JP2703885B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2703885B2
JP2703885B2 JP61111428A JP11142886A JP2703885B2 JP 2703885 B2 JP2703885 B2 JP 2703885B2 JP 61111428 A JP61111428 A JP 61111428A JP 11142886 A JP11142886 A JP 11142886A JP 2703885 B2 JP2703885 B2 JP 2703885B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
semiconductor
layer
arsenide
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61111428A
Other languages
Japanese (ja)
Other versions
JPS62276882A (en
Inventor
明彦 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPS62276882A publication Critical patent/JPS62276882A/en
Application granted granted Critical
Publication of JP2703885B2 publication Critical patent/JP2703885B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電子親和力が異なる半導体あるいは電子親和
力とエネルギーギャップとの和が異なる半導体のヘテロ
接合界面における2次元伝導を用いた半導体装置に関す
る。 (従来の技術) 電子親和力が異なる半導体あるいは電子親和力とエネ
ルギーギャップが異なる半導体のヘテロ接合界面に蓄積
される2次元電子あるいは正孔を用いた電界効果トラン
ジスタ(FET)はその蓄積される電子又は正孔が特に低
温において高移動度となることより近年ますます着目さ
れているものである。例えばガリウム砒素(以下、GaA
s)とn型にドープされたGaAs層より電子親和力の小さ
い半導体層例えばアルミニウムガリウム砒素(以下、Al
GaAs)層とのヘテロ接合界面のGaAs層側に蓄積される2
次元電子チャネルをゲート電子の電圧で制御して動作す
る。 さてこのようなトランジスタにおいて、界面に蓄積さ
れる2次元電子の面電荷密度はGaAsとGaAlAsのエネルギ
バンドの不連続量及びGaAlAs層へのn型不純物のドーピ
ング量によって決定され、エネルギーバンドの不連続量
が大きい方が電子の面電荷密度は増加し、トランジスタ
の動作においてはゲート及びソース間の抵抗の低減につ
ながる。したがってGaAlAs層のアルミニウム(以下Al)
組成を大きくすればエネルギバンドの不連続量が増加す
るが、Al組成が0.4付近でAlGaAsのエネルギーバンドが
直接遷移型より間接遷移型になり、エネルギバンドの不
連続量は大きくならない。しかもアルミニウム組成が0.
3近傍では直接遷移であっても間接遷移の影響をうけ制
御不可能な不純物準位を形成し、トランジスタの電流電
圧特性にヒステリシスを生じさせる。さらにAl組成の大
きいGaAlAs層は結晶成長中に酸素をとりこむ可能性が大
きくなり、コンタクト抵抗増大等の電気的特性劣化の場
合がある。したがってAlGaAs及びGaAsのヘテロ接合界面
に蓄積される2次元電子を用いた電界効果トランジスタ
(FET)の場合AlGaAsのAl組成は0.3程度である。同様に
2次元正孔を用いた場合AlGaAsのAl組成は0.5程度であ
る。 (発明が解決しようとする問題点) さて、半導体ヘテロ接合界面に2次元電子又は正孔を
蓄積させる場合、その接合界面近傍には界面準位等の電
子又は正孔捕獲中心が存在してはいけない。したがって
電子親和力の異なる二種類の半導体あるいは電子親和力
とエネルギ・ギャップの和の異なる二種類の半導体を用
いる場合捕獲中心の原因となる格子転位の発生をおさえ
