separated in a direction parallel to the surface and transported together to the surface.
この光化学反応用半導体素子を水−メタノール混合溶液
中に浸漬し、真空脱気下において2KwHg ランプを
3時間照射したところ、水の分解反応により1.3μm
olの水素が発生した。When this semiconductor element for photochemical reaction was immersed in a water-methanol mixed solution and irradiated with a 2KwHg lamp for 3 hours under vacuum degassing, it became 1.3μm thick due to water decomposition reaction.
ol hydrogen was generated.
実施例3
Siドープのn+型GaAs ウェハー上に液相エピタ
キシャル成長法によりノンドープのGaAs層を形成し
たものを用いて、選択イオン打ちこみ法によりSiイオ
ンでn領域8.Mgイオンでn領域1oを形成し、表面
と平行な方向にp−1−n接合による接合電場をGaA
sエピ層内に形成した。このn、n領域を形成する際の
打ちこみ電流、加速電圧、およびその後のアニーリング
プロセスをコントロールすることによって、n領域では
表面から内部に向かってp−p−を型の表面に垂直な方
向の接合電場をn領域では表面から内部に向かってn−
n型そしてウェハーのn型とつながった表面に垂直な方
向の接合電場を形成した。この半導体のバンドプロファ
イルを第10図(a)に示した。この半導体表面および
裏面に、同図(b)に示すように、表面のn領域上には
几uO,層10を、その他の領域にはSin。Example 3 Using a non-doped GaAs layer formed on a Si-doped n+ type GaAs wafer by liquid phase epitaxial growth, the n-region 8. Form an n region 1o with Mg ions, and apply a junction electric field due to a p-1-n junction in a direction parallel to the surface of GaA.
It was formed in the s epi layer. By controlling the implanted current, accelerating voltage, and subsequent annealing process when forming the n and n regions, it is possible to form a p-p junction in the direction perpendicular to the surface of the mold in the n region from the surface to the inside. In the n region, the electric field increases from the surface to the inside as n-
A junction electric field was formed in the direction perpendicular to the n-type and the surface connected to the n-type of the wafer. The band profile of this semiconductor is shown in FIG. 10(a). On the front and back surfaces of this semiconductor, as shown in FIG. 2B, a dielectric layer 10 is formed on the n region of the surface, and a layer 10 is formed on the other regions.
半導体素子の表面側から光照射をすると光生成した正孔
は表面側へ、光生成した電子は裏面側へ移動する。When light is irradiated from the front side of a semiconductor element, photo-generated holes move to the front side, and photo-generated electrons move to the back side.
この光化学反応用半導体を水−メタノール混合溶液中に
浸漬し、真空脱気下において2KWHgランプを3時間
照射したところ水の分解反応により1.1μmolの水
素が発生した。This semiconductor for photochemical reaction was immersed in a water-methanol mixed solution and irradiated with a 2 KWHg lamp for 3 hours under vacuum degassing, and 1.1 μmol of hydrogen was generated by a water decomposition reaction.
実施例4
グラス基板上に、Fe、O,ターゲットをAr雰囲気中
でスパッタすることにより厚さ約1μmのFe50゜膜
を形成し、これをさらに大気中で酸化処理することによ
りγ−Fe20s膜を形成した。この磁性膜上に%Ga
As ターゲットをAr雰囲気中でスパッタすることに
より厚さ0.5μmのGaAs膜を形成した。Example 4 A 50° Fe film with a thickness of about 1 μm was formed on a glass substrate by sputtering Fe, O, and a target in an Ar atmosphere, and this was further oxidized in the atmosphere to form a γ-Fe20s film. Formed. %Ga on this magnetic film
A GaAs film with a thickness of 0.5 μm was formed by sputtering an As target in an Ar atmosphere.
このGaAs上に第11図に示すように、選択イオン打
ちこみ法を用いてn領域8とn領域1oを形成し、半導
体膜中に接合電場を形成した。n領域の形成にはSiを
、またn領域の形成にはMgを用いた。このn領域とn
領域のくりがえし構造と平行の方向に、矢印で示したよ
うに同一領域中では逆向きでかつ領域界面では同じ向き
Kなるような周期的な交互磁場を磁気ヘッドを用いて磁
性膜中に形成した。これによりすべてのキャリアに紙面
上向きの力が作用する。As shown in FIG. 11, n-region 8 and n-region 1o were formed on this GaAs by selective ion implantation to form a junction electric field in the semiconductor film. Si was used to form the n region, and Mg was used to form the n region. This n area and n
A magnetic head is used to apply periodic alternating magnetic fields in the magnetic film in a direction parallel to the repeating structure of the regions, with opposite directions in the same region and the same direction K at the region interfaces, as shown by the arrows. was formed. This applies an upward force to the plane of the paper on all carriers.
