JPH02130933A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPH02130933A
JPH02130933A JP28541388A JP28541388A JPH02130933A JP H02130933 A JPH02130933 A JP H02130933A JP 28541388 A JP28541388 A JP 28541388A JP 28541388 A JP28541388 A JP 28541388A JP H02130933 A JPH02130933 A JP H02130933A
Authority
JP
Japan
Prior art keywords
layer
doped
inas
superlattice
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28541388A
Other languages
Japanese (ja)
Inventor
Hideo Toyoshima
豊島 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP28541388A priority Critical patent/JPH02130933A/en
Publication of JPH02130933A publication Critical patent/JPH02130933A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To improve device characteristics by constituting an electron channel layer of a superlattice layer composed of an InAs layer and a GaAs layer, and setting the thickness of the superlattice layer as a value by which crystallizability is not deteriorated. CONSTITUTION:On a high resistive InP substrate 11, the following are grown in each specified value by electron beam epitaxy method or the like: a non- doped AlInAs layer 12, a non-doped InGaAs layer 13, an InAs/GaAs superlattice layer 14 turning to an electron channel layer, a non-doped AlInAs layer 15, an N-type AlInAs layer 16 doped with Si, and a non-doped AlInAs layer 17. Next, by ordinary lithography art, a source electrode 18 and a drain electrode 19 of AuGe/Ni are patterned; by performing spike alloy at a specified temperature in an H atmosphere, an ohmic electrode is formed, and further an Al gate electrode 20 is formed. In this case, lattice unconformity between InAs and GaAs is present in the layer 14, so that these are laminated under the condition that the thickness of the superlattice layer is 500Angstrom or less in which dislocation is not caused.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、2次元電子ガスを利用する高速電界効果トラ
ンジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-speed field effect transistor that utilizes a two-dimensional electron gas.

〔従来の技術〕[Conventional technology]

InPに格子整合するInCraAsは、その有する高
い室温移動度、電子飽和速度から超高速デバイスへの応
用が研究されている0例えば、広部等により、1986
年のインターナショナル・コンファレンス・オン・ガリ
ウムアルセナイド・アンド・リレーティド・コンパウン
ダ(Insti juts ofPhysics Co
nference 5eries Number 79
+ P529+1985)で、N−Al InAs/I
nGaAs選択ドープFETが発表されており、第2図
にその主要部の構造断面図を示す。
InCraAs, which is lattice-matched to InP, has been studied for application to ultrahigh-speed devices because of its high room temperature mobility and electron saturation speed. For example, Hirobe et al.
International Conference on Gallium Arsenide and Related Compounders (Insti juts of Physics Co.
nference 5eries Number 79
+ P529+1985), N-Al InAs/I
An nGaAs selectively doped FET has been announced, and a structural cross-sectional view of its main parts is shown in FIG.

第2図のFETは、次のようにして製造される。The FET shown in FIG. 2 is manufactured as follows.

すなわち、分子線エピタキシー法により、高抵抗InP
基板1上に、InPに格子整合するノンド−7’A1[
nAs層2を5000人、ノンドープInGaAs層3
を1000人、ノンドープA11nAs層4を20人、
SiドープN−Aj2 InAs層5を250人、ノン
ドープA11nAs層6を100人順火成長し、その後
、ゲート電極9、ソース電極7、ドレイン電極8を設け
ることにより形成される。
That is, high-resistance InP is produced by molecular beam epitaxy.
On the substrate 1, a non-doped 7'A1[
5000 layers of nAs layer 2, non-doped InGaAs layer 3
1000 people, non-doped A11nAs layer 4 by 20 people,
It is formed by sequentially growing 250 Si-doped N-Aj2 InAs layers 5 and 100 undoped A11nAs layers 6, and then providing a gate electrode 9, a source electrode 7, and a drain electrode 8.

この選択ドープFETにおいては、1μmゲート長にお
いて、室温で相互コンダクタンス440m5/mm、7
7Kにおいて700m5/mm(7)特性が得られた。
This selectively doped FET has a transconductance of 440 m5/mm at room temperature and 7
At 7K, a characteristic of 700 m5/mm (7) was obtained.