るため両者の格子定数がほぼ同程度のものを選ぶ。した
がってたとえばIII族及びV族化合物半導体結晶の場合
基板特にGaAs及びインジウム基板と格子整合し、電子親
和力の異なる二種類の半導体、あるいは電子親和力とエ
ネルギギャップの和の異なる二種類の半導体を用いるこ
とによりおのずと電子親和力の差又は電子親和力とエネ
ルギギャップの和の違いに制約をうける。 本発明の目的は電子親和力の異なるあるいは電子親和
力とエネルギギャップの和の異なる2種類の半導体が格
子整合の制限をうけることなくより大きな電子親和力の
差、あるいは電子親和力とエネルギ・ギャップの和の違
いを形成し、たとえばヘテロ接合界面に蓄積する界面電
子濃度を高めることを可能にし、したがってソース抵抗
の小さいFET等の半導体装置を提供することにある。 (問題点を解決するための手段) 本発明は、第1の半導体上にこれより電子親和力の大
きい高純度あるいはp型の第2の半導体層が設けられ、
さらに該第2の半導体層上にこれより電子親和力の小さ
い第3の半導体層が設けられ、それらの第2と第3の半
導体層の界面の第2の半導体層側に電子チャネルが形成
された半導体装置において、前記第2の半導体層はイン
ジウムガリウム砒素、前記第1の半導体層はガリウム砒
素もしくはガリウムアルミニウム砒素であり、第3の半
導体層はガリウムアルミニウム砒素であり、前記第2と
第3の半導体層および第1と第2の半導体層は格子整合
せずしかも第2の半導体層の厚みを転位が生じる最小厚
み未満にし、かつ、第2の半導体層の伝導帯と第3の半
導体層の伝導帯の不連続量はガリウム砒素及びアルミニ
ウム組成が0.3のガリウムアルミニウム砒素層より形成
される伝導帯の不連続量よりも大きいことを特徴として
いる。 また本発明は第1の半導体上にこれより電子親和力と
エネルギーギャップの和の小さい高純度あるいはn型の
第2の半導体層が設けられさらに該第2の半導体層上に
これより電子親和力とエネルギーギャップの和の大きい
第3の半導体層が設けられそれらの第2と第3の半導体
層の界面の第2の半導体層側に正孔チャネルが形成され
た半導体装置において、前記第2の半導体層はインジウ
ムガリウム砒素で、前記第1の半導体層はガリウム砒素
もしくはガリウムアルミニウム砒素であり、第3の半導
体層はガリウムアルミニウム砒素であり、前記第2と第
3の半導体層および第1と第2の半導体層は格子整合せ
ずしかも第2の半導体層の厚みを転位の生じる最小厚み
未満にし、かつ、第2の半導体層の価電子帯と第3の半
導体層の価電子帯の不連続量はガリウム砒素及びアルミ
ニウム組成が0.5のガリウムアルミニウム砒素層より形
成される価電子帯の不連続量よりも大きいことを特徴と
している。 (作用) 第1の半導体上にこれより電子親和力の大きい第2の
半導体層を設け、さらに該第2の半導体層上にこれより
電子親和力の小さい第3の半導体層を設ける。したがっ
て電子は第2と第3又は第1と第2の半導体層の界面の
第2の半導体側に電子チャネルが形成されるが、このと
き第2の半導体層は従来のような格子整合していない。
しかし第2の半導体層の厚みはある一定の厚さ以下であ
り格子不整合による転位の発生は生じない。したがって
従来のような格子整合による伝導帯の不連続量への制約
がなくなりより大きな不連続量となるような二種類の半
導体を選ぶことができる。しかも転位が発生せず、した
がって界面準位等の電子捕獲中心も生じない。しかも、
2次元電子の場合、電子親和力の差がすくなくとも従来
のGaAlAs/GaAsヘテロ接合系でなおかつアルミニウム組
成が0.25以上の場合にはじめて電子の密度が大きくな
り,しかもIn組成を制御することによりAl組成比を下げ
ることができる。したがって、AlGaAs層を従来より直接
遷移型にすることができ、結晶成長中に酸素の取り込む
可能性が小さくなり、コンタクト抵抗が向上し、電子濃
度の向上によるシート抵抗の向上とともにシート抵抗と
コンタクト抵抗の和であるソース抵抗が低減し、トラン
ジスタの特性が向上する。 (実施例1) 以下図示に従いGaAs、インジウム組成が0.3のインジ
ウムガリウム砒素(以下In0.3Ga0.7As)及びAl組成が0.
