JPH0354853B2 - - Google Patents

Info

Publication number
JPH0354853B2
JPH0354853B2 JP60052023A JP5202385A JPH0354853B2 JP H0354853 B2 JPH0354853 B2 JP H0354853B2 JP 60052023 A JP60052023 A JP 60052023A JP 5202385 A JP5202385 A JP 5202385A JP H0354853 B2 JPH0354853 B2 JP H0354853B2
Authority
JP
Japan
Prior art keywords
layer
compound semiconductor
thin film
crystal
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60052023A
Other languages
Japanese (ja)
Other versions
JPS61210677A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5202385A priority Critical patent/JPS61210677A/en
Priority to CA000504069A priority patent/CA1256590A/en
Priority to EP86103425A priority patent/EP0196517B1/en
Priority to AU54742/86A priority patent/AU577934B2/en
Priority to DE8686103425T priority patent/DE3672360D1/en
Priority to KR1019860001897A priority patent/KR860007745A/en
Publication of JPS61210677A publication Critical patent/JPS61210677A/en
Publication of JPH0354853B2 publication Critical patent/JPH0354853B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • H01L29/152Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
    • H01L29/155Comprising only semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、化合物半導体装置に関する。更に詳
しくは本発明は、格子定数の異なる2種類の化合
物半導体薄膜層を交互に積層させて、既存のいわ
ゆる混晶化合物半導体と異なるエネルギーバンド
構造を実現することにより、高電界印加状態にお
ける電子移動度を大きくした化合物半導体装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a compound semiconductor device. More specifically, the present invention achieves an energy band structure different from that of existing so-called mixed crystal compound semiconductors by alternately stacking two types of compound semiconductor thin film layers with different lattice constants, thereby improving electron transfer under high electric field conditions. The present invention relates to a compound semiconductor device with a high degree of performance.

従来の技術 化合物半導体デバイス、特に電子デバイスの製
法として、薄い一様な層の成長、成分元素組成比
の制御の容易さからエピタキシヤル成長方法が一
般的に利用されている。なかでも、最近特に注目
されている技術として、分子線エピタキシヤル成
長方法(以下簡単のために「MBE成長法」とい
う)が知られている。例えばW.T.Tsangにより
日経エレクトロニクスNo.308163(1983)において、
MBE成長法並びに薄膜周期構造を利用したデバ
イスが詳細に説明されている。
BACKGROUND OF THE INVENTION Epitaxial growth methods are generally used as a manufacturing method for compound semiconductor devices, especially electronic devices, because of the ease of growing thin, uniform layers and controlling the composition ratio of component elements. Among these, a molecular beam epitaxial growth method (hereinafter referred to as "MBE growth method" for simplicity) is known as a technique that has recently attracted particular attention. For example, in Nikkei Electronics No. 308163 (1983) by WTTsang,
The MBE growth method and devices using thin film periodic structures are explained in detail.

このMBE成長法に従えば、結晶成長速度を単
原子面レベルで制御することができ(J.P.van
der Ziel他、J.Appl.Phys.48(1977)P3018)、さ
らには、反射型電子線回折法を併用すれば1原子
面の組成をも正確に制御することができる(J.H.
Neave他、Appl.Phys.A31,1(1983))。このよ
うなMBE法を用いることにより、第3図に示す
ような高電子移動度トランジスタ(以下、
HEMTと略す)を製造することが可能となる。
By following this MBE growth method, the crystal growth rate can be controlled at the monatomic level (JPvan
der Ziel et al., J. Appl. Phys. 48 (1977) P3018), and furthermore, the composition of even a single atomic plane can be precisely controlled by using reflection electron diffraction (J.H.
Neave et al., Appl. Phys. A31, 1 (1983)). By using such an MBE method, a high electron mobility transistor (hereinafter referred to as
This makes it possible to manufacture HEMT (abbreviated as HEMT).

なお、従来の化合物半導体を用いたマイクロ波
素子については、たとえば特開昭59−4085号およ
び特開昭58−147169号公報に記されている。
Note that microwave elements using conventional compound semiconductors are described in, for example, Japanese Patent Laid-Open No. 59-4085 and Japanese Patent Laid-Open No. 58-147169.

