JPS61278168A - Compound semiconductor device - Google Patents

Compound semiconductor device

Info

Publication number
JPS61278168A
JPS61278168A JP11932885A JP11932885A JPS61278168A JP S61278168 A JPS61278168 A JP S61278168A JP 11932885 A JP11932885 A JP 11932885A JP 11932885 A JP11932885 A JP 11932885A JP S61278168 A JPS61278168 A JP S61278168A
Authority
JP
Japan
Prior art keywords
layer
inas
layers
alas
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11932885A
Other languages
Japanese (ja)
Inventor
Yuichi Matsui
松居 祐一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11932885A priority Critical patent/JPS61278168A/en
Priority to CA000504069A priority patent/CA1256590A/en
Priority to AU54742/86A priority patent/AU577934B2/en
Priority to EP86103425A priority patent/EP0196517B1/en
Priority to DE8686103425T priority patent/DE3672360D1/en
Priority to KR1019860001897A priority patent/KR860007745A/en
Publication of JPS61278168A publication Critical patent/JPS61278168A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • H01L29/152Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
    • H01L29/155Comprising only semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To implement a semiconductor device which operates at a high speed, by alternately laminating thin film layers of InAs and AlAs, and adding an N-type impurity into AlAs, thereby enabling a two-dimensional electron storage layer to be formed at the InAs side which is being subjected to elastic tetragonal deformation. CONSTITUTION:A channel layer is provided which has a construction in which InAs layers (40Angstrom thick) 2 formed using the MBE growth method and AlAs layers (40Angstrom thick) 3 are alternately laminated on a semi-insulating InP substrate 1. In the AlAs layers, Si is doped as an N-type impurity. The InAs layers 2 are subjected to elastic tetragonal deformation in the crystal structure thereof, large energy discontinuity exists at the InAs-AlAs interface, and only the AlAs layers 3 are doped with Si. With this, even at a room temperature, a two-dimensional electron storage layer is formed only in the InAs layers 2, which has a larger entrapment effect as compared with the conventional GaAs-GaxAl1-xAs system.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は化合物半導体装置に関する。更に詳しくは、電
子が走行する結晶領域と電子を供給する結晶領域とをヘ
テロ接合によって空間的に分離し、電子がドナー不純物
によって散乱されるのをなくすることにより、電子走行
速度を増大させた高電子移動度トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to compound semiconductor devices. More specifically, by spatially separating the crystal region through which electrons travel and the crystal region supplying electrons by a heterojunction, the electron travel speed is increased by eliminating the scattering of electrons by donor impurities. The present invention relates to high electron mobility transistors.

従来の技術 化合物半導体デバイス、特に電子デバイスの製法として
、薄い一様な層の成長、成分元素組成比の制御の容易さ
からエピタキシャル成長方法が一般的に利用されている
。なかでも最近特に注目されている技術として、分子線
エピタキシャル成長方法(以下簡単のためにrMBE成
長法」という)が知られている。例えばW、T、 Ts
ang  により日経エレクトロニクス畜808,16
3 (1983)において、MBE成長法並びに薄膜周
期構造を利用したデバイスが詳細に説明されている。こ
のMBE成長法に従えば、結晶成長速度を単原子面レベ
ルで制御することができ(J、P、 van der 
Ziel他、J−Appl−phy、 48 (197
7) P4O10)、さらには反射型電子線回折法を併
用すればl原子面の組成をも正確に制御することができ
る( J、 H,Neave他、Appl。
BACKGROUND OF THE INVENTION Epitaxial growth methods are generally used as a manufacturing method for compound semiconductor devices, particularly electronic devices, because of the ease of growing thin, uniform layers and controlling the composition ratio of component elements. Among them, a molecular beam epitaxial growth method (hereinafter referred to as "rMBE growth method" for simplicity) is known as a technique that has recently attracted particular attention. For example, W, T, Ts
ang by Nikkei Electronics 808, 16
3 (1983), the MBE growth method and devices utilizing thin film periodic structures are described in detail. By following this MBE growth method, the crystal growth rate can be controlled at the monatomic level (J, P, van der
Ziel et al., J-Appl-phy, 48 (197
7) P4O10), and even the composition of the l atomic plane can be precisely controlled by using reflection electron diffraction (J, H, Neave et al., Appl.

phy、 A31,1 (1983) )。 このよう
なMBE法を用いることにより第2図に示すような高電
子移動度トランジスタ(以下r HEMT J と略す
)を製造することが可能となる。なお、従来の化合物半
導体を用いたマイクロ波素子については、たとえば特開
昭59−4085号および特開昭58−147169号
公報に記されている。
phy, A31, 1 (1983)). By using such an MBE method, it becomes possible to manufacture a high electron mobility transistor (hereinafter abbreviated as r HEMT J ) as shown in FIG. 2. Note that microwave elements using conventional compound semiconductors are described in, for example, Japanese Patent Laid-Open No. 59-4085 and Japanese Patent Laid-Open No. 58-147169.

