JPS6028273A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6028273A
JPS6028273A JP58136128A JP13612883A JPS6028273A JP S6028273 A JPS6028273 A JP S6028273A JP 58136128 A JP58136128 A JP 58136128A JP 13612883 A JP13612883 A JP 13612883A JP S6028273 A JPS6028273 A JP S6028273A
Authority
JP
Japan
Prior art keywords
layer
electron
semiconductor layer
gaas
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58136128A
Other languages
Japanese (ja)
Other versions
JPS639388B2 (en
Inventor
Toshio Baba
寿夫 馬場
Takashi Mizutani
隆 水谷
Masaki Ogawa
正毅 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58136128A priority Critical patent/JPS6028273A/en
Priority to DE8484304300T priority patent/DE3480631D1/en
Priority to US06/624,333 priority patent/US4695857A/en
Priority to EP84304300A priority patent/EP0133342B1/en
Publication of JPS6028273A publication Critical patent/JPS6028273A/en
Priority to US07/043,046 priority patent/US4792832A/en
Publication of JPS639388B2 publication Critical patent/JPS639388B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/81Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation
    • H10D62/815Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW]
    • H10D62/8161Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW] potential variation due to variations in composition or crystallinity, e.g. heterojunction superlattices
    • H10D62/8162Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW] potential variation due to variations in composition or crystallinity, e.g. heterojunction superlattices having quantum effects only in the vertical direction, i.e. layered structures having quantum effects solely resulting from vertical potential variation
    • H10D62/8164Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW] potential variation due to variations in composition or crystallinity, e.g. heterojunction superlattices having quantum effects only in the vertical direction, i.e. layered structures having quantum effects solely resulting from vertical potential variation comprising only semiconductor materials 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/83Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/14Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
    • H10F77/146Superlattices; Multiple quantum well structures
    • H10F77/1465Superlattices; Multiple quantum well structures including only Group IV materials, e.g. Si-SiGe superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/347Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIBVI compounds, e.g. ZnCdSe- laser

Landscapes

  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain an FET which can be operated stably by a method wherein a laminated structure, consisting of alternately laminated first layer of ultralow density of impurities, the second layer of small electron affinity and of ultralow density with which an electron can be tunnelled through, and the third layer containing N type impurities having the affinity larger than that of the second layer and the thickness below the electron wavelength is formed on a semiconductor substrate. CONSTITUTION:The second layer 8 of high purity AlAs of 50Angstrom or less and the third layer 9 of Si-added GaAs of 100Angstrom or less are alternately superposed on the first layer 2 of high purity GaAs located on a semiinsulating GaAs 1, a Schottky gate electrode 9 is attached to the surface, and a source and drain electrode is attached to both sides. According to this constitution, the electron generating from N-GaAs 9 is distributed all over the laminated body of the layers 8 and 9 by the quantization level Eq generating from layers 8 and 9, and a deep trap level relating to impurities is not formed. As the level Eq is higher than the conductive band end Ec of the layer 2, the electron on the Eq is partially dropped on the layer 2 side, and electron gas 4 is formed on the 8-2 interface. However, as there is no deep trap level, secondary two-dimensional electron is fluctuated by the irradiation of light and hot electron, and also there is no difference in the two-dimensional electron density at the room temperature and a low temperature, thereby enabling to perform a stable FET operation.

Description

【発明の詳細な説明】 本発明は高い電子移動を持ち安定動作が可能な半導体装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device having high electron mobility and capable of stable operation.

高速動作が期待できる能動半導体装置として、半導体へ
テロ界面の2次元電子を利用したFET(Field 
Effect Transistor)がある。これは
、電子親和力の異々る半導体のへテロ界面(例えば1’
dtz G 2LzA5ハ3A8)において、電子親和
力の小さな半導体だけだ不純物をドーピングし、電子親
和力の大きな半導体側に2次元電子を生じさせ、この2
次元電子の高い移動度の利用を特長としている。しかし
、AlxGa1−xAS/GaA3の系では動作上不都
合な現象が存在している。
As an active semiconductor device that can be expected to operate at high speed, FET (Field
Effect Transistor). This is a hetero-interface of semiconductors with different electron affinities (for example, 1'
In dtz G 2LzA5 3A8), a semiconductor with a small electron affinity is doped with an impurity, two-dimensional electrons are generated on the side of the semiconductor with a large electron affinity, and these two
It is characterized by the use of high mobility of dimensional electrons. However, in the AlxGa1-xAS/GaA3 system, there is a phenomenon that is inconvenient in terms of operation.

一般にn型不純物をドーピングしたAIX Ga1−x
As 中には不純物に関係した深いトラ9ブ準位がある
。このトラップ準位に電子が捕獲されるため、キャリア
濃度はドーピングした不純物濃度よシ低く、77に程度
の低温では濃度は顕著に減少する。
AIX Ga1-x generally doped with n-type impurities
There is a deep TR9 level in As that is related to impurities. Since electrons are captured in this trap level, the carrier concentration is lower than the doped impurity concentration, and the concentration decreases significantly at a low temperature of about 77°C.