25以上例えば0.3アルミニウムガリウム砒素(以下Al0.3
Ga0.7As)より構成する半導体装置の実施例を用いて本
発明を説明する。第1図は第1の半導体層として高純度
GaAs層1、第2の半導体層として高純度In0.3Ga0.7As層
2、第3の半導体層としてn型Ga0.7Al0.3As層3を用い
半導縁型GaAs基板4上にエピタキシャル成長した素子端
面図を示したものである。図中5はソース電極、6はゲ
ート電極、7はドレイン電極である。エピタキシャル法
は分子線エピタキシャル法で高純度ガリウム砒素層1を
約8000オングストローム、In0.3Ga0.7As層2を80オング
ストローム、シリコンを2×1018cm-3ドーピングしたAl
0.3Ga0.7As層を400オングストローム成長させ、アルミ
ニウムによりゲート電極6、さらに金及びゲルマニウム
さらにニッケルによりオーミック電極5,7を形成したも
のである。 第2図はこのトランジスタにおいて例えばノーマリオ
ン型の場合、ゲート下における深さ方向の熱平衡状態で
のエネルギーバンド状態図である。ここでEC,EV,EFはそ
れぞれ伝導帯下端のエネルギレベル、価電子帯上端のエ
ネルギレベル、フェルミレベルであり、ΔEC1はIn0.3Ga
0.7As及びGa0.7Al0.3As界面での電子親和力の差、ΔEC2
はGaAsとIn0.3Ga0.7As界面の電子親和力の差、φはゲ
ートショットキバリアのバリア高さ、9は電子の電荷量
であり、はGaAlAs層中のイオン化したドナーを模式的
に表わしている。 このような状態において透過型電子顕微鏡による観察
の結果In0.3Ga0.7As層中にはGaAs基板を上回る結晶転移
は観察されなかった。一方、In0.3Ga0.7Asの厚みが100
オングストロームでは基板を上回る結晶転位が観察さ
れ、100オングストロームが転位発生の最小厚みである
ことが判明した。 このような構造においてGa0.7Al0.3As層3はすべて空
乏化し、Ga0.7Al0.3As層3及びIn0.3Ga0.7As層2の境界
には2次元電子が蓄積することがこの面電荷密度はΔE
C1が大きいほど高くなりIn0.3Ga0.7AsとGa0.7Al0.3Asと
不連続量はIn0.3Ga0.7Asのバンドギャップを1.1eVさら
にGaAlAs層とのバンドギャップの差のうち3分の2が価
電子帯の不連続量になると仮定すると、約0.45eVと推定
される。その結果従来のGaAs及びGa0.7Al0.3Asを用いた
場合の不連続量0.25eVと比べ、本発明を用いた場合のΔ
EC1は約80%大きいと考えられる。又第2図に示される
構造において、シュボニコフデハース効果によって測定
された2次元電子の面電荷密度は1.5×1012cm-2であっ
た。一方従来の構造つまり第2図においてIn0.3Ga0.7As
層2を除いた構造の場合、測定された2次元電子の面電
荷密度は1.1×1012cm-2と本発明の約70%であった。さ
らに第1図に示したFETにおいてソース抵抗はミリメー
トル当り0.4オームであった。一方In0.3Ga0.7As層2を
除いた構造で同一工程により製作したFETではソース抵
抗はミリメートル当り0.6オームであった。又In0.3Ga
0.7As層が100オングストローム以上ではソース抵抗の低
減はみられなかった。本実施例ではインジウム組成は0.
3であったが、たとえばインジウム組成0.15及び0.23の
場合そのシート抵抗は0.3の場合と同様の値が得られ、
本発明のインジウム組成は0.3に限らない。 (実施例2) 以上実施例1と同様な構造GaAs,InGaAs,AlGaAsよりな
る半導体装置の実施例を用いて説明する。 本実施例は実施例1と異なり第3の半導体層としてAl
組成が0.2のGa0.8Al0.2Asを用いている。第1図に示す
ように第1の半導体層として高純度GaAs層1,第2の半導
体層として高純度In0.3Ga0.7As2、そしてGa0.8Al0.2As
を用い半絶縁型GaAs基板4上にエピタキシャル成長した
ものである。 このような構造においてIn0.3Ga0.7Asのバンドギャッ
プを1.1eVさらにGa0.8Al0.2As層とのバンドギャップの
差のうち3分の2が価電子帯の不連続量になると仮定す
ると約0.36eVと推定される。したがって実施例1と同様
従来のGaAs及びGa0.7Al0.3Asを用いた場合の不連続量0.