さらにこの素子の特性を向上させるには、InGaAs
の電子輸送特性を向上させることは非常に効果的である
。しかしくnQaAsには混晶特有の電子に対する混晶
散乱機構があり、特に低温ではこれがInGaAsの電
子輸送特性を制限する。この点を克服することが可能で
あると期待される方法は、例えば八尾等により、ジャパ
ニーズ・ジャーナル・オブ・アプライド・フイジイクス
(Jpn、 J、 Appl、 Phys、 vo12
2. Nol、 L680.1983)に提案されてお
り、これはInGaAsの代わりに1nASとGaAs
の超格子を用いるものである。この場合、InAsとG
aAsは約7%の格子不整があるので、転位の発生しな
いよう充分薄い厚み(50Å以下)で積層することによ
り実現可能であると提案されている。
In order to further improve the characteristics of this element, InGaAs
Improving the electron transport properties of is very effective. However, nQaAs has a mixed crystal scattering mechanism for electrons peculiar to mixed crystals, which limits the electron transport properties of InGaAs, especially at low temperatures. A method that is expected to be able to overcome this point is described, for example, by Yao et al. in the Japanese Journal of Applied Physics (Jpn, J. Appl, Phys, vol.
2. Nol, L680.1983), which uses 1nAS and GaAs instead of InGaAs.
It uses a superlattice of In this case, InAs and G
Since aAs has a lattice mismatch of about 7%, it has been proposed that this can be achieved by stacking layers with a sufficiently thin thickness (50 Å or less) so as not to generate dislocations.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、InAs、GaAsの超格子の成長報告
は多数あるものの、未だ結晶性は充分な状況にはなく、
さらに実際の半導体素子に応用された報告例はない。
However, although there are many reports on the growth of InAs and GaAs superlattices, the crystallinity is still not in a sufficient condition.
Furthermore, there are no reports of its application to actual semiconductor devices.

本発明の目的は、良好な結晶性を有したInAs、Ga
As超格子層を用いた高性能な電界効果トランジスタを
提供することにある。
The object of the present invention is to provide InAs and Ga with good crystallinity.
The object of the present invention is to provide a high-performance field effect transistor using an As superlattice layer.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、2次元電子ガスを利用する電界効果トランジ
スタにおいて、 電子チャネル層が、InAs層とGaAs層とからなる
超格子層であり、この超格子層の厚みは、結晶性が悪化
しない厚みであることを特徴とする。
The present invention provides a field effect transistor that uses two-dimensional electron gas, in which the electron channel layer is a superlattice layer consisting of an InAs layer and a GaAs layer, and the thickness of the superlattice layer is such that crystallinity does not deteriorate. characterized by something.

また本発明によれば、超格子層の厚みは500Å以下に
設定される。
Further, according to the present invention, the thickness of the superlattice layer is set to 500 Å or less.

〔作用〕[Effect]

本発明によれば、電子チャネル層には総jソが500人
程庇取下の1nAs、Qa、6.s単原子層超格子を用
いている。本発明者により行われた実験においては、単
原子層超格子の結晶性は、その総厚が増すにつれ悪化し
ていき、特に厚さが500人を越えたあたりから急激に
悪化する。従ってその厚みを500人程庇取下として用
いることにより、良好な電気的特性が得られ、またこれ
を2次元電子ガスを利用した電界効果トランジスタに応
用する場合、その厚みは特性向上を図るに充分な厚さで
ある。
According to the present invention, the electron channel layer contains 1nAs, Qa, 6. An s-monolayer superlattice is used. In experiments conducted by the present inventors, the crystallinity of a monoatomic layer superlattice deteriorates as its total thickness increases, and particularly when the thickness exceeds 500 layers, the crystallinity deteriorates rapidly. Therefore, good electrical characteristics can be obtained by using this thickness as an eaves reduction of about 500 people, and when applying this to a field effect transistor using two-dimensional electron gas, the thickness is sufficient to improve the characteristics. It is thick enough.

〔実施例〕〔Example〕

第1図は本発明による電界効果トランジスタの一実施例
を説明するための主要部の構造断面図である。この電界
効果トランジスタは、以下の様にして作製される。
FIG. 1 is a structural sectional view of main parts for explaining one embodiment of a field effect transistor according to the present invention. This field effect transistor is manufactured as follows.

まず、高抵抗1nP基+ffj 11上に例えば電子線
エピタキシー法(MBE法)により、基板温度450℃
において、ノンドープAlInAs層I2を5000人
、ノンドープInGaAs層13を1000人、電子チ
ャネル層となるI n A s / G a A s超
格子層14を200〜500人、ノンドープ゛A4!r
nAsJii15を80人、Siを2 XIO”cm−
”ドープしたN−A1!nAS層(電子供給層)16を
200人、ノンドープAlInAs層17を100人成
長する。
First, a high resistance 1nP base + ffj 11 is coated with a substrate temperature of 450° C. by, for example, electron beam epitaxy (MBE method).
In , 5000 people formed the non-doped AlInAs layer I2, 1000 people formed the non-doped InGaAs layer 13, 200 to 500 people formed the InAs/GaAs superlattice layer 14 which becomes the electron channel layer, and the non-doped A4! r
nAsJii15 for 80 people, Si for 2 XIO"cm-
``Grow 200 doped N-A1!nAS layers (electron supply layer) 16 and 100 undoped AlInAs layers 17.