この低温における減少傾向はA/ の組成比Xに非常に
敏感であシ、02〈X〈05ではXの増加と共にキャリ
ア濃度は急激に減少する。しかも、低温において光照射
するとキャリア濃度が増加し、光をしゃ断してもこの状
態が保持されるPersistentPhotocon
ductivity (PPC)の現象がある。このた
め、lxG、、 xAs/GaA;系の2次元電子を利
用したFETでは、低温において2次元電子濃度が減少
するため、しきい値電圧が室温と低温で犬きく異なる。
This decreasing tendency at low temperatures is very sensitive to the composition ratio X of A/, and at 02<X<05, the carrier concentration decreases rapidly as X increases. Moreover, the carrier concentration increases when exposed to light at low temperatures, and this state is maintained even when the light is cut off.
ductivity (PPC). Therefore, in an FET using two-dimensional electrons of the lxG, xAs/GaA; system, the two-dimensional electron concentration decreases at low temperatures, so the threshold voltage differs significantly between room temperature and low temperature.

また、A1組成比Xに敏感であるため、FET 製造に
よる特性のバラツキが大きい。さらに1低温での光照射
効果(PPC)およびドレイン電界によシ加速されたホ
ットエレクトロンがA/xGai−xAs/GaAs界
面からA/xGa−1,A、中に入シ、トラップに捕獲
されることにょシ、ドレイン電流が変化する。
Furthermore, since it is sensitive to the A1 composition ratio X, there are large variations in characteristics due to FET manufacturing. Furthermore, hot electrons accelerated by the photoirradiation effect (PPC) at low temperature and the drain electric field enter A/xGa-1,A from the A/xGai-xAs/GaAs interface and are captured in the trap. In particular, the drain current changes.

このように、1xGa、’4=xAs/GaAs系を利
用したFET では、温度によるしきい値変動を抑える
こと、特性のそろったものを再現性良く製造すること光
照射下、高電界下で安定に動作することがきわめて困難
であった。
In this way, FETs using the 1xGa, '4=xAs/GaAs system are required to suppress threshold fluctuations due to temperature, to manufacture products with uniform characteristics with good reproducibility, and to be stable under light irradiation and high electric fields. It was extremely difficult to operate.

第1図は従来の2次元電子を利用したFET の−例の
概略断面図である。
FIG. 1 is a schematic cross-sectional view of an example of a conventional FET using two-dimensional electrons.

第1図において、1は半絶縁性半導体基板、2は不純物
を極力少なくした銅1の半導体層、3はn型不純物を含
有し第1の半導体#1より電子親和力が小さい半導体か
らなる電子供給層、4は第1の半導体層2と電子供給層
3との界面に形成される2次元電子ガス、5は電子供給
層3とショットキ接合を形成するゲート電極、6は電子
供給層3と合金化し2−次元電子ガス4と電気的コンタ
クトがとれているソース電極、7は6と同様のドレイン
電極である。
In Figure 1, 1 is a semi-insulating semiconductor substrate, 2 is a semiconductor layer of copper 1 with as few impurities as possible, and 3 is an electron supply made of a semiconductor containing n-type impurities and having a lower electron affinity than the first semiconductor #1. 4 is a two-dimensional electron gas formed at the interface between the first semiconductor layer 2 and the electron supply layer 3; 5 is a gate electrode forming a Schottky junction with the electron supply layer 3; 6 is an alloy with the electron supply layer 3; A source electrode 7 is in electrical contact with the two-dimensional electron gas 4, and 7 is a drain electrode similar to 6.

第2図は第1図に示すF’ET のゲート電極下のバン
ド構造を示す図である。
FIG. 2 is a diagram showing the band structure under the gate electrode of the F'ET shown in FIG. 1.

第2図におりて、第1図と同じ番号のものは同一機能を
果すものである。Bt は電子供給層3中の深い電子ト
ラップ準位、Eo は伝導帯端、Efはフェルミ準位、
′Bv は充満帯端である。
Components in FIG. 2 with the same numbers as in FIG. 1 have the same functions. Bt is a deep electron trap level in the electron supply layer 3, Eo is the conduction band edge, Ef is the Fermi level,
'Bv is the charged zone edge.

次に、第1図に示す従来の2次元電子を利用したFET
の動作について説明する。ここでFBTは第1の半導体
層2がGaAs、電子供給層3がn型のAj5o3Ga
p、? Allで形成されているものとし、またソース
を零電位とし、ドレインには正電圧が印加されているも
のとする。
Next, we will introduce the conventional FET using two-dimensional electrons shown in Figure 1.
The operation will be explained. Here, in the FBT, the first semiconductor layer 2 is made of GaAs, and the electron supply layer 3 is made of n-type Aj5o3Ga.
P,? It is assumed that the transistor is made of All Al, the source is at zero potential, and the drain is applied with a positive voltage.

ゲート電圧が0■の場合、n kilo 、s Ga6
,7 Asは完全に空乏化し、第2図に示すバンド構造
になっているものとするとゲート下のA&−3Gao、
7 As /GaAs界面(GaA s側)にはnA7
70,3 Gao、y A S 中のイオン化したドナ
ーによ)誘起された2次元電子ガスが形成されておシ、
ソース・ドレイン間には2次元電子ガスを通じてドレイ
ン電流が流れる。
When the gate voltage is 0■, n kilo , s Ga6
,7 Assuming that As is completely depleted and has the band structure shown in Figure 2, A & -3 Gao under the gate,
7 As/GaAs interface (GaAs side) has nA7
A two-dimensional electron gas induced by the ionized donors in 70,3 Gao, y A S is formed,
A drain current flows between the source and drain through two-dimensional electron gas.