25eVと比べΔEC1は大きくなっている。そして2次元電
子の面電荷密度は1.4×1012cm-3となり従来の構造にお
ける2次元電子の面電荷密度より大きくなることが判明
した。そしてFETにおいて、実施例1と比較し、ソース
抵抗の低減がみとめられた。 以上の説明ではキャリアが電子の場合について説明し
た。キャリアが正孔の場合についても本発明は全く同様
に適用できる。この場合は正孔は価電子帯側に蓄積され
るため、第1図における第2の半導体としては電子親和
力とエネルギギャップの和が第1の半導体より小さいも
のを用いてさらに第1図の第3の半導体として電子親和
力とエネルギギャップの和が第2の半導体より大きいも
のを用い第3の半導体層にアクセプタを高密度にドーピ
ングする。ここで熱平衡状態におけるエネルギバンド状
態図は第3図のとおりである。ここでθはイオン化した
アクセプターを模式的に表わしたもので2′は2次元正
孔層である。 本実施例では基板は半絶縁性GaAsを用い、第1の半導
体層として高純度GaAs層、さらに第2の半導体層として
In0.3Ga0.7As層、第3の半導体層としてAl0.5Ga0.5Asを
用いる。本実施例ではインジウム組成は0.3であった
が、本発明のインジウム組成は0.3に限らない。 (発明の効果) 以上の説明から明らかなように本発明は格子定数の異
なる半導体を用いるにもかかわらず半導体層の厚みを薄
くすることにより、転位発生をおさえ、格子整合のとれ
た半導体を用いる場合と比べより大きな電子親和力の差
あるいは電子親和力とエネルギーギャップの和の違いを
もつヘテロ接合を形成でき、これを用いたFETにおいて
ソース抵抗を低減することが可能となるという利点があ
り、従来例に比較して半導体素子の性能向上を図ること
ができる効果は著しい。
The present invention relates to a semiconductor device using two-dimensional conduction at a heterojunction interface between semiconductors having different electron affinities or semiconductors having different sums of an electron affinity and an energy gap. (Prior Art) A field-effect transistor (FET) using two-dimensional electrons or holes accumulated at a heterojunction interface of a semiconductor having a different electron affinity or a semiconductor having an energy gap different from the electron affinity has a function of the accumulated electrons or positive electrons. In recent years, pores have attracted increasing attention due to their high mobility, especially at low temperatures. For example, gallium arsenide (hereinafter referred to as GaA
s) and a semiconductor layer having a lower electron affinity than the n-type doped GaAs layer, for example, aluminum gallium arsenide (hereinafter, Al).
2 accumulated on the GaAs layer side of the heterojunction interface with the GaAs layer
It operates by controlling the two-dimensional electron channel with the voltage of the gate electron. In such a transistor, the surface charge density of the two-dimensional electrons accumulated at the interface is determined by the discontinuity of the energy band of GaAs and GaAlAs and the doping amount of the n-type impurity in the GaAlAs layer. As the amount increases, the surface charge density of electrons increases, which leads to a reduction in resistance between the gate and the source in the operation of the transistor. Therefore, aluminum (hereinafter Al) of the GaAlAs layer
Increasing the composition increases the discontinuity of the energy band. However, when the Al composition is around 0.4, the energy band of AlGaAs becomes indirect transition type rather than direct transition type, and the discontinuity amount of the energy band does not increase. Moreover, the aluminum composition is 0.
In the vicinity of 3, even if it is a direct transition, an uncontrollable impurity level is formed under the influence of the indirect transition, causing hysteresis in the current-voltage characteristics of the transistor. Further, a GaAlAs layer having a large Al composition has a high possibility of taking in oxygen during crystal growth, and may deteriorate electrical characteristics such as an increase in contact resistance. Therefore, in the case of a field effect transistor (FET) using two-dimensional electrons accumulated at the heterojunction interface between AlGaAs and GaAs, the Al composition of AlGaAs is about 0.3. Similarly, when two-dimensional holes are used, the Al composition of AlGaAs is about 0.5. (Problems to be Solved by the Invention) When two-dimensional electrons or holes are accumulated at a semiconductor heterojunction interface, an electron or hole trapping center such as an interface state exists near the junction interface. should not. Therefore, when two kinds of semiconductors having different electron affinities or two kinds of semiconductors having different sums of the electron affinity and the energy gap are used, the lattice constants of the two are almost the same in order to suppress the generation of lattice dislocation which causes a trapping center. Choose Therefore, for example, in the case of group III and group V compound semiconductor crystals, two types of semiconductors that are lattice-matched with the substrate, especially GaAs and indium substrates, and have different electron affinities or two types of semiconductors having different electron affinities and energy gaps are used. The difference in the electron affinity or the difference in the sum of the electron affinity and the energy gap is naturally restricted. An object of the present invention is to provide a semiconductor device having two types of semiconductors having different electron affinities or different electron affinities and the sum of the energy gaps, which have a larger difference in the electron affinities without being restricted by lattice matching, or a difference in the sum of the electron affinities and the energy gap. It is therefore possible to provide a semiconductor device such as an FET having a small source resistance, for example, by making it possible to increase the interface electron concentration accumulated at the heterojunction interface. (Means for Solving the Problems) According to the present invention, a high-purity or p-type second semiconductor layer having a higher electron affinity than the first semiconductor is provided on the first semiconductor,