第3図に示したHEMT構造は、半絶縁性GaAs
の基板1を有し、その基板1の上には、バツフア
層として機能するGaAs層2が形成され、更にそ
の上に、チヤンネル層をなすアンドープのGaAs
層3が形成されている。そして、そのGaAs層3
上には、n−GaxAl1-xAsのような高い不純物濃
度の電子供給層4が形成され、その中央には、高
濃度にp型不純物を含有し、大きな電子親和力を
有する半導体よりなる層5が設けられ、そして、
その層5の上にはゲート電極6が形成されてい
る。更に、層5を挟む電子供給層4の表面領域7
は合金化され、その上にソース及びドレインの電
極8が形成されている。
The HEMT structure shown in Figure 3 is a semi-insulating GaAs
A GaAs layer 2 functioning as a buffer layer is formed on the substrate 1, and an undoped GaAs layer 2 serving as a channel layer is further formed on the substrate 1.
Layer 3 is formed. And the GaAs layer 3
On top, an electron supply layer 4 with a high impurity concentration such as n-Ga x Al 1-x As is formed, and in the center of the layer 4 there is formed an electron supply layer 4 with a high concentration of p-type impurities, such as n-Ga x Al 1-x As. A layer 5 is provided, and
A gate electrode 6 is formed on the layer 5. Furthermore, the surface region 7 of the electron supply layer 4 sandwiching the layer 5
are alloyed, and source and drain electrodes 8 are formed thereon.

このような半導体装置において、ゲート電極6
に適当なバイアス電圧を印加すると、電子供給層
4とチヤンネル層3との界面におけるチヤンネル
層3側に、二次元電子ガス9が形成される。この
結果、不純物イオンの少ないチヤンネル層3内の
界面近傍数10Å厚のところを、多量の電子が流れ
ることになる。従つて、電子移動度を制限する1
つの大きな要因である不純物イオン散乱が少な
く、高移動度を実現することができる。
In such a semiconductor device, the gate electrode 6
When an appropriate bias voltage is applied to the electron supply layer 4 and the channel layer 3, a two-dimensional electron gas 9 is formed on the channel layer 3 side at the interface between the electron supply layer 4 and the channel layer 3. As a result, a large amount of electrons flows through the channel layer 3, which has a thickness of several tens of angstroms near the interface, where there are few impurity ions. Therefore, 1 which limits the electron mobility
There is little impurity ion scattering, which is one of the major factors, and high mobility can be achieved.

発明が解決しようとする問題点 しかしながら、このような化合物半導体装置に
おいては、二次元電子ガスにおける電子移動度の
印加電界強度依存性が極めて大きく、低電界の場
合には高移動度を実現できるが、高電界の場合に
はその移動度が著しく低下してしまう。このよう
な現象は、例えば、M.Inoue他J.J.A.P.22 357
(1983)に記述されている。また、その1例を上
記したマイクロ波素子のようなGaAs/n−Gax
Al1-xAs構造の場合について示すと、第4図の点
線の如くなる。
Problems to be Solved by the Invention However, in such a compound semiconductor device, the dependence of electron mobility in a two-dimensional electron gas on the applied electric field strength is extremely large, and although high mobility can be achieved in the case of a low electric field, , in the case of a high electric field, its mobility decreases significantly. Such a phenomenon, for example, M. Inoue et al. JJAP 22 357
(1983). In addition, one example is the GaAs/n-Ga x
The case of the Al 1-x As structure is shown by the dotted line in FIG.

このような高電界印加状態における半導体内で
の電子散乱機構としては、インターバレイ(谷
間)散乱やインパクトイオナイゼーシヨンあるい
はフオノン(格子振動)散乱などが挙げられる。
そのため、一般に超高周波トランジスタにおいて
チヤンネル層として用いられる半導体結晶は、以
下の特性の向上が要求される。
Electron scattering mechanisms within the semiconductor under such high electric field application include intervalley scattering, impact ionization, and phonon (lattice vibration) scattering.
Therefore, semiconductor crystals generally used as channel layers in ultra-high frequency transistors are required to have the following improved characteristics.

インターバレイ散乱を起こりにくくするため
に、k空間での谷間のあいだのエネルギー差
ΔEが大きいこと。
To make intervalley scattering less likely to occur, the energy difference ΔE between the valleys in k-space must be large.

インパクトイオナイゼーシヨンを起こりにく
くするために、エネルギーギヤツプEqが大き
いこと。
The energy gap Eq must be large to make impact ionization less likely to occur.

キヤリア電子の運動エネルギーのフオノン散
乱による損失を小さくするために、有効質量
m*が小さいこと。
In order to reduce the loss of carrier electron kinetic energy due to phonon scattering, the effective mass
m * is small.

谷間間のエネルギー差ΔE、エネルギーギヤツ
プEqなどのパラメータについては、GaAs結晶の
エネルギーバンド構造を例に挙げるならば、第5
図の如くである。また、有効質量m*はエネルギ
ーバンド構造との間に、 1/m*=1/〓2・d2E(k)/dk2 のような関係がある。
For parameters such as the energy difference ΔE between valleys and the energy gap Eq , taking the energy band structure of GaAs crystal as an example, the fifth
As shown in the figure. Moreover, the relationship between the effective mass m * and the energy band structure is as follows: 1/m * =1/〓 2 ·d 2 E(k)/dk 2 .