ここで、ゲート電圧を負に太きくしてゆくと、ゲート下
の2次元電子ガスが減少してドレイン電流が減少し、逆
にゲート電圧を正に大きくしてゆくと、ゲート下の2次
元電子ガスが増加してドレイン電流が増加する。
Here, as the gate voltage increases in a negative direction, the two-dimensional electron gas under the gate decreases and the drain current decreases, and conversely, as the gate voltage increases in a positive direction, the two-dimensional electron gas under the gate decreases. The gas increases and the drain current increases.

さて、n型Aa、、s Gau、7 As中には不純物
に関係した深い電子トラップ準位Bt が多数存在し、
温度を下げるに従いこの電子トラップに電子が捕獲され
る割合が増加し、2次元電子の濃度は減少してゆく。ま
だ77に程度の低温で光を照射すると電子トラップ準位
Et に捕獲されていた電子が光エネルギによって伝導
帯に飛びだし、2次元電子の数は増加する。また、2次
元電子の一部がソース・ドレイン間でドレイン電界によ
p加速されてホット化し、A7Ll、3 Gap、? 
As中に飛び込むと電子トラップ準位に捕獲され、2次
元電子の数は減少する。
Now, in n-type Aa, s Gau, 7 As, there are many deep electron trap levels Bt related to impurities,
As the temperature decreases, the rate at which electrons are captured in this electron trap increases, and the concentration of two-dimensional electrons decreases. When light is irradiated at a low temperature of about 77° C., the electrons trapped in the electron trap level Et are ejected into the conduction band by the light energy, and the number of two-dimensional electrons increases. Also, some of the two-dimensional electrons are accelerated by the drain electric field between the source and drain and become hot, resulting in A7Ll, 3 Gap, ?
When they jump into As, they are captured by an electron trap level and the number of two-dimensional electrons decreases.

これらの現象は2次元電子の数を変化させるので、ドレ
イン電流が変化し安定なFET動作を阻害する。
Since these phenomena change the number of two-dimensional electrons, the drain current changes and stable FET operation is inhibited.

本発明の目的は、上記欠点を除去し、2次元電子を利用
したFETであって、室温と低温における2次元電子密
度に差がなく、シかも光照射下及び高電界下において安
定動作が可能な半導体装置を提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks, to provide an FET that uses two-dimensional electrons, has no difference in two-dimensional electron density at room temperature and low temperature, and is capable of stable operation under light irradiation and high electric field. The object of the present invention is to provide a semiconductor device that is of high quality.

本発明によれば、半導体基板上に設けられだ極低不純物
濃度の第1の半導体層と、該第1の半導体層上に設けら
れかつ該第1の半導体層よりt子親和力が小さく電子ト
ンネル可能な厚さを有する極低不純物濃度の第2の半導
体層と該第2の半導体層よシミ子親和力が大きく電子波
長以下の厚さを有しn型不純物を含有する第3の半導体
層とを交互に積層した積層構造と、該積層構造表面の一
部に設けられたゲート電極と、該ゲート電極を挾んで前
記積層表面に設けられ第Jの半導体層と第2の半導体層
との界面に存在するキャリアと電気的コンタクトを形成
する一対の電極とを含むことを特徴とする半導体装置が
得られる。
According to the present invention, a first semiconductor layer with an extremely low impurity concentration is provided on a semiconductor substrate, and an electron tunneling layer is provided on the first semiconductor layer and has a smaller t-son affinity than the first semiconductor layer. a second semiconductor layer with an extremely low impurity concentration and a third semiconductor layer having a thickness equal to or less than the electron wavelength and containing an n-type impurity, which has a larger stain affinity than the second semiconductor layer; an interface between a J-th semiconductor layer and a second semiconductor layer provided on the laminated surface with the gate electrode sandwiched therebetween; A semiconductor device is obtained, which includes a pair of electrodes forming electrical contact with carriers present in the semiconductor device.

以下本発明の実施例について図面を用いて説明する。Embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明の第1の実施例の断面模式図である。第
3図において第1図と同じ番号のものは第1図と同等物
で同一機能を果すものである。8け第1の半導体層2よ
シミ子親和力がl」\さく電子がトンネル可能な厚さを
有し極低不純物濃度の第2の半導体層、9は該第2の半
導体層8よシミ子親和力が大きく電子波長以下の厚さを
有したn型不純物を含有する第3の半導体層である。上
記の極低不純物濃度とは意識的にドーピングしないかま
たはわずかにドーピングした程度を意味している。上記
第2および第3層の厚さは量子効果が顕著となるような
充分に薄いものであり、これは材料によシ異なっている
。例えば、第1の半導体層2は高純度GaAs、第2の
半導体層8は50 A程度以下の高純度A/As 、第
3の半導体層9は100A程度以下のSi ドープのG
 a A sである。
FIG. 3 is a schematic cross-sectional view of the first embodiment of the present invention. In FIG. 3, the same numbers as in FIG. 1 are equivalent to those in FIG. 1 and perform the same functions. 8 The first semiconductor layer 2 has a stain affinity of 1. The second semiconductor layer has a thickness that allows electrons to tunnel and has an extremely low impurity concentration. This is a third semiconductor layer containing an n-type impurity that has a large affinity and a thickness that is equal to or less than the electron wavelength. The extremely low impurity concentration mentioned above means that the impurity is not doped intentionally or is doped only slightly. The thicknesses of the second and third layers are sufficiently thin so that quantum effects are noticeable, and this varies depending on the material. For example, the first semiconductor layer 2 is made of high-purity GaAs, the second semiconductor layer 8 is made of high-purity A/As of about 50 A or less, and the third semiconductor layer 9 is made of Si-doped G of about 100 A or less.
It is a As.