Further, a third semiconductor layer having a smaller electron affinity was provided on the second semiconductor layer, and an electron channel was formed on the interface between the second and third semiconductor layers on the side of the second semiconductor layer. In the semiconductor device, the second semiconductor layer is indium gallium arsenide, the first semiconductor layer is gallium arsenide or gallium aluminum arsenide, the third semiconductor layer is gallium aluminum arsenide, and the second and third semiconductor layers are gallium aluminum arsenide. The semiconductor layer and the first and second semiconductor layers are not lattice-matched, the thickness of the second semiconductor layer is less than the minimum thickness at which dislocations occur, and the conduction band of the second semiconductor layer and the third semiconductor layer are different. The discontinuity of the conduction band is characterized by being larger than the discontinuity of the conduction band formed by the gallium aluminum arsenide layer having a gallium arsenide and aluminum composition of 0.3. According to the present invention, a high-purity or n-type second semiconductor layer having a smaller sum of the electron affinity and the energy gap is provided on the first semiconductor, and the electron affinity and the energy are further reduced on the second semiconductor layer. In a semiconductor device in which a third semiconductor layer having a large sum of gaps is provided and a hole channel is formed on an interface between the second and third semiconductor layers on the side of the second semiconductor layer, the second semiconductor layer Is indium gallium arsenide, the first semiconductor layer is gallium arsenide or gallium aluminum arsenide, the third semiconductor layer is gallium aluminum arsenide, and the second and third semiconductor layers and the first and second The semiconductor layer is not lattice-matched and the thickness of the second semiconductor layer is less than the minimum thickness at which dislocations occur, and the valence band of the second semiconductor layer and the valence band of the third semiconductor layer are different. Continuous quantity is characterized by greater than discontinuity of the valence band of gallium arsenide and aluminum composition is formed from gallium aluminum arsenide layer of 0.5. (Operation) A second semiconductor layer having a higher electron affinity is provided on the first semiconductor, and a third semiconductor layer having a lower electron affinity is provided on the second semiconductor layer. Accordingly, electrons form an electron channel on the second semiconductor side at the interface between the second and third or the first and second semiconductor layers. At this time, the second semiconductor layer is lattice-matched as in the related art. Absent.
However, the thickness of the second semiconductor layer is not more than a certain thickness, and no dislocation occurs due to lattice mismatch. Therefore, two types of semiconductors can be selected such that there is no restriction on the amount of discontinuity in the conduction band due to lattice matching as in the related art, and the amount of discontinuity is larger. In addition, no dislocation is generated, and no electron capture center such as an interface level is generated. Moreover,
In the case of two-dimensional electrons, the electron density increases only when the difference in electron affinity is at least the conventional GaAlAs / GaAs heterojunction system and the aluminum composition is 0.25 or more, and the Al composition ratio is controlled by controlling the In composition. Can be lowered. Therefore, the AlGaAs layer can be made to be a direct transition type conventionally, the possibility of taking in oxygen during crystal growth is reduced, the contact resistance is improved, and the sheet resistance and the contact resistance are improved by improving the electron concentration. Are reduced, and the characteristics of the transistor are improved. (Example 1) In the following, GaAs, indium gallium arsenide having an indium composition of 0.3 (hereinafter referred to as In 0.3 Ga 0.7 As) and an Al composition of 0.
25 or more, for example, 0.3 aluminum gallium arsenide (hereinafter, Al 0.3
The present invention will be described using an example of a semiconductor device composed of Ga 0.7 As). FIG. 1 shows high purity as the first semiconductor layer.
An element end face epitaxially grown on a semi-conductive GaAs substrate 4 using a GaAs layer 1, a high-purity In 0.3 Ga 0.7 As layer 2 as a second semiconductor layer, and an n-type Ga 0.7 Al 0.3 As layer 3 as a third semiconductor layer. FIG. In the figure, 5 is a source electrode, 6 is a gate electrode, and 7 is a drain electrode. The epitaxial method is a molecular beam epitaxial method in which high-purity gallium arsenide layer 1 is approximately 8000 angstroms, In 0.3 Ga 0.7 As layer 2 is 80 angstroms, and silicon is doped with 2 × 10 18 cm -3 Al.