次に、通常のリソグラフィー技術によりAuGe / 
N iのソース電極18およびドレイン電極19をパタ
ーニングし、380℃2分間のスパイクアロイを水素雰
囲気中で行うことにより、オーミック電極を形成し、さ
らにAffiゲート電極20を形成した。
Next, AuGe/
A source electrode 18 and a drain electrode 19 of Ni were patterned, and spike alloying was performed at 380° C. for 2 minutes in a hydrogen atmosphere to form an ohmic electrode, and further an Affi gate electrode 20 was formed.

なお、ノンドープInGaAs層12.15.17、ノ
ンドープInGaAs層13、N−AjllnAs層1
6は、InPに格子整合する条件で成長した。
Note that the non-doped InGaAs layer 12, 15, 17, the non-doped InGaAs layer 13, the N-AjllnAs layer 1
No. 6 was grown under conditions of lattice matching to InP.

以上の構成の電界効果トランジスタにおいて、ゲート電
極20は、電子チャネル層14に誘起される2次元電子
ガスを制御し、ソース電極18およびドレイン電極19
は、2次元電子ガスにオーミック接触する。
In the field effect transistor having the above configuration, the gate electrode 20 controls the two-dimensional electron gas induced in the electron channel layer 14, and the source electrode 18 and the drain electrode 19
makes ohmic contact with the two-dimensional electron gas.

以上のように、本実施例によれば、InPJJ板ll上
にInPに格子整合するAI!nAsJi、InGaA
s層が形成され、さらに電子チャネル層となるInAs
層とGaAs層からなる超格子層14が順次形成され、
さらにInPに格子整合する電子供給層となるN型不純
物を有するAi!InAS層16が順次層成6れ、電子
チャネル層に誘起される2次元電子ガスを制御するゲー
ト電極20と、2次元電子ガスにオーミック接触するソ
ース電極18およびドレイン電極19が設けられている
As described above, according to this embodiment, AI that lattice matches InP on the InPJJ board II! nAsJi, InGaA
InAs layer is formed and further becomes an electron channel layer.
A superlattice layer 14 consisting of a GaAs layer and a GaAs layer is sequentially formed,
Furthermore, Ai! has an N-type impurity that becomes an electron supply layer that is lattice-matched to InP! InAS layers 16 are sequentially formed, and a gate electrode 20 for controlling two-dimensional electron gas induced in the electron channel layer, and a source electrode 18 and a drain electrode 19 for making ohmic contact with the two-dimensional electron gas are provided.

次に、I n A s / G a A s超格子IJ
14の構成について述べる。InAsとGaAsは約7
%の格子不整があり、それらを積層する場合、転位が発
生しない範囲の膜厚条件で各々を積層する必要がある。
Next, the I n A s / G a A s superlattice IJ
The configuration of No. 14 will be described below. InAs and GaAs are about 7
% lattice misalignment, and when stacking them, it is necessary to stack each layer under film thickness conditions that do not cause dislocations.

この場合、InAs層とGaAsJiは弾性的に歪んだ
、いわゆる歪超格子となり良好な結晶性が得られる。I
nAsとGaAsの層厚は、超格子全体の格子定数がI
nPにほぼ一致する様、各々は同じ膜厚を選んだ。
In this case, the InAs layer and GaAsJi become elastically strained, a so-called strained superlattice, and good crystallinity can be obtained. I
The layer thicknesses of nAs and GaAs are such that the lattice constant of the entire superlattice is I
The same film thickness was chosen for each to almost match nP.

本発明者は、InAsとGaASを各層厚が約10原子
層以下(約30人)の同じ厚みで積層した場合に、転位
の発生が生じないことを透過型電子顕微鏡により確認し
た。さらに、それらの総厚が500人を越えるあたりか
ら急激に結晶性が悪化し、作製した電界効果トランジス
タの特性が悪化することを確認した。
The inventors of the present invention have confirmed using a transmission electron microscope that dislocations do not occur when InAs and GaAS are laminated to the same thickness, each layer having a thickness of approximately 10 atomic layers or less (approximately 30 people). Furthermore, it was confirmed that the crystallinity deteriorates rapidly when the total thickness exceeds 500 layers, and the characteristics of the manufactured field effect transistor deteriorate.