以下、第1の実施例の動作を、各半導体層に前述の材料
を用い、このバンド構造図である第4図を用いて詳細に
説明する。
Hereinafter, the operation of the first embodiment will be explained in detail using the above-mentioned materials for each semiconductor layer and using FIG. 4, which is a diagram of the band structure.

第4図は第3図に示すFETのゲート!極下のバンド構
造を示す図である。第4図において、第1図〜第3図と
同じ番号のものは第1図〜第3図と同等物で同一機能を
果すものである。Eqは第2の半導体層8と第3の半導
体層9との積層構造によって新たに形成される電子の最
低の量子化準位である。
Figure 4 shows the gate of the FET shown in Figure 3! FIG. 3 is a diagram showing the bottom band structure. In FIG. 4, parts with the same numbers as in FIGS. 1 to 3 are equivalent to those in FIGS. 1 to 3 and perform the same functions. Eq is the lowest quantization level of electrons newly formed by the stacked structure of the second semiconductor layer 8 and the third semiconductor layer 9.

n−GaAsから発生する電子は量子化準位Eqによっ
て、n−GaAsだけでなく高純度A IA s中にも
広がp n−GaAs/AAAs積層構造全体に分布す
る。この時n −Ga A s中および高純度A IA
 s中にはn−A10.、Gao、y As中のような
不純物に関係した深い電子トラップ準位は形成されない
。これは、n−GaAs中にはこのようなトラップ準位
がないこと、およびAlAsには不純物がないことによ
る。
Electrons generated from n-GaAs are distributed not only in n-GaAs but also in high-purity AIAs and distributed throughout the p n-GaAs/AAAs stacked structure, depending on the quantization level Eq. At this time, n-GaAs in s and high purity AIA
During s, n-A10. , Gao, y The deep electron trap levels associated with impurities such as in As are not formed. This is because there are no such trap levels in n-GaAs and there are no impurities in AlAs.

量子化準位Eqは高純度G a A sの伝導帯端Be
 より高いエネルギ位置にあるので、量子化準位Eqに
ある電子の一部は高純度G a A s側に落ち、高純
度G a A s IA / A s界面に2次元電子
ガスが形成される。したがって、 FETとしての動作
は前に示した従来構造のものと同じとなる。しかし、こ
の第1の実施例においては従来構造の電子供給層3に当
るn−GaAs/AA!Asの積層構造中に深い電子ト
ラップ準位が存在しないため、光照射および積層構造中
にホットエレクトロンが飛びこむことがあっても2次元
電子の変動はガく、FBT 動作は安定している。また
室温と低温の2次元電子帯度に差がないため低温で動作
させるFET の設計が容易で、しかもFET 製造の
再現性も良好である。
The quantization level Eq is the conduction band edge Be of high purity Ga As.
Since it is at a higher energy position, some of the electrons at the quantization level Eq fall to the high-purity GaAs side, and a two-dimensional electron gas is formed at the high-purity GaAs IA/As interface. . Therefore, the operation as an FET is the same as that of the conventional structure shown above. However, in this first embodiment, the electron supply layer 3 of the conventional structure is made of n-GaAs/AA! Since there is no deep electron trap level in the As stacked structure, even if hot electrons jump into the stacked structure due to light irradiation, two-dimensional electron fluctuations are small and the FBT operation is stable. Furthermore, since there is no difference in the two-dimensional electron band width between room temperature and low temperature, it is easy to design an FET that operates at low temperatures, and the reproducibility of FET manufacturing is also good.

本実施例によシ、結晶成長方法としてMBB(Mole
cular Beam Epitaxy)を用い、半絶
縁性G a A s基板上に厚さ1μmの高純度GaA
s層を成長させ、続いて厚さ15Aの高純度の人IAs
と厚さ23 Aで1.7X10”cIn のSi不純物
を含むn型G a A sとの積層構造を全体として厚
さ500A成長させた。ショットキゲート電極としてけ
A/を用い、ソース電極およびドレイン電極としてはA
 u −G e IA uを用いた。その結果、ゲート
長が0.3μm1 ゲート・ソース間およびゲート・ド
レイン間が0.3μmのFET において、77K で
の相互コンダクタンスgmが450 m S /vmが
得られ、光照射下および高電界下での特性の変動けなか
った。
In this example, MBB (Mole
High purity GaA with a thickness of 1 μm was deposited on a semi-insulating GaAs substrate using
Growth of s-layer followed by 15A thick high-purity IAs
A laminated structure of n-type GaAs containing Si impurity of 1.7×10”cIn was grown to a total thickness of 500A with a thickness of 23A. A as an electrode
u-G e IA u was used. As a result, a mutual conductance gm of 450 mS/vm at 77K was obtained for a FET with a gate length of 0.3 μm1 and a gate-source distance and a gate-drain distance of 0.3 μm, and the mutual conductance gm was 450 mS/vm under light irradiation and high electric field. There was no change in the characteristics.