第2図に示したHEMT構造は、半絶縁性GaAsの基
板10を有し、その基板lOの上には、バッファ層とし
て機能するGa As層11が形成され、更にその上に
、チャンネル層をなすアンドープGaAsJi12が形
成されている。そして、そのGaAs  層12の上に
は、n−Gax AI!1−X As  のような高い
不純物濃度の電子供給層13が形成され、その中央には
、高濃度にP型不純物を含有し、大きな電子親和力を有
する半導体よりなる層14が設けられ、そして、その層
14の上にはゲート電極15が形成されている。更に、
層14を挾む電子供給層13の表面領域16は合金化さ
れ、その上にソース及びドレインの電極17が形成され
ている。
The HEMT structure shown in FIG. 2 has a semi-insulating GaAs substrate 10, on which a GaAs layer 11 functioning as a buffer layer is formed, and a channel layer is further formed on it. Undoped GaAsJi 12 is formed. Then, on the GaAs layer 12, n-Gax AI! An electron supply layer 13 with a high impurity concentration such as 1-X As is formed, and a layer 14 made of a semiconductor containing a high concentration of P-type impurities and having a large electron affinity is provided in the center, and A gate electrode 15 is formed on the layer 14. Furthermore,
Surface regions 16 of electron supply layer 13 sandwiching layer 14 are alloyed and source and drain electrodes 17 are formed thereon.

このような半導体装置において、ゲート電極15に適当
なバイアス電圧を印加すると、電子供給層13とチャン
ネル層12との界面におけるチャンネル層12側に二次
電子蓄積層18が形成される。
In such a semiconductor device, when an appropriate bias voltage is applied to the gate electrode 15, a secondary electron storage layer 18 is formed on the channel layer 12 side at the interface between the electron supply layer 13 and the channel layer 12.

この結果、不純物イオンの少ないチャンネル層lz内の
界面近傍数10A0厚のところを、多量の電子が流れる
ことになる。従って、電子移動度を制限する1つの大き
な要因である不純物イオン散乱が少なく、高移動度を実
現することができる。
As a result, a large amount of electrons flow through the channel layer lz, which has a thickness of several tens of A0 near the interface, where there are few impurity ions. Therefore, impurity ion scattering, which is one of the major factors that limit electron mobility, is reduced, and high mobility can be achieved.

第2図の場合は、Ga As層とGa AlAs  層
の単一へテロ界面シておける電子の蓄積層を利用したも
のであるが、GaAs層とGa AI As  層の複
数のへテロ界面を利用した事例については、R,Din
gle他、Appi@Phys、 Lett、 33,
6B!y(1978)や、T。
In the case of Figure 2, an electron accumulation layer is used at a single hetero interface between a GaAs layer and a Ga AlAs layer, but it is also possible to use multiple hetero interfaces between a GaAs layer and a Ga AI As layer. For cases where R, Din
gle et al., Appi@Phys, Lett, 33,
6B! y (1978) and T.

J、 Drurrtnond他、J、 Appl、 P
hys、 53 (2) 、 1023(1982)な
どに詳細に述べられている。
J, Drurrtnond et al., J., Appl, P.
hys, 53 (2), 1023 (1982), etc.

発明が解決しようとする問題点 しかしながら、このような化合物半導体装置においては
、半絶縁性基板の上にエピタキシャル成長させるチャン
ネル層は約1OOA0と可成り厚く、この層が周期構造
を持つ平面状に成長するには、ヘテロ界面における格子
間隔の整合条件が問題となる。一般にA、B2材料のへ
テロ界面の格子不整合率は次の式で表わされる。
Problems to be Solved by the Invention However, in such a compound semiconductor device, the channel layer epitaxially grown on the semi-insulating substrate is quite thick, approximately 100A0, and this layer grows in a planar shape with a periodic structure. In this case, the matching condition of the lattice spacing at the hetero interface becomes a problem. Generally, the lattice mismatch rate of the heterointerface between A and B2 materials is expressed by the following formula.