A 0.3 Ga 0.7 As layer is grown by 400 angstroms, and a gate electrode 6 is formed from aluminum, and ohmic electrodes 5 and 7 are formed from gold, germanium and nickel. FIG. 2 is an energy band diagram in a thermal equilibrium state in a depth direction below a gate in the case of a normally-on type transistor, for example. Here, E C , E V , and E F are the energy level at the bottom of the conduction band, the energy level at the top of the valence band, and the Fermi level, respectively, and ΔE C1 is In 0.3 Ga.
Difference of electron affinity at 0.7 As and Ga 0.7 Al 0.3 As interface, ΔE C2
The difference between the electron affinity of GaAs and In 0.3 Ga 0.7 As surfactants, phi B is the gate Schottky barrier height of the barrier, 9 is the charge of an electron, has a donor ionized GaAlAs layer schematically represents . In such a state, as a result of observation with a transmission electron microscope, no crystal transition higher than that of the GaAs substrate was observed in the In 0.3 Ga 0.7 As layer. On the other hand, the thickness of In 0.3 Ga 0.7 As is 100
At Å, crystal dislocations larger than the substrate were observed, and it was found that 100 Å was the minimum thickness for dislocation generation. In such a structure, the Ga 0.7 Al 0.3 As layer 3 is entirely depleted, and two-dimensional electrons accumulate at the boundary between the Ga 0.7 Al 0.3 As layer 3 and the In 0.3 Ga 0.7 As layer 2.
Higher becomes an In 0.3 Ga as C1 larger 0.7 As and Ga 0.7 Al 0.3 As and discontinuity is 2 valence thirds of the difference in band gap between an In 0.3 Ga 0.7 As 1.1 eV further GaAlAs layer band gap of the Assuming a discontinuity in the electronic band, it is estimated to be about 0.45 eV. As a result, compared to the discontinuity of 0.25 eV when the conventional GaAs and Ga 0.7 Al 0.3 As were used, the Δ
E C1 is considered to be about 80% larger. Further, in the structure shown in FIG. 2, the surface charge density of the two-dimensional electron measured by the Shubonnikov-de Haas effect was 1.5 × 10 12 cm −2 . On the other hand, the conventional structure, that is, In 0.3 Ga 0.7 As
In the case of the structure excluding the layer 2, the measured surface charge density of two-dimensional electrons was 1.1 × 10 12 cm −2, which is about 70% of the present invention. Further, in the FET shown in FIG. 1, the source resistance was 0.4 ohm per millimeter. On the other hand, in the FET manufactured by the same process with the structure excluding the In 0.3 Ga 0.7 As layer 2, the source resistance was 0.6 ohm per millimeter. Also In 0.3 Ga
The source resistance did not decrease when the 0.7 As layer was 100 Å or more. In this embodiment, the indium composition is 0.
Although it was 3, for example, in the case of indium compositions 0.15 and 0.23, the sheet resistance obtained the same value as in the case of 0.3,
The indium composition of the present invention is not limited to 0.3. (Embodiment 2) A description will be given using an embodiment of a semiconductor device made of GaAs, InGaAs, and AlGaAs having a structure similar to that of Embodiment 1. This embodiment is different from the first embodiment in that Al is used as the third semiconductor layer.
Ga 0.8 Al 0.2 As having a composition of 0.2 is used. As shown in FIG. 1, a high-purity GaAs layer as a first semiconductor layer, a high-purity In 0.3 Ga 0.7 As2 and a Ga 0.8 Al 0.2 As as a second semiconductor layer.
And epitaxially grown on a semi-insulating GaAs substrate 4. In such a structure, the band gap of In 0.3 Ga 0.7 As is assumed to be 1.1 eV, and assuming that two thirds of the band gap difference from the Ga 0.8 Al 0.2 As layer is discontinuous in the valence band, about 0.36 eV It is estimated to be. Therefore, as in the case of the first embodiment, when the conventional GaAs and Ga 0.7 Al 0.3 As are used, the discontinuity amount is 0.1 mm.