第5図は本発明の箕2の実施例の断面模式図である。第
5図において第1図〜第4図と同じ番号のものは第1図
〜第4図と同等物で同一機能を果すものである。】0は
電子親和力が第1の半導体層2よシ小さくかつ伝導帯域
が第2の半導体層8と第3の半導体Na9との積層構造
によシ形成される量子化準位Bq と同じかそれよシ低
い極低不純物濃度スペーサ層である。例えばスペーV層
はA4.、 Gao、、 Asである。
FIG. 5 is a schematic cross-sectional view of an embodiment of the winnow 2 of the present invention. In FIG. 5, the same numbers as in FIGS. 1 to 4 are equivalent to those in FIGS. 1 to 4 and perform the same functions. ] 0 means that the electron affinity is smaller than that of the first semiconductor layer 2, and the conduction band is equal to or equal to the quantization level Bq formed by the stacked structure of the second semiconductor layer 8 and the third semiconductor Na9. This is a spacer layer with a very low impurity concentration. For example, the space V layer is A4. , Gao,, As.

以下、第2の実施例の動作を、第1の半導体層2として
高純度G a A s −、第2の半導体層8として高
純度A/As、第3の半導体層9としてn型のGaAs
、スペーサ層10として高純度のA4,3Ga。、、A
sを用い、このバンド構造図である第6図を用いて詳細
に説明する。
Hereinafter, the operation of the second embodiment will be explained using high purity GaAs as the first semiconductor layer 2, high purity A/As as the second semiconductor layer 8, and n-type GaAs as the third semiconductor layer 9.
, high purity A4,3Ga as the spacer layer 10. ,,A
This will be explained in detail using FIG. 6, which is a diagram of this band structure.

第6図は第5図に示すFBT のゲート電極下のバンド
構造を示す図であ゛る。第6図において第1図〜第5図
と同じ番号のものは第1図〜第5図と同等物で同一機能
を示すものである。
FIG. 6 is a diagram showing the band structure under the gate electrode of the FBT shown in FIG. 5. In FIG. 6, the same numbers as in FIGS. 1 to 5 are equivalent to those in FIGS. 1 to 5 and indicate the same functions.

n GaAs9から発生する電子は量子化準位Eqによ
って、高純度A/AsS中にも広がシ、その一部はスペ
ーサ層のA/、、s Gau、、 As 10を経て高
純度GaAs2に落ち、高純度GaA s/A4.s 
Gaa、y As界面に2次元電子ガスが形成される。
Electrons generated from n GaAs9 also spread into high-purity A/AsS due to the quantization level Eq, and some of them fall into high-purity GaAs2 through the spacer layer A/, s Gau, , As 10. , high purity GaA s/A4. s
A two-dimensional electron gas is formed at the Gaa, yAs interface.

スペーサ層である高純度A系、、 Gao、、As層中
に不純物がほとんど存在しないため、不純物に関係する
電子トラップはない。したがって、第1の実施例と同様
に、光照射下および高電界下においても安定なFET動
作が得られる。さらに2次元電子層と不純物を含有する
n型G a A sとの間の距離がスペーサ層10によ
シ離されているので2次元電子のイオン化不純物散乱が
減ること、およびA/、、s Ga、、、7 As /
GaAs界面はA II A s /G a A s界
面より界面平担性の良いものが容易に形成できることに
より、2次元電子の移動度は第1の実施例よシ大きくな
る。
Since almost no impurities exist in the high-purity A-based, Gao, or As layer that is the spacer layer, there are no electron traps related to impurities. Therefore, as in the first embodiment, stable FET operation can be obtained even under light irradiation and under a high electric field. Furthermore, since the distance between the two-dimensional electron layer and the n-type GaAs containing impurities is separated by the spacer layer 10, ionized impurity scattering of two-dimensional electrons is reduced, and A/, s Ga...7 As/
Since the GaAs interface can be easily formed to have better interface flatness than the A II As /Ga As interface, the two-dimensional electron mobility is greater than that in the first embodiment.

本実施例によシ、結晶成長方法としてMBE を用い、
半絶縁性GaAs基板上に厚さ1μmの高純度G a 
A sを成長させ、つぎに厚さ100Aの高純度A44
 Ga、、7 Asを成長させ、続いて20Aの高純度
A 12 A sと厚さ23Aで2.4X10CWL 
のSi不純物を含むn型GaAsとの積層構造を全体と
して400A成長させた。ショットキゲート電極として
けlを用い、ソース電極およびドレイン電極としてはA
 u −G e /A uを用いた。その結果、77K
における移動度は100.0007,4’・Sと高い値
となシ、ゲート長0.3μm1ゲート・ソース間および
ゲート・ドレイン間が03μmのFET において、7
7にでの相互コンダクタンスgmが500m5//)I
iが得られ、光照射下および高電界下での特性の変動は
なかりた。
According to this example, MBE is used as the crystal growth method,
High purity Ga with a thickness of 1 μm on a semi-insulating GaAs substrate
Grow A s and then grow high purity A44 with a thickness of 100A.
Grow Ga,,7As followed by 2.4X10CWL with 20A of high purity A12As and a thickness of 23A.
A stacked structure with n-type GaAs containing Si impurities was grown to a total thickness of 400A. K1 is used as the Schottky gate electrode, and A is used as the source and drain electrodes.
u-Ge/Au was used. As a result, 77K
The mobility is as high as 100.0007.4'S, and in a FET with a gate length of 0.3 μm and a gate-source distance and a gate-drain distance of 0.3 μm,
The mutual conductance gm at 7 is 500 m5//)I
i was obtained, and there was no change in characteristics under light irradiation or under high electric field.