格子不整合率 ヘテロ界面における均一な欠陥のないエピタキシャル層
を成長させるには、上述の格子不整合率を約0.396
以下にで抑える必要がある。この為当然基板が決まれば
エピタキシャル層の組成も決まり、ヘテロ界面における
エネルギーギャップの差を大きくとれないという欠点が
あった。
Lattice mismatch rate In order to grow a uniform defect-free epitaxial layer at the heterointerface, the above lattice mismatch rate should be approximately 0.396.
It is necessary to keep it below. For this reason, of course, once the substrate is determined, the composition of the epitaxial layer is also determined, and there is a drawback that it is not possible to maintain a large difference in energy gap at the heterointerface.

第3図は主要な化合物半導体についてエネルギーギャッ
プと格子定数との関係を示しkものである。
FIG. 3 shows the relationship between energy gap and lattice constant for major compound semiconductors.

半絶縁性基板としてはGa As基板とInP基板のみ
しか存在しないなめ、その上にエピタキシャル成長層と
の界面ならびにチャンネル層と電子供給層とのへテロ界
面の両方において格子整合をとるためには、前者に対し
てはGa Asチャンネル層とGax Al +−x 
AsまたはAI As電子供給層、後者に対してはI 
n o、ss Ga O,47Asチャンネル層とIn
(1,sg Gao4sAs  電子供給層を形成した
構造が採用されている。
Since there are only GaAs substrates and InP substrates as semi-insulating substrates, in order to achieve lattice matching at both the interface with the epitaxial growth layer and the hetero interface between the channel layer and the electron supply layer, it is necessary to use the former. For GaAs channel layer and Gax Al +-x
As or AI As electron supply layer, I for the latter
no,ss GaO,47As channel layer and In
(1, sg A structure in which a Gao4sAs electron supply layer is formed is adopted.

しかしながらチャンネル層をGaAs、  電子供給層
をkl Asとした場合、第3図からも明らかなように
両者のへテロ界面におけるエネルギーギャップの差は、
約0.7eVにしかならない。
However, when the channel layer is made of GaAs and the electron supply layer is made of klAs, as is clear from Fig. 3, the difference in energy gap at the heterointerface between the two is as follows.
It becomes only about 0.7 eV.

実際のへテロ界面における伝導体のエネルギー不連続の
大きさは、エネルギーギャップの差にDingle  
則と呼ばれる補正係数を乗じたものとなるが、この値が
小さいことは前述のチャンネル層における二次電子蓄積
層への電子の閉じ込め効果が減少し、二次電子蓄積層形
成の度合が低くなり、ひいてはへテロ界面における電子
移動度の低下をもたらす欠点があった。特に二次元電子
蓄積層における電子移動度の減少は低温から室温に近ず
くに従って顕著に現われる。
The size of the energy discontinuity of the conductor at the actual heterointerface is determined by the difference in the energy gap.
This value is multiplied by a correction coefficient called the 2000 correction coefficient, and this means that the aforementioned effect of confining electrons in the secondary electron storage layer in the channel layer decreases, and the degree of formation of the secondary electron storage layer decreases. This has the disadvantage of lowering electron mobility at the heterointerface. In particular, the decrease in electron mobility in the two-dimensional electron storage layer becomes more pronounced as the temperature approaches room temperature.

本発明は、上述の室温における二次元電子蓄積層内への
電子の閉じ込め効果の減少を抑制して、室温においても
、高い電子移動度を有するヘテロ界面を形成するための
化合物半導体装置を提供せんとするものである。
The present invention provides a compound semiconductor device that suppresses the decrease in the electron confinement effect in the two-dimensional electron storage layer at room temperature and forms a heterointerface having high electron mobility even at room temperature. That is.

問題点を解決するための手段 MBE成長法または有機金属成長法などを用いると、格
子定数の異なる化合物半導体薄膜を、その薄膜内に転位
などの欠陥を導入することなく、エピタキシャル成長さ
せることが可能である。また、格子定数の異なる化合物
半導体を、転位などの欠陥が入らない程度に薄くエピタ
キシャル成長させた場合、その界面近傍では弾性歪によ
り結晶格子が正方晶変形していることが、J、A、P、
 45. Jff9 。
Means to Solve the Problems By using the MBE growth method or metal organic growth method, it is possible to epitaxially grow compound semiconductor thin films with different lattice constants without introducing defects such as dislocations into the thin films. be. Furthermore, when compound semiconductors with different lattice constants are epitaxially grown to a thin enough thickness to prevent defects such as dislocations, the crystal lattice is tetragonally deformed due to elastic strain near the interface.
45. Jff9.