しかしながら、従来の化合物半導体装置におい
ては、実質的な厚さを持つ各層の化合物半導体
は、均一な組成構造を追求されているために、上
記したΔE,Eq,m*は自ずと決まつていた。その
ために、上記した散乱の解消には壁があり、高電
界印加状態において高い電子移動度が実現できな
かつた。
However, in conventional compound semiconductor devices, the compound semiconductor in each layer with a substantial thickness is sought to have a uniform composition structure, so the above-mentioned ΔE, E q , and m * are naturally determined. . Therefore, there is a barrier to eliminating the above-mentioned scattering, and high electron mobility cannot be achieved in a state where a high electric field is applied.

そこで、本発明は、上記した電子散乱の影響を
抑えて、高電界印加状態においても高い電子移動
度を有する化合物半導体装置を提供せんとするも
のである。
Therefore, the present invention aims to provide a compound semiconductor device that suppresses the above-mentioned effects of electron scattering and has high electron mobility even when a high electric field is applied.

問題点を解決するための手段 そこで、本発明者は、上記目的のために電子散
乱の問題を種々研究した。
Means for Solving the Problems Therefore, the present inventor conducted various studies on the problem of electron scattering for the above purpose.

上記説明からわかるように、超高周波トランジ
スタにおいて、チヤンネル層として用いられる化
合物半導体結晶は、そのエネルギーバンド構造を
変えることにより、高電界印加状態でのインター
バレイ散乱やインパクトイオナイゼーシヨンによ
る散乱を低下させ、あるいは電子の有効質量を小
さくすることによつて、高電界印加状態における
移動度を大きくすることができる。
As can be seen from the above explanation, the compound semiconductor crystal used as the channel layer in ultra-high frequency transistors reduces scattering due to intervalley scattering and impact ionization when a high electric field is applied by changing its energy band structure. The mobility in a high electric field application state can be increased by increasing or decreasing the effective mass of electrons.

一方、半導体のエネルギーバンド構造に関する
LCAO理論によると、エネルギーバンド構造を計
算する際に重要となるハミルトニアンの非対角行
列要素VLLnは、 VLLn=ηLLn・〓2/mp・d2 で表わされる。ただし、1、1′はそれぞれ結晶を
構成する隣接原子の最外殻p軌道の方位量子数、
mは同じく磁気量子数であり、dは隣接原子の核
間距離、mpは電子質量、ηLLnは結晶構造に依存
した係数、〓=h/2π(h:プランク定数)であ
る。
On the other hand, regarding the energy band structure of semiconductors,
According to LCAO theory, the off-diagonal matrix element V LLn of the Hamiltonian, which is important when calculating the energy band structure, is expressed as V LLnLLn・〓 2 /m p・d 2 . However, 1 and 1′ are the azimuthal quantum numbers of the outermost p-orbitals of adjacent atoms constituting the crystal, respectively;
Similarly, m is the magnetic quantum number, d is the internuclear distance of adjacent atoms, m p is the electron mass, η LLn is a coefficient depending on the crystal structure, 〓=h/2π (h: Planck's constant).

また、ハミルトニアンの対角行列要素εs c、εs a
εp c、εp aなどは、相対的には弧立原子の項値に関
連したものである。ただし、εs cは極性化合物半
導体の陽イオン原子S軌道の項値に関連してお
り、同様に、εs aは陰イオン原子S軌道の項値に、
εp cは陽イオン原子P軌道の項値に、εp aは陰イオ
ン原子P軌道の項値にそれぞれ関連している。
Also, the diagonal matrix elements ε s c , ε s a ,
ε p c , ε p a , etc. are relatively related to the term value of the vertical atom. However, ε s c is related to the term value of the cation atomic S orbit of the polar compound semiconductor, and similarly, ε s a is related to the term value of the anion atomic S orbit,
ε p c is related to the term value of the cation atomic P orbital, and ε p a is related to the term value of the anion atomic P orbital.

この既成理論(たとえば、W.A.Harrison,
Electronic Structure and the Properties of
Solids,1980参照)によれば、結晶構造または原
子配列を変えることにより、すなわち化合物半導
体結晶中における隣接原子の核間距離dならびに
隣接原子の種類を変えることにより、ハミルトニ
アンの行列要素VLLn、εs a、εs c、εp a、εp cを変え
ることができる。このことは、結晶構造または原
子配列を変えることにより化合物半導体のエネル
ギーバンド構造を変えることができることを意味
する。
This established theory (for example, WA Harrison,
Electronic Structure and the Properties of
Solids, 1980), by changing the crystal structure or atomic arrangement, that is, by changing the internuclear distance d of adjacent atoms in a compound semiconductor crystal as well as the type of adjacent atoms, the matrix element V LLn of the Hamiltonian can be changed. , ε sa , ε sc , ε p a , and ε p c can be changed. This means that the energy band structure of a compound semiconductor can be changed by changing the crystal structure or atomic arrangement.