上記の本発明の2つの実施例において、GaAs層中の
不純物としてはSi Lか示していないが、n型不純物
としてけre、Se、8n、8 でも良い。
In the above two embodiments of the present invention, only SiL is shown as the impurity in the GaAs layer, but SiL, Se, 8n, and 8 may be used as the n-type impurity.

また、n型不純物を第3の半導体層に相当するGaAs
層全体ではなく、第2の半導体層のA/As層との界面
部分を除いてドーピングすると、この界面部分(A/x
Ga 1−xAsとなっている)で生ずる不純物に関係
した電子トラップの完全除去が可能となる。宴らに、第
1の実施例の構造において2次元電子から100X程度
以内にある第3の半導体層を不純物をドーピングしない
構造にすれば、第2の実施例と同様に2次元電子の移動
度を高めることができる。
In addition, the n-type impurity was added to GaAs corresponding to the third semiconductor layer.
If doping is performed not on the entire layer but on the interface with the A/As layer of the second semiconductor layer, this interface (A/x
It is possible to completely eliminate electron traps related to impurities generated in Ga 1-xAs. Additionally, if the third semiconductor layer located within about 100X from the two-dimensional electrons in the structure of the first embodiment is made into a structure in which no impurities are doped, the two-dimensional electron mobility will be reduced as in the second embodiment. can be increased.

本発明の2つの実施例では第1の半導体層と第3の半導
体層とは同じG a A sを用すたが、第3の半導体
層は1組成の少ない人/xGa z−xAs(x<0.
2)としても良い。また、第2の半導体である高純度A
llAsの替シにA4組成の多いAjlxGal xA
s (x>0.3) としても良い。
In the two embodiments of the present invention, the first semiconductor layer and the third semiconductor layer use the same GaAs, but the third semiconductor layer is made of GaAs(xGa z−xAs(x <0.
2) may also be used. In addition, the second semiconductor, high purity A
AjlxGal xA with many A4 compositions as a replacement for llAs
s (x>0.3).

本発明の2つの実施例ではゲートショットキ電極は積層
構造を構成する第3の半導体層9表面に形成されて因る
が、第2の半導体/ii8表面に形成しても効果は全く
同等である。積層構造上にさらに20ないし300Aの
厚さの半導体層を形成し、該半導体層表面にゲートショ
ットキ電極を形成してもよい。この場合該半導体層とし
ては、高抵抗もしくはn型のG a A sもしくはA
iVxGa】 xAsが用いられる。
In the two embodiments of the present invention, the gate Schottky electrode is formed on the surface of the third semiconductor layer 9 constituting the stacked structure, but the effect is exactly the same even if it is formed on the surface of the second semiconductor layer 9. . A semiconductor layer having a thickness of 20 to 300 Å may be further formed on the stacked structure, and a gate Schottky electrode may be formed on the surface of the semiconductor layer. In this case, the semiconductor layer is a high resistance or n-type GaAs or A
iVxGa]xAs is used.

ゲート電極としてはショットキ接合を用いたものしか示
さなかりたが、ゲート電極としてp −n接合ゲート電
極、$asi−8chottkyゲート電極、came
lゲー)[極絶縁ゲート電極を用すても良い。
Although only the Schottky junction gate electrode is shown, the gate electrodes include a p-n junction gate electrode, a $asi-8chottky gate electrode, and a camel gate electrode.
1 game) [A polar insulated gate electrode may be used.

基板としては半絶縁性G aA s基板しか示さなかっ
たが、最上層が半絶縁性A/xGa1 xAs である
基板、最上層がA 11 A s /G a A sの
超格子せたはA/xGa 1−xAs/GaAsの超格
子である基板であっても良い。
Although only a semi-insulating GaAs substrate is shown as a substrate, a substrate whose top layer is semi-insulating A/xGa1 xAs and a superlattice whose top layer is A 11 A s /G a As s are also available. The substrate may be a superlattice of xGa 1-xAs/GaAs.