(1974) 8789などに記述されている。(1974) 8789, etc.

以上の知見に基づき、本発明者は次の提案を行なうもの
である。
Based on the above knowledge, the present inventor makes the following proposal.

(1)チャンネル層と電子供給層とのへテロ界面におけ
るエネルギーギャップの差を大きくなる材料を選ぶため
、従来技術の格子不整合率を低く抑えるという制約をは
ずす。
(1) In order to select a material that increases the difference in energy gap at the heterointerface between the channel layer and the electron supply layer, the constraint of keeping the lattice mismatch rate low in the conventional technology is removed.

(2)格子不整合率が大きな場合、エピタキシャル層を
薄くシ、転位などの欠陥が入らないようにする。
(2) If the lattice mismatch rate is large, make the epitaxial layer thin to prevent defects such as dislocations.

(3)薄膜を利用した場合の電流容量増大には、薄膜の
積層構造とする。
(3) To increase current capacity when using thin films, use a laminated structure of thin films.

(4)界面近傍の弾性歪に基づく、結晶格子の正方晶変
形をチャンネル層に応用し、高電界印加状態での電子の
移動度を大きくする。
(4) Applying tetragonal deformation of the crystal lattice based on elastic strain near the interface to the channel layer to increase electron mobility under high electric field application.

のようにすれば、室温においても高電子移動度の化合物
半導体装置が得られる。
By doing this, a compound semiconductor device with high electron mobility can be obtained even at room temperature.

以上からチャンネル層にInAsを電子供給層n型不純
物を添加したAI!Asを選択した場合、第3図から明
らかなようにエネルギーギャップの差は約1.8eV 
であり、従来のGa As−Aj7 Asの約0.7e
V に対し、はるかに大きな値をとり得る。このため室
温における二次元電子蓄積層内への電子の閉じ込め効果
の減少を抑制することが可能となる。
From the above, AI with InAs added to the channel layer and n-type impurities added to the electron supply layer! When As is selected, the difference in energy gap is approximately 1.8 eV, as is clear from Figure 3.
and about 0.7e of conventional GaAs-Aj7As
V can take on much larger values. Therefore, it is possible to suppress a reduction in the electron confinement effect within the two-dimensional electron storage layer at room temperature.

次にInAsとAj’ Asの格子不整合率は約7%で
あるが、この場合各層の厚みが約50^(原子面数にす
るとInAsの場合は約16原子面A/ Asの場合は
約18原子面)迄であれば、格子不整転位を導入するこ
となく、InAsとA/ Asを交互に積層させること
が実現可能である。
Next, the lattice mismatch rate between InAs and Aj' As is approximately 7%, but in this case the thickness of each layer is approximately 50^ (in terms of the number of atomic planes, in the case of InAs, it is approximately 16 atomic planes A/in the case of As, it is approximately 18 atomic planes), it is possible to alternately stack InAs and A/As without introducing lattice misalignment dislocations.

更にIn Asの格子定数(約0.65A)は、At 
Asの格子定数(約5.65A) )ζ比べて大きいこ
とから、両者の界面近傍においては、弾性歪のために、
InAs  結晶内の原子配列は、第4図に示す如く、
本来の弾性歪の存在しないときの構造である第4図(a
)とは異なり、第4図(b)のように結晶格子が弾性的
に正方晶変形することになる。この際n型の不純物をA
lAsに添加して電子供給層を作りInAsをチャンネ
ル層として交互にエビタキー薄1漢を積層すれば、二次
元電子蓄積層をInAs内に形成できる。この二次元電
子蓄積層はへテロ界面と平行であり、その中を走行する
電子はX方向に進行する。Y方向の原子振動による格子
散乱の度合は、弾性歪の存在しない第4図(a)の場合
に比べ、第4図(b)のように弾性歪のためY方向の原
子間隔が広がっている方が小さくなる。この結果室温に
おける電子の散乱機構である格子散乱をも低減すること
ができ、ひいては高電子移動度のデバイスが実現できる
Furthermore, the lattice constant of InAs (approximately 0.65A) is
Since the lattice constant of As (approximately 5.65A) is larger than ζ, near the interface between the two, due to elastic strain,
The atomic arrangement within the InAs crystal is as shown in Figure 4.
Figure 4 (a) shows the structure when there is no original elastic strain.
), the crystal lattice undergoes elastic tetragonal deformation as shown in FIG. 4(b). At this time, the n-type impurity is A
A two-dimensional electron storage layer can be formed in InAs by doping lAs to form an electron supply layer and alternately stacking Evitaky thin layers using InAs as a channel layer. This two-dimensional electron storage layer is parallel to the heterointerface, and electrons traveling therein travel in the X direction. The degree of lattice scattering due to atomic vibration in the Y direction is as shown in Figure 4 (b), compared to the case in Figure 4 (a) where there is no elastic strain, the atomic spacing in the Y direction is wider due to elastic strain. is smaller. As a result, lattice scattering, which is an electron scattering mechanism at room temperature, can also be reduced, and a device with high electron mobility can be realized.