一方、最近の化合物半導体結晶成長技術におい
ては、上記したように、分子線エピタキシヤル成
長法(MBE法)や有機金属気相成長法
(MOCVD、MOVPEなどと略す)などのように、
成長層厚の制御が単原子層程度にまで向上してお
り、現にGaAsとAlAsを用いて単原子レベルで交
互に積層することに成功している(A.C.
Gossard,Thin Solid Films57,3(1979)。
On the other hand, as mentioned above, recent compound semiconductor crystal growth techniques include molecular beam epitaxial growth (MBE) and metal organic vapor phase epitaxy (abbreviated as MOCVD, MOVPE, etc.).
Control of the growth layer thickness has been improved to the level of a single atomic layer, and we have actually succeeded in stacking GaAs and AlAs alternately at the single atomic level (AC
Gossard, Thin Solid Films 57 , 3 (1979).

しかしながら、GaAsとAlAsとを交互に積層し
た場合は、格子不整が約0.3%と極めて小さく、
ゆえにこれら2種類の層を交互に積層することに
よつて生じる結晶格子の歪みは小さい。このこと
は、従来のGaxAl1-xAs混晶に比べて、原子配列
のみが若干変化し、結晶構造はほとんど変化して
いないことを意味し、ゆえにエネルギーバンド構
造も大きな変化を示さない。
However, when GaAs and AlAs are stacked alternately, the lattice mismatch is extremely small at about 0.3%.
Therefore, distortion of the crystal lattice caused by alternately stacking these two types of layers is small. This means that compared to the conventional Ga x Al 1-x As mixed crystal, only the atomic arrangement has changed slightly, and the crystal structure has hardly changed, so the energy band structure does not show any major changes. .

ところが、2種類の層の格子不整を約1.5%と
大きくした場合には、エネルギーギヤツプEq
大きな変化が観測されている(G.C.Osbourn他、
J.Appl.Phys.48(1977)3018)。すなわち、この
ように格子不整が比較的大きい場合には、原子配
列だけではなく結晶構造の変化も生じ、エネルギ
ーバンド構造の比較的大きな変化が観測されてい
る。
However, when the lattice misalignment of the two types of layers is increased to about 1.5%, a large change in the energy gap Eq has been observed (GCOsbourn et al.
J.Appl.Phys. 48 (1977) 3018). That is, when the lattice misalignment is relatively large like this, not only the atomic arrangement but also the crystal structure changes, and a relatively large change in the energy band structure is observed.

しかしながら、この報告の場合においては、各
層厚が100〜200Åと厚くなつており、2種類の層
の界面近傍における結晶格子の歪んだ部分に比べ
て、結晶格子の歪んでいない従来通りの結晶構造
をとつている部分の方が極めて多くなつている。
このため、エネルギーバンド構造についてもその
ほとんどが、各層の従来通りの結晶構造に起因し
たエネルギーバンド構造によつて支配されてお
り、結晶格子の歪んだ部分からの寄与は小さい。
このように結晶格子の歪みが、各層の界面近傍に
限られているという事実は、J.M.Brown他、A.
P.L.43(1983)863に記されている。さらに、こ
のような格子不整に基く歪みによつて結晶構造が
変化するという直接的な結果は、J.A.P.45,No.
9,(1974)3789に記されている。
However, in the case of this report, the thickness of each layer is as thick as 100 to 200 Å, and compared to the distorted part of the crystal lattice near the interface between the two types of layers, the conventional crystal structure with an undistorted crystal lattice is observed. There are an extremely large number of areas that have .
Therefore, most of the energy band structure is dominated by the energy band structure resulting from the conventional crystal structure of each layer, and the contribution from distorted portions of the crystal lattice is small.
The fact that the distortion of the crystal lattice is limited to the vicinity of the interface between each layer is explained by JMBrown et al., A.
PL 43 (1983) 863. Furthermore, the direct result that the crystal structure changes due to distortion due to such lattice misalignment is reported in JAP 45 , No.
9, (1974) 3789.

以上のことから、格子不整の大きな2種類の化
合物半導体薄膜層を交互に積層させることによ
り、成長層全体にわたつて結晶構造または電子配
列を変えることができる。
From the above, by alternately stacking two types of compound semiconductor thin film layers with large lattice misalignment, the crystal structure or electronic arrangement can be changed over the entire growth layer.

なお、化合物半導体薄膜層を交互に積層させた
半導体装置という点で類似の報告は、たとえば、
特開昭59−76468号公報あるいはT.Yao,J.J.A.
P.22(1983)L680にあるが、それらは、エネル
ギーバンド構造を改良したものでは全くない。
Note that similar reports regarding semiconductor devices in which compound semiconductor thin film layers are alternately laminated include, for example,
JP-A-59-76468 or T. Yao, JJA
P. 22 (1983) L680, but they do not improve the energy band structure at all.