さらに、レジストを用いてn領域上にPtを電子ビーム
蒸着し、n領域上にl’Lu01を反応性スパッタ法に
よって成膜した。Furthermore, Pt was electron beam evaporated on the n region using a resist, and l'Lu01 was formed on the n region by reactive sputtering.
これを、光化学反応用半導体素子として、水−メタノー
ル1:1混合溶液中に浸漬し、真空脱気下において半導
体膜側より2 KW Hgランプを3時間照射したとこ
ろ、水の分解によって1.5μmolの水素が発生した
。This was used as a semiconductor element for photochemical reaction, and was immersed in a 1:1 mixed solution of water and methanol, and irradiated with a 2 KW Hg lamp from the semiconductor film side for 3 hours under vacuum degassing. of hydrogen was generated.
実施例5
実施例4と同様にして、ガラス基板上に磁性膜となるγ
−Fe、0.膜を形成した後この上に厚さ約03岬のP
t膜を電子ビーム蒸着法により形成した。Example 5 In the same manner as in Example 4, γ was deposited to form a magnetic film on a glass substrate.
-Fe, 0. After forming the film, a P layer with a thickness of about 0.3 cm is applied on top of this film.
The t-film was formed by electron beam evaporation.
さらにこの上に、実施例4と同様にしてGaAs膜を形
成した。この後第12図に示すようにn領域8とn領域
10を形成し、とのn領域とn領域のくつかえし構造と
平行の方向に、矢印で示したように同一領域名では逆向
きでかつ領域界面においても逆向きになるように磁性膜
を磁化した。これにより、n領域に入る正孔は紙面の上
方向へ、n領域に入る電子に対しては紙面の下方向、す
なわちpt層に入るように、各キャリアに力が作用する
。Furthermore, a GaAs film was formed thereon in the same manner as in Example 4. After this, as shown in FIG. 12, an n region 8 and an n region 10 are formed in the direction parallel to the repeated structure of the n region and the n region, as shown by the arrow, the same region name is in the opposite direction. In addition, the magnetic film was magnetized so that the directions were opposite even at the region interface. As a result, a force acts on each carrier so that holes entering the n region move upward in the paper, and electrons entering the n region move downward in the paper, that is, into the PT layer.
最後にn領域上にはRub、層を、n領域上にはSin
。Finally, a Rub layer is placed on the n region, and a Sin layer is placed on the n region.
.
層を形成した。これを光化学反応用半導体素子として、
実施例4と同様の条件下で光照射したところ、水の分解
により1.0μmolの水素が発生した。formed a layer. This is used as a semiconductor element for photochemical reactions.
When light was irradiated under the same conditions as in Example 4, 1.0 μmol of hydrogen was generated due to water decomposition.
又、実施例4および5で用いた構成と同様の光化学反応
用半導体素子において、磁性膜を特別に磁化することな
く用いると同じ照射条件下での水素の発生はそれぞれ0
.7μmolおよび0.5μmolであった。In addition, in semiconductor elements for photochemical reactions having the same configuration as those used in Examples 4 and 5, when the magnetic film is used without special magnetization, hydrogen generation is 0 under the same irradiation conditions.
.. They were 7 μmol and 0.5 μmol.
実施例6
ガラス基板上にスノ(ツタ法によって)く−マロイ(F
e−Ni合金)膜を形成し、さらにその上にスノくツタ
法を用いてCo−Crの垂直磁化膜を形成した。この上
に、実施例4,5と同様にしてGaAs膜を形成しイオ
ン打ちこみ法によって第13図に示したようにn領域8
とn領域10を形成した。このn領域とn領域のくりか
えし構造と平行の方向に第13図の矢印で表すように、
同−領域中では逆向きでかつ領域界面では同じ向きにな
る周期的な交互磁場を垂直磁化磁気ヘッドを用いて、前
記垂直磁イヒ膜を磁化することにより誘起した。このG
aAs上にn領域上にはpt膜を、n領域上にはRub
、膜を形成した。これを光化学反応用半導体素子として
用い実施例4,5と同様の条件下で光照射を行なうと1
.4μmolの水素が発生した。Example 6 Kumuloy (F) was deposited on a glass substrate by the ivy method.