実施例 第1図は、本発明による化合物半導体装置の一実施態様
である電界効果トランジスタ(以下[FETJ  と略
す)の概略断面図である。
Embodiment FIG. 1 is a schematic cross-sectional view of a field effect transistor (hereinafter abbreviated as FETJ) which is an embodiment of a compound semiconductor device according to the present invention.

第1図に示すFETは、半絶縁性InP基板1上にMB
E成長法を用いて形成されたInAs層(4OA厚)2
と、AA’ As層(40久)3とを交互に積層させた
構造のチャンネル層を有している。AlAs層には、n
型不純物としてSi  がドーピングされている。各層
数はInAs層、AI!As層とも各20層づつ形成さ
れており、チャンネル層の厚みは0.16μmである。
The FET shown in FIG.
InAs layer (4OA thickness) 2 formed using the E growth method
and AA' As layers (40 years) 3 are alternately stacked. The AlAs layer has n
Si is doped as a type impurity. The number of each layer is InAs layer, AI! Each of the As layers is formed with 20 layers, and the thickness of the channel layer is 0.16 μm.

キャリア密度は、InAs層(ノンドープ)が約8 X
 101−「3. AA’ As層が1X101’7c
IIt−3である。
The carrier density of the InAs layer (non-doped) is approximately 8
101-"3. AA' As layer is 1X101'7c
It is IIt-3.

MBE成長法を用いて形成されたエピタキシャル層の最
表面には、Au Ge Ni  合金を用いて、チャン
ネル層との間にオーミック接合を形成するようにソース
電極4ならびにドレイン電極5が設けられている。オー
ミック接合を形成する際にはAuGe Ni合金を蒸着
した後、400℃で合金化処理を行なった。その際にA
uとGe原子がチャンネル層内に拡散し、その拡散した
領域7.7′においてはInAsとkl Asの周期構
造が破壊され、I n O,51sJO,sAs  の
混晶となるため、容易に電極とオーミック接合を形成す
ることができる。更にMBE成長法により形成したエピ
タキシャル層の最表面には、部分的に酸化膜8を形成し
た後kl  を蒸着することによって、試料最表面にゲ
ート電極6が設けられている。
On the outermost surface of the epitaxial layer formed using the MBE growth method, a source electrode 4 and a drain electrode 5 are provided using an Au Ge Ni alloy so as to form an ohmic contact with the channel layer. . When forming an ohmic junction, an AuGe Ni alloy was deposited and then alloyed at 400°C. At that time, A
U and Ge atoms diffuse into the channel layer, and in the diffused region 7.7', the periodic structure of InAs and klAs is destroyed and becomes a mixed crystal of InO, 51sJO, sAs, so it is easy to form an electrode. It is possible to form an ohmic junction with. Furthermore, a gate electrode 6 is provided on the outermost surface of the sample by partially forming an oxide film 8 on the outermost surface of the epitaxial layer formed by the MBE growth method and then depositing kl.

以上のようなFETの構造において、InAs層は第4
図(b)のように結晶構造が弾性的に正方晶変形してお
り、またInAsとAI Asの界面には、従来のHE
MT Ga As −Gax Al!1−>(As系よ
りも大きなエネルギ不連続が存在しており、かつkl 
As層のみにSi  がドーピングされていることによ
り、室温においても従来のGa As −Gax AA
’ t−xAs系に比べて、閉じ込め効果の大きい二次
元電子蓄積層がInAs層のみに形成されている。
In the above FET structure, the InAs layer is the fourth
As shown in Figure (b), the crystal structure is elastically deformed into a tetragonal system, and the interface between InAs and AI As is
MTGaAs-GaxAl! 1->(There is a larger energy discontinuity than in the As system, and kl
Because only the As layer is doped with Si, the conventional GaAs-Gax AA
'Compared to the t-xAs system, a two-dimensional electron storage layer with a greater confinement effect is formed only in the InAs layer.