この結晶性の悪化は、結晶成長中、結晶表面の状態を反
射型高速電子線回折(RHEED)により同時観測した
ところ、結晶の成長モードが、MBEの2次元的成長か
ら3次元的成長に移行するために起こると推測される。
This deterioration of crystallinity was confirmed by simultaneously observing the state of the crystal surface during crystal growth using reflection high-speed electron diffraction (RHEED), which revealed that the crystal growth mode shifted from two-dimensional growth (MBE) to three-dimensional growth. It is assumed that this occurs because of

従ってInAs/Ga、As超格子層14の総厚は50
0Å以下にする必要がある。
Therefore, the total thickness of the InAs/Ga, As superlattice layer 14 is 50
It is necessary to make it 0 Å or less.

また、I n A s / G a A s超格子JW
14中に誘起される2次元電子ガスの波動関数の拡がり
は、ノンドープAI I nAs層界面から約200庇
取度にまで拡がるため、I n A s / G a 
A s超格子層14の厚みは200Å以上することが望
ましい。
In addition, I n A s / Ga A s superlattice JW
The spread of the wave function of the two-dimensional electron gas induced in 14 extends from the non-doped AI InAs layer interface to about 200 degrees of eaves, so that I n A s / Ga
The thickness of the As superlattice layer 14 is preferably 200 Å or more.

〔発明の効果〕〔Effect of the invention〕

本発明の電界効果トランジスタは、従来のInGaAs
のみをチャネルに用いた電界効果トランジスタに比べて
、同等以上の特性を得ることができ、特性向上は特に低
温において顕著に見られた。
The field effect transistor of the present invention is made of conventional InGaAs.
Compared to a field-effect transistor using only a channel for the channel, it was possible to obtain characteristics that were equivalent to or better than that of a field-effect transistor, and the improvement in characteristics was particularly noticeable at low temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するための主要部の構
造断面図、 第2図は従来例を説明するだめの主要部の構造断面図で
ある。 1.11・・・高抵抗InP基板 2、 4. 6.12.15.17 3、13・ 5.16・ 7.18・ 8.19・ 9.20・ 14・ ・ ・ ノンドープAj!InA3層 ノンドープInGaAs層 N−AlInAs層 ソース電極 ドレイン電極 ゲート電極 InAs/GaAs超格子層
FIG. 1 is a structural sectional view of the main part for explaining an embodiment of the present invention, and FIG. 2 is a structural sectional view of the main part for explaining a conventional example. 1.11... High resistance InP substrate 2, 4. 6.12.15.17 3, 13・ 5.16・ 7.18・ 8.19・ 9.20・ 14・ ・ ・ ・ Non-dope Aj! InA three-layer non-doped InGaAs layer N-AlInAs layer source electrode drain electrode gate electrode InAs/GaAs superlattice layer

Claims (2)

【特許請求の範囲】[Claims] (1)2次元電子ガスを利用する電界効果トランジスタ
において、 電子チャネル層が、InAs層とGaAs層とからなる
超格子層であり、この超格子層の厚みは、結晶性が悪化
しない厚みであることを特徴とする電界効果トランジス
タ。
(1) In a field effect transistor that uses two-dimensional electron gas, the electron channel layer is a superlattice layer consisting of an InAs layer and a GaAs layer, and the thickness of this superlattice layer is such that crystallinity does not deteriorate. A field effect transistor characterized by:
(2)超格子層の厚み、が500Å以下であることを特
徴とする請求項1記載の電界効果トランジスタ。
2. The field effect transistor according to claim 1, wherein: (2) the thickness of the superlattice layer is 500 Å or less.
JP28541388A 1988-11-11 1988-11-11 Field effect transistor Pending JPH02130933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28541388A JPH02130933A (en) 1988-11-11 1988-11-11 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28541388A JPH02130933A (en) 1988-11-11 1988-11-11 Field effect transistor

Publications (1)

Publication Number Publication Date
JPH02130933A true JPH02130933A (en) 1990-05-18

Family

ID=17691197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28541388A Pending JPH02130933A (en) 1988-11-11 1988-11-11 Field effect transistor

Country Status (1)

Country Link
JP (1) JPH02130933A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129231A (en) * 1990-09-19 1992-04-30 Sanyo Electric Co Ltd Hetero-junction field-effect transistor
JPH06342812A (en) * 1993-06-01 1994-12-13 Nec Corp Field effect transistor
US5473177A (en) * 1990-11-16 1995-12-05 Sumitomo Electric Industries, Ltd. Field effect transistor having a spacer layer with different material and different high frequency characteristics than an electrode supply layer thereon
JPH08111522A (en) * 1994-10-07 1996-04-30 Nec Corp Semiconductor substrate and semiconductor device having recess gate structure
JPH08255900A (en) * 1996-04-18 1996-10-01 Sanyo Electric Co Ltd Heterojunction field-effect transistor
US6015981A (en) * 1997-04-25 2000-01-18 Daimler-Benz Aktiengesellschaft Heterostructure field-effect transistors (HFETs') with high modulation effectivity
CN110085665A (en) * 2019-05-06 2019-08-02 林和 The multi-functional superlattices super large-scale integration of novel multi-vitamin