本発明は、かかる知見に基づく研究の結果なさ
れたものである。すなわち、本発明によるなら
ば、基板と、該基板上に形成されたチヤンネル層
と、該チヤンネル層の上に形成されたシヨツトキ
ー接合のゲート電極と、該ゲート電極の両側にお
いて該ゲート電極から離れて前記チヤンネル層の
上に形成されたオーミツク接合のソース電極及び
ドレイン電極とを具備しており、前記チヤンネル
層が、格子定数の異なる2種類の化合物半導体薄
膜層を交互に積層して構成され、前記化合物半導
体薄膜層の各層の厚さが1〜100原子面の範囲内
にあり、前記格子定数の相違が、0.3%以上6.5%
以下の範囲にあることを特徴とする化合物半導体
装置が提供される。
The present invention was made as a result of research based on such knowledge. In other words, according to the present invention, a substrate, a channel layer formed on the substrate, a Schottky junction gate electrode formed on the channel layer, and a gate electrode separated from the gate electrode on both sides of the gate electrode. The channel layer includes an ohmic junction source electrode and a drain electrode formed on the channel layer, and the channel layer is configured by alternately laminating two types of compound semiconductor thin film layers having different lattice constants, and The thickness of each layer of the compound semiconductor thin film layer is within the range of 1 to 100 atomic planes, and the difference in lattice constant is 0.3% or more and 6.5%.
A compound semiconductor device is provided that is characterized by being within the following range.

作 用 以上のような化合物半導体装置において、チヤ
ンネル層をなす各薄膜層の化合物半導体は、互い
に格子定数が異なり且つ極めて薄いので、各層の
実質的部分にわたつてエネルギーバンド構造が変
化し、その結果、高電界印加状態でのチヤンネル
層内における電子輸送過程でのインターバレイ散
乱やインパクトイオナイゼーシヨンによる散乱を
低下させあるいは電子の有効質量を減少させる。
従つて、高電界印加状態でのチヤンネル層におけ
る電子移動度が高く維持される。
Function In the above-described compound semiconductor device, the compound semiconductors in each thin film layer forming the channel layer have different lattice constants and are extremely thin, so the energy band structure changes over a substantial portion of each layer. , to reduce scattering due to intervalley scattering or impact ionization during the electron transport process in the channel layer under high electric field application, or to reduce the effective mass of electrons.
Therefore, the electron mobility in the channel layer is maintained at a high level when a high electric field is applied.

実施例 以下に図面を参照して本発明について詳細に説
明する。
EXAMPLES The present invention will be described in detail below with reference to the drawings.

第1図は、本発明による化合物半導体装置の実
施例を図解した断面図である。なお、第1図は、
本発明を電界効果トランジスタ(以下FETと略
す)として実施した例を示している。
FIG. 1 is a cross-sectional view illustrating an embodiment of a compound semiconductor device according to the present invention. In addition, Figure 1 shows
An example in which the present invention is implemented as a field effect transistor (hereinafter abbreviated as FET) is shown.

第1図に示すFETは、半絶縁性InP基板10上
に、InAsとAlAsをそれぞれ数原子層づつ交互に
それぞれ約80層づつ積層させた結晶構造を有する
AlxIn1-xAs化合物半導体結晶多層薄膜層11が
FETのチヤンネル層として形成されている。そ
の多層薄膜層11の全体の膜厚は0.1μmである。
なお、このような多層薄膜層11は、半絶縁性の
InP基板10上にMBE成長法を用いて形成した。
The FET shown in Figure 1 has a crystal structure in which about 80 layers of InAs and AlAs are alternately stacked on a semi-insulating InP substrate 10, each with several atomic layers each.
Al x In 1-x As compound semiconductor crystal multilayer thin film layer 11
It is formed as a channel layer of FET. The total thickness of the multilayer thin film layer 11 is 0.1 μm.
Note that such a multilayer thin film layer 11 is made of semi-insulating material.
It was formed on an InP substrate 10 using the MBE growth method.

さらに、多層薄膜層11の表面には、AuGeNi
オーミツク接合電極12を蒸着し、ソースとドレ
イン電極を形成した。また、Alシヨツトキー接
合電極13を蒸着し、ゲート電極を形成した。
Furthermore, on the surface of the multilayer thin film layer 11, AuGeNi
Ohmic junction electrodes 12 were deposited to form source and drain electrodes. Further, an Al shot key junction electrode 13 was deposited to form a gate electrode.