このようなFET構造において、ゲート電極に加える電
圧を制御することにより、ゲート電極下の0.16μm
厚のチャンネル層の空乏化の度合を制御することができ
、従来のGa As −Gax A77t−xAs系を
用いたFETに比べて、室温でのスイッチング速度の良
好なFETが得られた。
In such a FET structure, by controlling the voltage applied to the gate electrode, the 0.16 μm below the gate electrode can be
The degree of depletion of the thick channel layer could be controlled, and an FET with better switching speed at room temperature than a conventional FET using the GaAs-Gax A77t-xAs system was obtained.

発明の効果 本発明の化合物半導体装置によれば、InAsとAI!
Asの薄膜層を交互に積層し、AI Asにn型不純物
を添加することにより弾性的に正方晶変形しているIn
 As側に二次元電子蓄積層を形成することができる。
Effects of the Invention According to the compound semiconductor device of the present invention, InAs and AI!
In is elastically deformed into a tetragonal crystal by stacking Al thin film layers of As alternately and adding n-type impurities to AI As.
A two-dimensional electron storage layer can be formed on the As side.

InAsとkl Asとのエネルギーギャップ差は、従
来のGaAsとGax AJ’x−xAS  とのエネ
ルギーギャップ差に比べて大きいため、室温においても
二次元電子蓄積層への電子の閉じこめ効果が大きく、か
つ不純物散乱の少ない二次元電子蓄積層を走行する電子
数が増加し電子移動度が増大する。またInAsの格子
定数はAI!Asよりも著しく大きいため、InAs層
に弾性的な正方晶変形を生じ、InAs層内に形成され
た二次電子蓄積層を界面に平行な方向に電子が移動する
際の格子散乱が減少し、この効果によっても電子移動度
が増大する。したがって従来の化合物半導体装置に比較
して、高速に動作する半導体装置が実現できる。
Since the energy gap difference between InAs and klAs is larger than that between conventional GaAs and Gax AJ'x-xAS, the effect of confining electrons in the two-dimensional electron storage layer is large even at room temperature, and The number of electrons traveling through the two-dimensional electron storage layer with less scattering of impurities increases, and the electron mobility increases. Also, the lattice constant of InAs is AI! Because it is significantly larger than As, it causes elastic tetragonal deformation in the InAs layer, reducing lattice scattering when electrons move in the direction parallel to the interface through the secondary electron storage layer formed within the InAs layer. This effect also increases electron mobility. Therefore, a semiconductor device that operates faster than conventional compound semiconductor devices can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の装置の好ましい1態様を示す概略断面
図であり、 第2図は従来の高電子移動度トランジスタの概略断面図
であり、 第3図は化合物半導体におけるエネルギーギャップと格
子常数との関係を示すグラフであり、第4図(a)は、
弾性歪のない結晶構造(立方晶結晶)の模式図、第4図
(b)は弾性歪によって正方晶変形した結晶構造の模式
図である。 (主な参照番号) 1−m−半絶縁性In P 基板、2.− エピタキシ
ャルInAs層、3−−− Si  ドープのエピタキ
シャルAj’ As層、4および5−−−ソース電極と
ドレイン電極、6−−−ゲート電極、7および7′1.
・ AuGe Ni電極を合金化処理した際に周期構造
がこわれ混晶化した領域、8−−−酸化膜、10−−一
半絶縁性Ga As基板、l 1−−− Ga Asバ
ッファ層、12−−− Ga Asチャンネル層、l 
3−−−電子供給層、14−m−高濃度のP型不純物を
含有し、大きな電子親和力を有する半導体よりなる層、
15−m−ゲート電極、16−−−合金化領域、17−
−−ソース電極およびドレイン電極、18.− 二次電
子蓄積層。 、ヂ″:″ 代理人 弁理士  上 代 哲 司゛″′・;”−’y
’Ly、y’ LATTICE C0N5TANT (入)竿3図 X : InAs トA#AsI) 牟4図   51.やijA’:J’lJY : In
As ’t−A/As /)芥シ+=tiな方勾 手続補正書 昭和60年g月7日 特許庁長官 宇賀道部    殿 1、事件の表示 昭和60年特許願 第 119328  号2、発明の
名称 化合物半導体装置 & 補正をする者 事件との関係   特許出願人 住所    大阪市東区北浜5丁目15番地名称(21
3)住友電気工業株式会社 社長 用上哲部 屯代理人 住所    大阪市此花区島屋1丁目1番3号住友電気
工業株式会社内 7、補正の内容 (1)明細書第4頁第18行目から明細書第5頁第3行
目の「しかしながら、このような・・・・・が問題とな
る。Jを「しかしながら、このような化合物半導体装置
においては、半絶縁性基板の上に基板の格子定数とでき
るだけ等しいチャンネル層を形成させるべく構成されて
おり、しかも現在有用な半絶縁性化合物基板としては、
GaAsとInPのみしか存在していないことから、チ
ャンネル層として用いる材料の種類が著しく制限されて
しまう。」と補正する。 (2)明細書第5頁第9行目から明細書第5頁第10行
目の[]二述の格子−・輪・必要がある。」をr−h述
の格子不整合率の絶対値をできるだけ小さくする必要が
ある。」と補正する。 (3)明細書第8頁第5行目から明細書第8頁第6行目
の「高電界印加・・・・・を大きくする。」を1(4)
明細書第8頁第9行目から明細書第1O行目の「電子供