A Co--Cr perpendicular magnetization film was formed thereon using the vine method. On top of this, a GaAs film was formed in the same manner as in Examples 4 and 5, and the n-region 8 was formed by ion implantation as shown in FIG.
and n region 10 was formed. In the direction parallel to this repeating structure of n-region and n-region, as shown by the arrow in Fig. 13,
A periodic alternating magnetic field having opposite directions in the same region and the same direction at the region interface was induced by magnetizing the perpendicular magnetic film using a perpendicular magnetization magnetic head. This G
A PT film is placed on the n region on the aAs, and a Rub film is placed on the n region.
, formed a film. When this was used as a semiconductor element for photochemical reaction and irradiated with light under the same conditions as in Examples 4 and 5, 1
.. 4 μmol of hydrogen was generated.
又、実施例6で作製した光化学反応用半導体素子を特別
に磁化することなく用いると、同じ照射条件下で0.8
μmolの水素が発生した。Furthermore, when the semiconductor element for photochemical reaction produced in Example 6 is used without special magnetization, the
μmol of hydrogen was generated.
以上の説明から明らかなごとく、本発明にかかる光化学
反応用半導体素子は内部に半導体表面と平行な方向の接
合電場を形成し、光照射によって生じた電子・正孔を面
内方向に分離しかつ平面的にこれらのキャリアを特定の
領域に誘導することによって、キャリア同士の再結合、
あるいは半導体表面の反応生成物もしくはその中間体の
逆反応を、よね抑制して、光化学反応用の反応効率を大
巾に向上することを可能にした。As is clear from the above description, the semiconductor device for photochemical reactions according to the present invention forms a junction electric field in the direction parallel to the semiconductor surface inside, and separates electrons and holes generated by light irradiation in the in-plane direction. By guiding these carriers to a specific area in a planar manner, the recombination of carriers,
Alternatively, by suppressing the reverse reaction of reaction products or intermediates thereof on the semiconductor surface, it has become possible to greatly improve the reaction efficiency for photochemical reactions.
第1図、第3図は本発明に係る光化学反応用半導体素子
≠≠#内のキャリア分離を示す模式図、第2図(aL
(b)は従来技術における半導体のキャリア分離を示す
模式図、
第4図は半導体表面に垂直な方向にキャリアを輸送する
接合バンドプロファイル図、
第5図はキャリアの運動方向と磁場の方向との組み合わ
せ方により、(a)キャリアを片面にドリフトさせたこ
とを表す模式図、(b)キャリアを別々の面ヘトリフト
させたことを表す模式図、
札ゝ
第6図(a)は水平磁化膜を表す模妓図、(b)、 (
C)、 (d)は水平磁化膜を用いて誘起された半導体
膜中の磁場の向きを表す模式図、
第7図(a)は垂直磁化膜を表す模式図、(b)、 (
C1,(d)は垂直磁化膜を用いて誘起された半導体膜
中の磁場の内含を表す模式図、(e)は垂直磁化膜およ
び水平磁化膜を用いて誘起された半導体膜中の磁場の向
へを表す模式図、
第8図(a)は半導体表面に平行な接合電場を形成した
半導体におけるキャリア分離を示す接合ノ(ンドプロフ
ァイル図及び(b)は触媒物質を用いた構造を表す模式
図、
第9図(alは半導体表面に平行な接合電場とともに垂
直な接合電場を形成し、電子、正孔共に半導体表面へ移
動するキャリア分離を示す接合)(ンドプロファイル図
及び(blは触媒物質を用いた構造を表す模式図、
第10図(a)は正孔を表面へ、電子を裏面へ移動する
キャリア発生を示す接合・(ンドプロファイル図及覆媒
物質を用いた構造を表す模式図、第11図は半導体の片
面に両方のキャリアを運ぶ場合の磁性膜の磁化状態及び
n+ n領域の配置を表す模式図、
第12図は半導体の両面に代ヤリアを分離する場合の磁
性膜の磁化状態及びn+ n領域の配置を表す模式図、
第13図は半導体の片側に両方のキャリアを運ぶ場合に
垂直磁化膜を用いた場合の磁化状態及びnνp領域の配
置を表す模式図。
1・・・光 2・・・半導体 3・・・金属4・・・半
導体A 4’・・・半導体に 4″・・・半導体A“5
・・・半導体B 6・・・磁性膜 7・・・高透磁率磁
性体8・・・n領域 9・・・n領域 10・・・n領
域11・pt層 12 ・Sin、層 13−Rub、
層14・・・半導体膜
代理人 弁理士 則 近 憲 佑
(ほか1名)
第 4 図
第 5 図
<a)tb)
第 6 図
(b)
(む
第 7 図
(tlン
(C)(ゐ
(C)
第 8 図
第9図
3 1 fL/ ’7 ご V
第10図
298
第13図FIGS. 1 and 3 are schematic diagrams showing carrier separation in the photochemical reaction semiconductor element ≠≠# according to the present invention, and FIG. 2 (aL
(b) is a schematic diagram showing carrier separation in a semiconductor in the prior art; Figure 4 is a junction band profile diagram that transports carriers in a direction perpendicular to the semiconductor surface; Figure 5 is a diagram showing the relationship between the carrier motion direction and the magnetic field direction. Depending on how they are combined, (a) a schematic diagram showing carriers drifting to one surface, (b) a schematic diagram showing carriers drifting to separate surfaces, and Figure 6 (a) shows a horizontally magnetized film. Representing a shaman figure, (b), (