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129231A (en) * 1990-09-19 1992-04-30 Sanyo Electric Co Ltd Hetero-junction field-effect transistor
US5473177A (en) * 1990-11-16 1995-12-05 Sumitomo Electric Industries, Ltd. Field effect transistor having a spacer layer with different material and different high frequency characteristics than an electrode supply layer thereon
JPH06342812A (en) * 1993-06-01 1994-12-13 Nec Corp Field effect transistor
JPH08111522A (en) * 1994-10-07 1996-04-30 Nec Corp Semiconductor substrate and semiconductor device having recess gate structure
JPH08255900A (en) * 1996-04-18 1996-10-01 Sanyo Electric Co Ltd Heterojunction field-effect transistor
US6015981A (en) * 1997-04-25 2000-01-18 Daimler-Benz Aktiengesellschaft Heterostructure field-effect transistors (HFETs') with high modulation effectivity
CN113871461A (en) * 2019-05-06 2021-12-31 林和 Superlattice very large scale integrated circuit
CN110085665B (en) * 2019-05-06 2021-10-22 林和 Superlattice very large scale integrated circuit
CN110085665A (en) * 2019-05-06 2019-08-02 林和 The multi-functional superlattices super large-scale integration of novel multi-vitamin
CN113871460A (en) * 2019-05-06 2021-12-31 林和 Superlattice very large scale integrated circuit
CN113871457A (en) * 2019-05-06 2021-12-31 林和 Superlattice very large scale integrated circuit
CN113871458A (en) * 2019-05-06 2021-12-31 林和 Superlattice very large scale integrated circuit
CN113871459A (en) * 2019-05-06 2021-12-31 林和 Superlattice very large scale integrated circuit
CN113871457B (en) * 2019-05-06 2023-08-22 林和 Superlattice very large scale integrated circuit
CN113871459B (en) * 2019-05-06 2023-09-12 林和 Superlattice very large scale integrated circuit
CN113871460B (en) * 2019-05-06 2023-09-12 林和 Superlattice very large scale integrated circuit
CN113871458B (en) * 2019-05-06 2023-09-12 林和 Superlattice very large scale integrated circuit
CN113871461B (en) * 2019-05-06 2023-09-12 林和 Superlattice very large scale integrated circuit

Similar Documents

Publication Publication Date Title
US5060030A (en) Pseudomorphic HEMT having strained compensation layer
US6177685B1 (en) Nitride-type III-V HEMT having an InN 2DEG channel layer
US5770868A (en) GaAs substrate with compositionally graded AlGaAsSb buffer for fabrication of high-indium fets
KR100319300B1 (en) Semiconductor Device with Quantum dot buffer in heterojunction structures
EP0381396A1 (en) Compound semiconductor devices
JPH07120790B2 (en) Semiconductor device
EP1284020A2 (en) Semiconductor structures for hemt
JP2611735B2 (en) Heterojunction FET
JPH02130933A (en) Field effect transistor
Drouot et al. Design and growth investigations of strained In/sub x/Ga/sub 1-x/As/InAlAs/InP heterostructures for high electron mobility transistor application
EP1568082A2 (en) Buffer layer comprising quaternary and ternary alloys in semiconductor devices
JP3470054B2 (en) Nitride III-V compound semiconductor device
US5841156A (en) Semiconductor device including T1 GaAs layer
JP2964637B2 (en) Field effect transistor
JP2530496B2 (en) Semiconductor heterostructure and manufacturing method thereof
JP2557373B2 (en) Compound semiconductor device
JPS6390861A (en) Semiconductor device
van der Zanden et al. Comparison of Metamorphic InGaAs/InAlAs HEMT’s on GaAs with InP based LM HEMT’s
JPH10284510A (en) Semiconductor substrate
JPS609174A (en) Semiconductor device
Fink et al. Compositionally graded buffers on GaAs as substrates for Al0. 48In0. 52As/Ga0. 47In0. 53As MODFETs
JP3423812B2 (en) HEMT device and manufacturing method thereof
JPH04180240A (en) Field effect transistor
JP3275894B2 (en) Method for manufacturing GaInP-based laminated structure
JPS621277A (en) Compound semiconductor device