給層口型不純物を」を「電子供給層にn型不純物を」と
補正する。 (5)明細書第9頁第2行目の[(約0.65A0)」
を[(約6.05A”)Jを補正する。 (6)明細書第9頁第1O行目の「エビタキー薄膜」を
「エピタキシー薄膜Jと補正する。 (7)図面の第1図を別紙のとおり補正する。 第1図
FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of the device of the present invention, FIG. 2 is a schematic cross-sectional view of a conventional high electron mobility transistor, and FIG. 3 is a schematic cross-sectional view of a conventional high electron mobility transistor. FIG. 4(a) is a graph showing the relationship between
A schematic diagram of a crystal structure (cubic crystal) without elastic strain, and FIG. 4(b) is a schematic diagram of a crystal structure deformed into a tetragonal crystal due to elastic strain. (Main reference numbers) 1-m-semi-insulating InP substrate, 2. - epitaxial InAs layer, 3---Si-doped epitaxial Aj' As layer, 4 and 5---source and drain electrodes, 6---gate electrode, 7 and 7'1.
・A region where the periodic structure is broken and becomes a mixed crystal when the AuGe Ni electrode is alloyed, 8--Oxide film, 10--Semi-insulating GaAs substrate, l 1--GaAs buffer layer, 12- --GaAs channel layer, l
3--electron supply layer, 14-m-a layer made of a semiconductor containing a high concentration of P-type impurities and having a large electron affinity;
15-m-gate electrode, 16--alloyed region, 17-
--source electrode and drain electrode, 18. - Secondary electron storage layer. ,゛″:″ Agent Patent Attorney Senior Tetsuji゛″′・;”−'y
'Ly, y' LATTICE C0N5TANT (In) Rod 3 figure YaijA': J'lJY: In
As 't-A/As /) A+=ti Directional Procedures Amendment Form August 7, 1985 Michibe Uga, Commissioner of the Patent Office 1, Indication of the Case 1985 Patent Application No. 119328 2, Invention Name of Compound Semiconductor Device & Relationship with the Person Making Amendment Case Patent Applicant Address 5-15 Kitahama, Higashi-ku, Osaka Name (21
3) President of Sumitomo Electric Industries Co., Ltd. Tetsubetsu Yojo Agent Address: 7, Sumitomo Electric Industries Co., Ltd., 1-1-3 Shimaya, Konohana-ku, Osaka, Japan Contents of the amendment (1) Page 4, line 18 of the specification From page 5, line 3 of the specification, ``However, such...'' poses a problem. As a currently useful semi-insulating compound substrate that is configured to form a channel layer with a lattice constant as equal as possible,
Since only GaAs and InP are present, the types of materials that can be used for the channel layer are severely limited. ” he corrected. (2) The two-mentioned lattice--ring--is required from page 5, line 9 of the specification to page 5, line 10 of the specification. It is necessary to make the absolute value of the lattice mismatch rate expressed by ``rh'' as small as possible. ” he corrected. (3) "Increase high electric field application..." from page 8, line 5 of the specification to page 8, line 6 of the specification: 1 (4)
From page 8, line 9 of the specification to line 10 of the specification, ``the electron supply layer has a mouth-type impurity'' is corrected to ``the electron supply layer has an n-type impurity''. (5) [(approximately 0.65A0)” on page 9, line 2 of the specification
(approximately 6.05A”) J. (6) Correct “Epitaxy thin film” on page 9, line 10 of the specification to “Epitaxy thin film J.” (7) Figure 1 of the drawings is attached as an attached sheet. Correct as shown in Figure 1.