C), (d) is a schematic diagram showing the direction of the magnetic field in a semiconductor film induced using a horizontally magnetized film, Figure 7 (a) is a schematic diagram showing a vertically magnetized film, (b), (
C1, (d) is a schematic diagram showing the content of the magnetic field in the semiconductor film induced using a perpendicular magnetization film, and (e) is a schematic diagram showing the content of the magnetic field in the semiconductor film induced using a perpendicular magnetization film and a horizontal magnetization film. Figure 8 (a) is a junction profile diagram showing carrier separation in a semiconductor with a junction electric field parallel to the semiconductor surface, and Figure 8 (b) is a diagram showing a structure using a catalytic material. Schematic diagram, Figure 9 (al is a junction showing carrier separation in which a junction electric field is formed perpendicular to the semiconductor surface along with a junction electric field parallel to the semiconductor surface, and both electrons and holes move to the semiconductor surface) Figure 10(a) is a schematic diagram showing a structure using a substance, a junction profile diagram showing carrier generation that moves holes to the surface and electrons to the back surface, and a schematic diagram showing a structure using a covering medium. Figure 11 is a schematic diagram showing the magnetization state of the magnetic film and the arrangement of n+n regions when carrying both carriers on one side of the semiconductor, and Figure 12 is a schematic diagram showing the magnetic film when carriers are separated on both sides of the semiconductor. Figure 13 is a schematic diagram showing the magnetization state and the arrangement of the nvp region when a perpendicular magnetization film is used to transport both carriers to one side of the semiconductor.1 ...Light 2...Semiconductor 3...Metal 4...Semiconductor A 4'...Semiconductor 4"...Semiconductor A"5
...Semiconductor B 6...Magnetic film 7...High magnetic permeability magnetic body 8...N region 9...N region 10...N region 11・PT layer 12・Sin, layer 13-Rub ,
Layer 14...Semiconductor film agent Patent attorney Noriyuki Chika (and 1 other person) Figure 4 Figure 5 <a) tb) Figure 6 (b) (C) Fig. 8 Fig. 9 3 1 fL/'7 V Fig. 10 298 Fig. 13
Claims (1)
を生じる半導体を用いた光化学反応用半導体素子におい
て、前記半導体が膜状もしくは板状をしてお抄、かつ光
生成した電子及び正孔を前記半導体の面内方向の還元反
応をおこす部位及び酸化反応をおこす部位に分離する接
合電場を有していることを特徴とした光化学反応用半導
体素子。 (2)前記半導体が、前記電子及び正孔を前記半導体の
表面に垂直な方向に移動する垂直接合電場を有している
ことを特徴とする特許請求の範囲第1項記載の光化学反
応用半導体素子。 (8)前記電子及び正孔が前記接合電場により分離され
る方向と直交する面内方向に磁場を誘起する手段を備え
たことを特徴とする特許請求の範囲第1項記載の光化学
反応用半導体素子。 (4)前記磁場を誘起する手段として磁性体を前記半導
体に隣接して設は六ことを特徴とする特許請求の範囲第
3項記載の光化学反応用半導体素子。 (5)前記半導体の還元反応をおこす部位に還元反応触
媒物質が担持されていることを特徴とする特許請求の範
囲第1項ないし第4項のいずれかに記載の光化学反応用
半導体素子。 (6)前記半導体の酸化反応をおこす部位に酸化反応触
媒物質が担持されていることを特徴とする特許請求の範
囲第1項ないし第4項のいずれかに記載の光化学反応用
半導体素子。[Scope of Claims] (1) A semiconductor element for a photochemical reaction using a semiconductor that causes a redox reaction by light irradiation in the coexistence with a reaction component, wherein the semiconductor is in the form of a film or a plate, and A semiconductor element for photochemical reactions, characterized in that it has a junction electric field that separates photogenerated electrons and holes into a region that causes a reduction reaction and a region that causes an oxidation reaction in the in-plane direction of the semiconductor. (2) The semiconductor for photochemical reactions according to claim 1, wherein the semiconductor has a vertical junction electric field that moves the electrons and holes in a direction perpendicular to the surface of the semiconductor. element. (8) A semiconductor for photochemical reactions according to claim 1, further comprising means for inducing a magnetic field in an in-plane direction