ΔE C1 is larger than that of 25 eV. The surface charge density of two-dimensional electrons was found to be 1.4 × 10 12 cm −3, which was larger than the surface charge density of two-dimensional electrons in the conventional structure. In the FET, a reduction in the source resistance was observed as compared with Example 1. In the above description, the case where the carrier is an electron has been described. The present invention can be applied to the case where the carrier is a hole. In this case, since holes are accumulated on the valence band side, a second semiconductor in FIG. 1 having a smaller sum of electron affinity and energy gap than the first semiconductor is used, and the second semiconductor in FIG. As the third semiconductor, a semiconductor whose sum of electron affinity and energy gap is larger than that of the second semiconductor is used, and the third semiconductor layer is doped with an acceptor at a high density. Here, the energy band diagram in the thermal equilibrium state is as shown in FIG. Here, θ is a schematic representation of an ionized acceptor, and 2 ′ is a two-dimensional hole layer. In this embodiment, a semi-insulating GaAs substrate is used, a high-purity GaAs layer as a first semiconductor layer, and a second semiconductor layer as a second semiconductor layer.
Al 0.5 Ga 0.5 As is used for the In 0.3 Ga 0.7 As layer and the third semiconductor layer. In the present embodiment, the indium composition was 0.3, but the indium composition of the present invention is not limited to 0.3. (Effects of the Invention) As is apparent from the above description, the present invention uses a semiconductor with reduced dislocation and lattice matching by reducing the thickness of the semiconductor layer despite using semiconductors having different lattice constants. A heterojunction with a larger difference in electron affinity or a difference in the sum of the electron affinity and the energy gap can be formed as compared with the case, and there is an advantage that the source resistance can be reduced in the FET using this, The effect that the performance of the semiconductor element can be improved is remarkable as compared with the case of FIG.

【図面の簡単な説明】 第1図は本発明による半導体装置の構造を示す断面図、
第2図及び第3図はそのエネルギバンド状態図である。 1……高純度ガリウム砒素、 2……高純度インジウムガリウム砒素、 3……n型ガリウムアルミニウム砒素、 4……半導縁型ガリウム砒素基板、5……ソース電極、 6……ゲート電極、7……ドレイン電極、 2′……2次元正孔層。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing the structure of a semiconductor device according to the present invention;
2 and 3 are energy band diagrams. DESCRIPTION OF SYMBOLS 1 ... High-purity gallium arsenide, 2 ... High-purity indium gallium arsenide, 3 ... N-type gallium aluminum arsenide, 4 ... Semi-leading gallium arsenide substrate, 5 ... Source electrode, 6 ... Gate electrode, 7 …… Drain electrode, 2 ′… 2D hole layer.

Claims (1)

(57)【特許請求の範囲】 1.第1の半導体上にこれより電子親和力の大きい高純
度あるいはp型の第2の半導体層が設けられ、さらに該
第2の半導体層上にこれより電子親和力の小さい第3の
半導体層が設けられ、それらの第2と第3の半導体層の
界面の第2の半導体層側に電子チャネルが形成された半
導体装置において、前記第2の半導体層はインジウムガ
リウム砒素、前記第1の半導体層はガリウム砒素もしく
はガリウムアルミニウム砒素であり、第3の半導体層は
ガリウムアルミニウム砒素であり、前記第2と第3の半
導体層および第1と第2の半導体層は格子整合せずしか
も第2の半導体層の厚みを転位が生じる最小厚み未満に
し、かつ、第2の半導体層の伝導帯と第3の半導体層の
伝導帯の不連続量はガリウム砒素及びアルミニウム組成
が0.3のガリウムアルミニウム砒素層より形成される伝
導帯の不連続量よりも大きいことを特徴とする半導体装
置。 2.第1の半導体上にこれより電子親和力とエネルギー
ギャップの和の小さい高純度あるいはn型の第2の半導
体層が設けられさらに該第2の半導体層上にこれより電
子親和力とエネルギーギャップの和の大きい第3の半導
体層が設けられそれらの第2と第3の半導体層の界面の
第2の半導体層側に正孔チャネルが形成された半導体装
置において、前記第2の半導体層はインジウムガリウム
砒素で、前記第1の半導体層はガリウム砒素もしくはガ
リウムアルミニウム砒素であり、第3の半導体層はガリ
ウムアルミニウム砒素であり、前記第2と第3の半導体
層および第1と第2の半導体層は格子整合せずしかも第
2の半導体層の厚みを転位の生じる最小厚み未満にし、
かつ、第2の半導体層の価電子帯と第3の半導体層の価
電子帯の不連続量はガリウム砒素及びアルミニウム組成
が0.5のガリウムアルミニウム砒素層より形成される価
電子帯の不連続量よりも大きいことを特徴とする半導体
装置。