Claims (3)

【特許請求の範囲】[Claims] (1)半絶縁性基板上に多層薄膜構造の動作層を有する
半導体装置において、該動作層がInAs薄膜とn型不
純物を添加したAlAs薄膜よりなり、夫々を交互に積
層し二次電子の蓄積層をInAs薄膜内に形成すること
を特徴とする化合物半導体装置。
(1) In a semiconductor device having an active layer with a multilayer thin film structure on a semi-insulating substrate, the active layer is composed of an InAs thin film and an AlAs thin film doped with n-type impurities, and these are alternately stacked to accumulate secondary electrons. A compound semiconductor device characterized in that a layer is formed within an InAs thin film.
(2)前記化合物半導体多層薄膜層の全層数は、4〜1
000層の範囲内にあることを特徴とする特許請求の範
囲第1項記載の化合物半導体装置。
(2) The total number of layers of the compound semiconductor multilayer thin film layer is 4 to 1.
2. The compound semiconductor device according to claim 1, wherein the compound semiconductor device is within a range of 000 layers.
(3)前記化合物半導体多層薄膜層の各層の厚さは、3
〜16原子面の範囲内にあることを特徴とする特許請求
の範囲第1項記載の化合物半導体装置。
(3) The thickness of each layer of the compound semiconductor multilayer thin film layer is 3
2. The compound semiconductor device according to claim 1, wherein the atomic plane is within a range of 16 to 16 atomic planes.
JP11932885A 1985-03-15 1985-05-31 Compound semiconductor device Pending JPS61278168A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP11932885A JPS61278168A (en) 1985-05-31 1985-05-31 Compound semiconductor device
CA000504069A CA1256590A (en) 1985-03-15 1986-03-13 Compound semiconductor device with layers having different lattice constants
AU54742/86A AU577934B2 (en) 1985-03-15 1986-03-14 Compound semiconductor device
EP86103425A EP0196517B1 (en) 1985-03-15 1986-03-14 Compound semiconductor device
DE8686103425T DE3672360D1 (en) 1985-03-15 1986-03-14 CONNECTING SEMICONDUCTOR COMPONENT.
KR1019860001897A KR860007745A (en) 1985-03-15 1986-03-15 Compound Semiconductor Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11932885A JPS61278168A (en) 1985-05-31 1985-05-31 Compound semiconductor device

Publications (1)

Publication Number Publication Date
JPS61278168A true JPS61278168A (en) 1986-12-09

Family

ID=14758750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11932885A Pending JPS61278168A (en) 1985-03-15 1985-05-31 Compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS61278168A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278857A (en) * 2005-03-30 2006-10-12 Ngk Insulators Ltd Semiconductor laminate structure, semiconductor device, and equipment using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607121A (en) * 1983-06-24 1985-01-14 Nec Corp Structure of super lattice
JPS6028273A (en) * 1983-07-26 1985-02-13 Nec Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607121A (en) * 1983-06-24 1985-01-14 Nec Corp Structure of super lattice
JPS6028273A (en) * 1983-07-26 1985-02-13 Nec Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278857A (en) * 2005-03-30 2006-10-12 Ngk Insulators Ltd Semiconductor laminate structure, semiconductor device, and equipment using the same

Similar Documents

Publication Publication Date Title
US5060030A (en) Pseudomorphic HEMT having strained compensation layer
JP3209270B2 (en) Heterojunction field effect transistor
US5144378A (en) High electron mobility transistor
EP0249371A2 (en) Semiconductor device including two compound semiconductors, and method of manufacturing such a device
JP2571583B2 (en) III-V compound semiconductor field effect transistor
JPS61278168A (en) Compound semiconductor device
JP2557373B2 (en) Compound semiconductor device
JPH02130933A (en) Field effect transistor
JP2000068497A (en) GaN-BASED COMPOUND SEMICONDUCTOR DEVICE
JPS621277A (en) Compound semiconductor device
JP2501627B2 (en) Structure of compound semiconductor and method of forming the same
JP2808671B2 (en) Field effect transistor
JP2703885B2 (en) Semiconductor device
JPH04343438A (en) Field effect transistor
JPS61210678A (en) Compound semiconductor device
JPH04142750A (en) High electron mobility transistor
JPS61276269A (en) Hetero-junction type field-effect transistor
JPH0354853B2 (en)
JPS6312394B2 (en)
JP2614490B2 (en) Heterojunction field effect transistor
JPS61274312A (en) Compound semiconductor device
JPH06196507A (en) Semiconductor device
JP3418665B2 (en) Method for manufacturing semiconductor device
JPH0748474B2 (en) Structure of semiconductor crystal
JPH0328063B2 (en)