本発明の実施例においてはA/AsとG a A sの
系しか示さなかったが、他の半導体の系でもかまわない
ととは明らかである。例えば、高純度In。、5゜Ga
 O,4? A s を第1の半導体層、高純度(n 
x A /l 1−xA s (x”0.53 )を第
2の半導体層、n型のInxGa 1−xA4 (x=
0.53 )を第3の半導体層とするものであっても本
発明は有効である。この場合のX=053で基板1np
 と格子整合しているが、これからずれても積層構造の
それぞれの界面でミスマ、ツチの歪を吸収するため問題
なく、さらにInxA/+−xAsのXを小さくすれば
2次元電子に対するバリヤの高さを高くできるため有効
である。
Although only A/As and GaAs systems are shown in the embodiments of the present invention, it is clear that other semiconductor systems may also be used. For example, high purity In. , 5°Ga
O, 4? As the first semiconductor layer, high purity (n
x A /l 1-xA s (x”0.53) is the second semiconductor layer, n-type InxGa 1-xA4 (x=
The present invention is effective even when the third semiconductor layer is 0.53). In this case, X=053 and the substrate is 1np
However, even if the lattice deviates from this, there is no problem because misalignment and distortion are absorbed at each interface of the laminated structure.Furthermore, by decreasing the X of InxA/+-xAs, the barrier to two-dimensional electrons can be increased. This is effective because it can increase the height.

本発明の構造を作る結晶成長方法としては、原理的には
どんな成長方法であっても良いが、数人の膜厚制御性が
必要となるため、MBE 法やMOCVD(Metal
 Organic Chemical Vapor D
eposition)法が適している。中でもMBB 
法は原料の入った分子線源から出る分子線をシャッタの
開閉だけで制御できるため、遷移層が数Aの急峻な界面
を容易に実現することができ、さらにコンピュータによ
る自動制御が容易であるため最も適した方法である。
In principle, any crystal growth method may be used to form the structure of the present invention, but since it requires the ability of several people to control the film thickness, the MBE method and MOCVD (Metal
Organic Chemical Vapor D
eposition) method is suitable. Among them, M.B.B.
In this method, the molecular beam emitted from the molecular beam source containing the raw material can be controlled simply by opening and closing a shutter, so it is easy to create a steep interface with a transition layer of several amps, and it is also easy to automatically control using a computer. This is the most suitable method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来構造の2次元電子を利用したFETの概略
断面図、第2図は従来構造のゲート電極下のバンド構造
図、第3図は本発明の第1の実施例を示した概略断面図
、第4図は該第1の実施例のゲート電極下のバンド構造
図、第5図は本発明の第2の実施例を示した概略断面図
、第6図は該第2の実施例のゲー)!極下のバンド構造
図である。 l・・・半導体基板 2・・第1の半導体層3・・・電
子供給層 4・・・2次元電子ガス5・・・ゲート電極
 6・・・ソース電極7・・・ドレイン電極 8・第2
の半導#層9・・・第3の半導体層 1o・・スペーサ
層Ei・・・電子トラップ準位 Ec・・伝導帯端Bf
・・・7工ルミ準位 Ev・・・、充満帯端Bq−・−
量子化準位 悼 1 国 悼 Z 口 乎 3 画
Fig. 1 is a schematic cross-sectional view of an FET using two-dimensional electrons with a conventional structure, Fig. 2 is a band structure diagram under the gate electrode of a conventional structure, and Fig. 3 is a schematic diagram showing the first embodiment of the present invention. 4 is a schematic sectional view showing the band structure under the gate electrode of the first embodiment, FIG. 5 is a schematic sectional view showing the second embodiment of the present invention, and FIG. 6 is a diagram of the second embodiment. Example game)! This is a diagram of the bottom band structure. l... Semiconductor substrate 2... First semiconductor layer 3... Electron supply layer 4... Two-dimensional electron gas 5... Gate electrode 6... Source electrode 7... Drain electrode 8. 2
Semiconductor #layer 9...Third semiconductor layer 1o...Spacer layer Ei...Electron trap level Ec...Conduction band edge Bf
... 7-stage Lumi level Ev..., filling zone edge Bq--
Quantization level mourning 1 national mourning Z mouth 3 paintings

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に設けられた極低不純物濃度の第1
の半導体層と、該第1の半導体層上に設けられかつ該第
1の半導体層よシミ電子親和力が小さく電子がトンネル
可能な厚さを有する極低不純物濃度の第2の半導体層と
該第2の半導体層より電子′親和力が大きく電子波長以
下の厚さを有し、n型不純物を含有する第3の半導体と
を交互に積層した積層構造と、該積層構造上方表面の一
部に設けられたゲート電極と、該ゲート電極を挾んで前
記積層構造上方表面に設けられ11の半導体層と第2の
半導体層との界面に存在するキ碕・リアと電気的コンタ
クトを形成する一対の電極とを含むことを特徴とする半
導体装置。
(1) First layer with extremely low impurity concentration provided on the semiconductor substrate
a second semiconductor layer provided on the first semiconductor layer and having an extremely low impurity concentration and having a thickness that allows tunneling of electrons and having a smaller stain electron affinity than the first semiconductor layer; A laminated structure in which a third semiconductor layer having an electron affinity greater than that of the second semiconductor layer and having a thickness equal to or less than the electron wavelength and containing an n-type impurity is laminated alternately, and a third semiconductor layer provided on a part of the upper surface of the laminated structure. a pair of electrodes that form electrical contact with a gate electrode that is provided on the upper surface of the laminated structure with the gate electrode in between and exists at the interface between the 11 semiconductor layers and the second semiconductor layer; A semiconductor device comprising:
(2)第1の半導体層と積層構造との間に不純物を含有
しないスペーサ層を備えた特許請求の範囲第(1)項に
記載の半導体装置。
(2) The semiconductor device according to claim (1), further comprising a spacer layer containing no impurities between the first semiconductor layer and the laminated structure.
JP58136128A 1983-06-24 1983-07-26 Semiconductor device Granted JPS6028273A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58136128A JPS6028273A (en) 1983-07-26 1983-07-26 Semiconductor device
DE8484304300T DE3480631D1 (en) 1983-06-24 1984-06-25 SEMICONDUCTOR STRUCTURE WITH HIGH GRID DENSITY.
US06/624,333 US4695857A (en) 1983-06-24 1984-06-25 Superlattice semiconductor having high carrier density
EP84304300A EP0133342B1 (en) 1983-06-24 1984-06-25 A superlattice type semiconductor structure having a high carrier density
US07/043,046 US4792832A (en) 1983-06-24 1987-04-24 Superlattice semiconductor having high carrier density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58136128A JPS6028273A (en) 1983-07-26 1983-07-26 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS6028273A true JPS6028273A (en) 1985-02-13
JPS639388B2 JPS639388B2 (en) 1988-02-29