(57) [Claims] A high-purity or p-type second semiconductor layer having a higher electron affinity is provided on the first semiconductor, and a third semiconductor layer having a lower electron affinity is provided on the second semiconductor layer. A semiconductor device having an electron channel formed on the interface between the second and third semiconductor layers on the second semiconductor layer side, wherein the second semiconductor layer is indium gallium arsenide, and the first semiconductor layer is gallium. Arsenic or gallium aluminum arsenide, the third semiconductor layer is gallium aluminum arsenide, and the second and third semiconductor layers and the first and second semiconductor layers are not lattice-matched and the second semiconductor layer The thickness is less than the minimum thickness at which dislocations occur, and the discontinuity between the conduction band of the second semiconductor layer and the conduction band of the third semiconductor layer is gallium arsenide and gallium aluminum having an aluminum composition of 0.3. Wherein a greater than discontinuity of the conduction band formed from um arsenide layer. 2. A high-purity or n-type second semiconductor layer having a smaller sum of the electron affinity and the energy gap is provided on the first semiconductor, and further, a sum of the electron affinity and the energy gap is further formed on the second semiconductor layer. In a semiconductor device in which a large third semiconductor layer is provided and a hole channel is formed on a side of the second semiconductor layer at an interface between the second and third semiconductor layers, the second semiconductor layer is formed of indium gallium arsenide. Wherein the first semiconductor layer is gallium arsenide or gallium aluminum arsenide, the third semiconductor layer is gallium aluminum arsenide, and the second and third semiconductor layers and the first and second semiconductor layers are grids. Mismatching and making the thickness of the second semiconductor layer less than the minimum thickness at which dislocations occur,
The discontinuity between the valence band of the second semiconductor layer and the valence band of the third semiconductor layer is smaller than the discontinuity of the valence band formed by the gallium arsenide and the gallium aluminum arsenide layer whose aluminum composition is 0.5. A semiconductor device characterized by having a large size.
JP61111428A 1986-02-14 1986-05-14 Semiconductor device Expired - Lifetime JP2703885B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-31187 1986-02-14
JP3118786 1986-02-14

Publications (2)

Publication Number Publication Date
JPS62276882A JPS62276882A (en) 1987-12-01
JP2703885B2 true JP2703885B2 (en) 1998-01-26

Family

ID=12324431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61111428A Expired - Lifetime JP2703885B2 (en) 1986-02-14 1986-05-14 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2703885B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2921835B2 (en) * 1988-02-04 1999-07-19 松下電器産業株式会社 Heterojunction field effect transistor
JPH0521468A (en) * 1991-07-17 1993-01-29 Sumitomo Electric Ind Ltd Manufacture of field-effect transistor
US5309003A (en) * 1992-02-28 1994-05-03 At&T Bell Laboratories Article comprising a real space transfer semiconductor device, and method of making the article

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120790B2 (en) * 1984-06-18 1995-12-20 株式会社日立製作所 Semiconductor device

Also Published As

Publication number Publication date
JPS62276882A (en) 1987-12-01

Similar Documents

Publication Publication Date Title
US11031399B2 (en) Semiconductor device and manufacturing method of the same
US5837565A (en) Semiconductor device
JPH0435904B2 (en)
JP2914049B2 (en) Compound semiconductor substrate having heterojunction and field effect transistor using the same
KR920003799B1 (en) Semiconductor device
JP3177951B2 (en) Field effect transistor and method of manufacturing the same
KR920010584B1 (en) Semiconductor device
EP0249371B1 (en) Semiconductor device including two compound semiconductors, and method of manufacturing such a device
US6057566A (en) Semiconductor device
JPH084138B2 (en) Semiconductor device
JP2703885B2 (en) Semiconductor device
EP0405832A1 (en) Doping procedures for semiconductor devices
JPH0732247B2 (en) Semiconductor device
JP2571583B2 (en) III-V compound semiconductor field effect transistor
JPH03278542A (en) Semiconductor device
EP0246700A1 (en) Hot Charge-carrier transistors
EP1083608B1 (en) Field-effect semiconductor device
US6043143A (en) Ohmic contact and method of manufacture
JP2808671B2 (en) Field effect transistor
JPH0355978B2 (en)
JP2557373B2 (en) Compound semiconductor device
JPH0260225B2 (en)
JPH028450B2 (en)
JP2800457B2 (en) Semiconductor device
JPH0468775B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term