AuGeNiオーミツク電極12を形成する際の蒸
着ならびに合金処理によつて、Au原子が化合物
半導体結晶多層薄膜層11中に拡散していく。こ
れによつて、化合物半導体結晶多層薄膜層11内
の積層構造の周期性が乱れ、この領域14におけ
る結晶構造は、従来のAlxIn1-xAs混晶結晶と同一
になつてしまう。この結果、この領域でのエネル
ギーバンド構造も、従来のAlxIn1-xAs混晶結晶と
同一になり、オーミツク接合を形成することに何
ら弊害は生じなかつた。このような拡散によつて
化合物半導体多層薄膜層の積層構造の周期性が破
壊されるという類似の現象は、すでにN.
Holonyak他、A.P.L.39(1981)102などで発表
されている。
Au atoms are diffused into the compound semiconductor crystal multilayer thin film layer 11 by vapor deposition and alloying treatment when forming the AuGeNi ohmic electrode 12 . As a result, the periodicity of the laminated structure within the compound semiconductor crystal multilayer thin film layer 11 is disturbed, and the crystal structure in this region 14 becomes the same as that of the conventional Al x In 1-x As mixed crystal. As a result, the energy band structure in this region was also the same as that of the conventional Al x In 1-x As mixed crystal, and no adverse effects occurred in forming an ohmic junction. A similar phenomenon in which the periodicity of the laminated structure of a compound semiconductor multilayer thin film layer is destroyed by such diffusion has already been reported by N.
Published in Holonyak et al., APL 39 (1981) 102, etc.

第1図に示すソース電極12、ドレイン電極1
2、ゲート電極13などについては、従来の
FET構造作製時に行なわれている従来技術を用
いることにより、FETとしての機能を有するこ
とも確認できた。
Source electrode 12 and drain electrode 1 shown in FIG.
2. Regarding gate electrode 13 etc., conventional
By using the conventional technology used to fabricate the FET structure, we were able to confirm that it functions as an FET.

さらに、第1図における化合物半導体結晶多層
薄膜層11において、結晶構造やエネルギーバン
ド構造が同一組成を有するAlxIn1-xAs混晶結晶と
は全く異なることについても、X線回折や光吸収
などの測定を行なうことによつて確認できた。こ
の結果、第2図に示すように高電界領域における
電子移動度が、同一組成を有する従来のAlxIn1-x
As混晶の場合に比べて約3倍に向上した。
Furthermore, the fact that the crystal structure and energy band structure of the compound semiconductor crystal multilayer thin film layer 11 in FIG. This could be confirmed by conducting measurements such as As a result, as shown in Figure 2, the electron mobility in the high electric field region is lower than that of conventional Al x In 1-x with the same composition.
The improvement was approximately three times that of the As mixed crystal case.

また、上記実施例と同様な構成で、化合物半導
体結晶多層薄膜層11の各薄膜層の厚さを1原子
面から100原子面の間で変えたところ、従来例に
比較しての差に相違はあつたが、同様な結果が得
られた。但し、同一組成の薄膜層は、多層薄膜層
全体にわたつて同一の厚さが好ましい。
In addition, when the thickness of each thin film layer of the compound semiconductor crystal multilayer thin film layer 11 was changed from 1 atomic plane to 100 atomic planes using the same structure as the above example, there was a difference compared to the conventional example. However, similar results were obtained. However, it is preferable that the thin film layers having the same composition have the same thickness throughout the multilayer thin film layer.

なお、上記実施例において、多層薄膜層の構成
層としてInAs(格子定数6.058Å)、AlAs(5.662
Å)、を使用した。この場合の格子定数の差は、
約6.5%である。
In the above example, InAs (lattice constant 6.058 Å) and AlAs (5.662 Å) were used as constituent layers of the multilayer thin film layer.
Å) was used. In this case, the difference in lattice constant is
It is approximately 6.5%.

一般に、化合物半導体結晶多層薄膜層11の各
層の厚さが厚くなるに従い、各薄膜層がその化合
物半導体結晶本来の格子定数をとる傾向が強ま
り、従つて、多層薄膜層11の各層の厚さを薄く
するほど、各薄膜層がその化合物半導体結晶本来
の格子定数をとる傾向が弱くなると言える。それ
故、格子不整による転位は、格子定数の差を一定
とした場合、膜厚が厚くなるほど生じやすいと言
える。換言するならば、格子不整による転位が生
じない格子不整の上限は膜厚に依存すると言え
る。
Generally, as the thickness of each layer of the compound semiconductor crystal multilayer thin film layer 11 increases, the tendency for each thin film layer to adopt the lattice constant inherent to the compound semiconductor crystal increases. It can be said that the thinner the layer, the weaker the tendency of each thin film layer to take on the lattice constant inherent in the compound semiconductor crystal. Therefore, it can be said that dislocations due to lattice misalignment occur more easily as the film thickness increases, assuming that the difference in lattice constant is constant. In other words, it can be said that the upper limit of lattice misalignment at which dislocations do not occur due to lattice misalignment depends on the film thickness.