perpendicular to the direction in which the electrons and holes are separated by the junction electric field. element. (4) The semiconductor device for photochemical reaction according to claim 3, characterized in that a magnetic material is provided adjacent to the semiconductor as means for inducing the magnetic field. (5) The semiconductor device for photochemical reaction according to any one of claims 1 to 4, wherein a reduction reaction catalyst substance is supported on a portion of the semiconductor that causes a reduction reaction. (6) The semiconductor device for photochemical reactions according to any one of claims 1 to 4, wherein an oxidation reaction catalyst substance is supported on a portion of the semiconductor that causes an oxidation reaction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59114652A JPS60260163A (en) | 1984-06-06 | 1984-06-06 | Semiconductor element for photochemical reaction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59114652A JPS60260163A (en) | 1984-06-06 | 1984-06-06 | Semiconductor element for photochemical reaction |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60260163A true JPS60260163A (en) | 1985-12-23 |
Family
ID=14643162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59114652A Pending JPS60260163A (en) | 1984-06-06 | 1984-06-06 | Semiconductor element for photochemical reaction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60260163A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62117277A (en) * | 1985-11-15 | 1987-05-28 | Tech Res Assoc Conduct Inorg Compo | Photo-secondary cell |
-
1984
- 1984-06-06 JP JP59114652A patent/JPS60260163A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62117277A (en) * | 1985-11-15 | 1987-05-28 | Tech Res Assoc Conduct Inorg Compo | Photo-secondary cell |
JPH0564437B2 (en) * | 1985-11-15 | 1993-09-14 | Dodensei Muki Kagobutsu Gijuts |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10090425B2 (en) | Axially-integrated epitaxially-grown tandem wire arrays | |
US5047810A (en) | Optically controlled resonant tunneling electronic devices | |
JPH03278473A (en) | Semiconductor device | |
JPS62140485A (en) | Semiconductor structure and manufacture thereof | |
GB1590766A (en) | Semiconductor devices | |
US5322814A (en) | Multiple-quantum-well semiconductor structures with selective electrical contacts and method of fabrication | |
US20120097228A1 (en) | Solar cell | |
CN111490449A (en) | Quaternary system tensile strain semiconductor laser epitaxial wafer and preparation method thereof | |
JPH05502112A (en) | quantum well structure | |
Yamaguchi et al. | Chemical beam epitaxy as a breakthrough technology for photovoltaic solar energy applications | |
JPS60260163A (en) | Semiconductor element for photochemical reaction | |
EP0720779B1 (en) | A transferred electron effect device | |
JPS6354777A (en) | Resonance tunnel device | |
TW202249281A (en) | A device for performing electrolysis of water, and a system thereof | |
JPS6289383A (en) | Semiconductor laser | |
JP3154415B2 (en) | Quantum wire structure and manufacturing method thereof | |
Shimauchi et al. | Fabrication of GaN nanowires containing n+-doped top layer by wet processes using electrodeless photo-assisted electrochemical etching and alkaline solution treatment | |
CN212659825U (en) | Quaternary system tensile strain semiconductor laser epitaxial wafer | |
JPH02154479A (en) | Photoconductor | |
JP3135002B2 (en) | Light control type electron wave interference device | |
Mooser | Physics in microelectronics and microelectronics in physics | |
Dai | Introduction to Nano Solar Cells | |
US20150267308A1 (en) | Conformally coated wire array photoelectrodes for photoelectrochemical fuel generation | |
JPH01179490A (en) | Semiconductor radiating device | |
JPH02280386A (en) | Photoconductor |