Family

ID=15167959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58136128A Granted JPS6028273A (en) 1983-06-24 1983-07-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6028273A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210677A (en) * 1985-03-15 1986-09-18 Sumitomo Electric Ind Ltd Compound semiconductor device
JPS61278168A (en) * 1985-05-31 1986-12-09 Sumitomo Electric Ind Ltd Compound semiconductor device
JPS6211279A (en) * 1985-07-08 1987-01-20 Matsushita Electric Ind Co Ltd field effect transistor
US4689646A (en) * 1984-06-05 1987-08-25 Nec Corporation Depletion mode two-dimensional electron gas field effect transistor and the method for manufacturing the same
JPS62266874A (en) * 1986-05-15 1987-11-19 Fujitsu Ltd semiconductor equipment
JPS632384A (en) * 1986-06-20 1988-01-07 Fujitsu Ltd semiconductor equipment
WO1988001792A1 (en) * 1986-09-04 1988-03-10 Varian Associates, Inc. Superlattice for a semiconductor device
US4965645A (en) * 1987-03-20 1990-10-23 International Business Machines Corp. Saturable charge FET
US5023674A (en) * 1985-08-20 1991-06-11 Fujitsu Limited Field effect transistor
JPH08162647A (en) * 1994-12-05 1996-06-21 Nec Corp Semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4689646A (en) * 1984-06-05 1987-08-25 Nec Corporation Depletion mode two-dimensional electron gas field effect transistor and the method for manufacturing the same
JPS61210677A (en) * 1985-03-15 1986-09-18 Sumitomo Electric Ind Ltd Compound semiconductor device
JPS61278168A (en) * 1985-05-31 1986-12-09 Sumitomo Electric Ind Ltd Compound semiconductor device
JPS6211279A (en) * 1985-07-08 1987-01-20 Matsushita Electric Ind Co Ltd field effect transistor
US5023674A (en) * 1985-08-20 1991-06-11 Fujitsu Limited Field effect transistor
JPS62266874A (en) * 1986-05-15 1987-11-19 Fujitsu Ltd semiconductor equipment
JPS632384A (en) * 1986-06-20 1988-01-07 Fujitsu Ltd semiconductor equipment
WO1988001792A1 (en) * 1986-09-04 1988-03-10 Varian Associates, Inc. Superlattice for a semiconductor device
US4965645A (en) * 1987-03-20 1990-10-23 International Business Machines Corp. Saturable charge FET
JPH08162647A (en) * 1994-12-05 1996-06-21 Nec Corp Semiconductor device

Also Published As

Publication number Publication date
JPS639388B2 (en) 1988-02-29

Similar Documents

Publication Publication Date Title
US4686550A (en) Heterojunction semiconductor devices having a doping interface dipole
Ploog et al. Fundamental studies and device application of δ-doping in GaAs Layers and in AlxGa1− xAs/GaAs heterostructures
US4695857A (en) Superlattice semiconductor having high carrier density
JPH0831596B2 (en) Semiconductor device
JPS6028273A (en) Semiconductor device
EP0151309B1 (en) High electron mobility field-effect transistor
JPH024140B2 (en)
JPH07123164B2 (en) Semiconductor device
JPH05211178A (en) Thin-film field effect transistor with tuned energy band
JPH0770743B2 (en) Resonant tunneling barrier structure device
JPH04118972A (en) semiconductor equipment
JPS6354777A (en) resonant tunnel device
JPS5953714B2 (en) semiconductor equipment
US4882608A (en) Multilayer semiconductor device having multiple paths of current flow
JPH0312769B2 (en)
JPS60193382A (en) semiconductor equipment
Fujisawa et al. Sub‐μm wide channels with surface potential compensated by focused Si ion beam implantation
JPS61171179A (en) Semiconductor coupled superconductive element
JPS6028274A (en) Semiconductor device
JPS60235476A (en) Semiconductor device
JPH0620142B2 (en) Semiconductor device
JPS62245681A (en) Negative differential resistance field effect transistor
JPS61276269A (en) Hetero-junction type field-effect transistor
JPS61248569A (en) Hetrojunction field effect transistor
JPH01120871A (en) semiconductor equipment