すなわち、化合物半導体結晶多層薄膜層11の
各層の厚さを1原子面から100原子面の範囲とし
た場合、多層薄膜層11の各層の厚さを薄くする
ほど、格子定数の差を大きくとることができ、多
層薄膜層11の各層の厚さが厚くなるに従い、格
子定数の差を小さくする必要がある。そこで、上
記実施例でのInAs層及びAlAs層の厚さを考える
ならば、上記した格子定数の差約6.5%は、格子
定数の差の上限の目安と考えることができる。
That is, when the thickness of each layer of the compound semiconductor crystal multilayer thin film layer 11 is in the range of 1 atomic plane to 100 atomic planes, the thinner the thickness of each layer of the multilayer thin film layer 11, the larger the difference in lattice constant. As the thickness of each layer of the multilayer thin film layer 11 increases, it is necessary to reduce the difference in lattice constants. Therefore, considering the thicknesses of the InAs layer and the AlAs layer in the above embodiment, the above-mentioned difference in lattice constant of about 6.5% can be considered as a guideline for the upper limit of the difference in lattice constant.

なお、多層薄膜層は、上記した実施例の組合せ
に限られるものではなく、他の組合せも可能であ
り、格子定数の差が0.3%以上、更に好ましくは
1.5%以上あれば、程度に差はあるが同様な効果
が得られる。例えば、格子定数の大きな化合物半
導体としては、InAsの他に、GaSb(6.095Å)、
InSb(6.479Å)などがあり、また、格子定数の小
さな化合物半導体としては、AlAsのほかに、
GaAs(5.654Å)、GaP(5.451Å)、InP(5.869Å)
などがある。それらを適当に組合せて3元系の化
合物半導体多層薄膜チヤンネル層を形成すること
もできる。
Note that the multilayer thin film layers are not limited to the combinations of the above-mentioned embodiments, and other combinations are also possible, and the difference in lattice constant is 0.3% or more, more preferably
If it is 1.5% or more, similar effects can be obtained although there are differences in degree. For example, as a compound semiconductor with a large lattice constant, in addition to InAs, GaSb (6.095 Å),
InSb (6.479Å), etc. In addition to AlAs, compound semiconductors with small lattice constants include
GaAs (5.654Å), GaP (5.451Å), InP (5.869Å)
and so on. A ternary compound semiconductor multilayer thin film channel layer can also be formed by appropriately combining them.

発明の効果 本発明の半導体装置によれば、従来のFETの
チヤンネル層に用いられている化合物半導体の結
晶構造または原子配列を変えることにより、エネ
ルギーバンド構造を変え、高電界印加状態での半
導体結晶内における種々の散乱を低下させ、また
有効質量をし減少させることが可能となる。従つ
て、高電界印加状態における電子の移動度が、従
来の化合物半導体混晶に比べて速い。
Effects of the Invention According to the semiconductor device of the present invention, by changing the crystal structure or atomic arrangement of the compound semiconductor used in the channel layer of a conventional FET, the energy band structure is changed, and the semiconductor crystal under high electric field application is This makes it possible to reduce various types of scattering within the space and also to reduce the effective mass. Therefore, electron mobility under high electric field application is faster than in conventional compound semiconductor mixed crystals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による化合物半導体装置を実
施したFETの概略断面図、第2図は、本発明の
化合物半導体装置における電子移動度の印加電界
強度依存性の測定結果を示すグラフ、第3図は、
従来の高電子移動度トランジスタの概略断面図、
第4図は、従来の高電子移動度トランジスタにお
ける電子移動度の印加電界強度依存性の測定結果
を示すグラフ、第5図は、化合物半導体のエネル
ギーバンド構造を説明するための図である。 〔主な参照番号〕、1……半絶縁性GaAs基板、
2……GaAsバツフア層、3……GaAsチヤンネ
ル層、4……電子供給層、5……高濃度にp型不
純物を含有し、大きな電子親和力を有する半導体
よりなる層、6……ゲート電極、7……合金化領
域、8……ソース電極、ドレイン電極、9……二
次元電子ガス、10……InP基板、11……多層
薄膜層、12……ソース電極、ドレイン電極、1
3……ゲート電極、14……混晶化領域。
FIG. 1 is a schematic cross-sectional view of an FET implementing a compound semiconductor device according to the present invention, FIG. 2 is a graph showing measurement results of the dependence of electron mobility on applied electric field strength in the compound semiconductor device according to the present invention, The diagram is
Schematic cross-sectional diagram of a conventional high electron mobility transistor,
FIG. 4 is a graph showing measurement results of the dependence of electron mobility on applied electric field strength in a conventional high electron mobility transistor, and FIG. 5 is a diagram for explaining the energy band structure of a compound semiconductor. [Main reference number], 1...Semi-insulating GaAs substrate,
2...GaAs buffer layer, 3...GaAs channel layer, 4...electron supply layer, 5...layer made of a semiconductor containing a high concentration of p-type impurity and having a large electron affinity, 6...gate electrode, 7... Alloying region, 8... Source electrode, drain electrode, 9... Two-dimensional electron gas, 10... InP substrate, 11... Multilayer thin film layer, 12... Source electrode, drain electrode, 1
3...Gate electrode, 14...Mixed crystal region.

Claims (1)

【特許請求の範囲】[Claims] 1 基板と、該基板上に形成されたチヤンネル層
と、該チヤンネル層の上に形成されたシヨツトキ
ー接合のゲート電極と、該ゲート電極の両側にお
いて該ゲート電極から離れて前記チヤンネル層の
上に形成されたオーミツク接合のソース電極及び
ドレイン電極とを具備しており、前記チヤンネル
層が、格子定数の異なる2種類の化合物半導体薄
膜層を交互に積層して構成され、前記化合物半導
体薄膜層の各層の厚さが1〜100原子面の範囲内
にあり、前記格子定数の相違が、0.3%以上6.5%
以下の範囲にあることを特徴とする化合物半導体
装置。
1. A substrate, a channel layer formed on the substrate, a Schottky junction gate electrode formed on the channel layer, and a Schottky junction gate electrode formed on both sides of the gate electrode away from the gate electrode. ohmic junction source electrode and drain electrode, the channel layer is configured by alternately laminating two types of compound semiconductor thin film layers having different lattice constants, and each layer of the compound semiconductor thin film layer has a The thickness is within the range of 1 to 100 atomic planes, and the difference in the lattice constant is 0.3% or more and 6.5%.
A compound semiconductor device characterized by being in the following range.
JP5202385A 1985-03-15 1985-03-15 Compound semiconductor device Granted JPS61210677A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP5202385A JPS61210677A (en) 1985-03-15 1985-03-15 Compound semiconductor device
CA000504069A CA1256590A (en) 1985-03-15 1986-03-13 Compound semiconductor device with layers having different lattice constants
EP86103425A EP0196517B1 (en) 1985-03-15 1986-03-14 Compound semiconductor device
AU54742/86A AU577934B2 (en) 1985-03-15 1986-03-14 Compound semiconductor device
DE8686103425T DE3672360D1 (en) 1985-03-15 1986-03-14 CONNECTING SEMICONDUCTOR COMPONENT.
KR1019860001897A KR860007745A (en) 1985-03-15 1986-03-15 Compound Semiconductor Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5202385A JPS61210677A (en) 1985-03-15 1985-03-15 Compound semiconductor device

Publications (2)

Publication Number Publication Date
JPS61210677A JPS61210677A (en) 1986-09-18
JPH0354853B2 true JPH0354853B2 (en) 1991-08-21

Family

ID=12903214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5202385A Granted JPS61210677A (en) 1985-03-15 1985-03-15 Compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS61210677A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2703892B2 (en) * 1986-12-08 1998-01-26 日本電気株式会社 Field effect element
JP2964637B2 (en) * 1990-11-30 1999-10-18 日本電気株式会社 Field effect transistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607121A (en) * 1983-06-24 1985-01-14 Nec Corp Structure of super lattice
JPS6028273A (en) * 1983-07-26 1985-02-13 Nec Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607121A (en) * 1983-06-24 1985-01-14 Nec Corp Structure of super lattice
JPS6028273A (en) * 1983-07-26 1985-02-13 Nec Corp Semiconductor device

Also Published As

Publication number Publication date
JPS61210677A (en) 1986-09-18

Similar Documents

Publication Publication Date Title
US5060030A (en) Pseudomorphic HEMT having strained compensation layer
JPH01128577A (en) Semiconductor device
US5831296A (en) Semiconductor device
JPH0354854B2 (en)
US20130075698A1 (en) Semiconductor device
US20070052048A1 (en) Strain compensated high electron mobility transistor
JPH05211178A (en) Thin-film type field-effect transistor provided with adjusted energy band
JP2679396B2 (en) Field effect transistor
JPH0312769B2 (en)
Klem et al. Strained quantum well modulation-doped InGaSb/AlGaSb structures grown by molecular beam epitaxy
JPH0354853B2 (en)
JPH08306909A (en) Ingaas field effect transistor
JPH0328063B2 (en)
JP2557373B2 (en) Compound semiconductor device
EP0196517B1 (en) Compound semiconductor device
JP3094500B2 (en) Field effect transistor
JPS61268069A (en) Semiconductor device
JPH035059B2 (en)
JPS621277A (en) Compound semiconductor device
JPH0230182B2 (en) HANDOTAISOCHI
JPS61278168A (en) Compound semiconductor device
JP3423812B2 (en) HEMT device and manufacturing method thereof
JPH06196507A (en) Semiconductor device
JPS61210675A (en) Compound semiconductor device
JPS6312394B2 (en)