JPS6211279A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPS6211279A
JPS6211279A JP15107285A JP15107285A JPS6211279A JP S6211279 A JPS6211279 A JP S6211279A JP 15107285 A JP15107285 A JP 15107285A JP 15107285 A JP15107285 A JP 15107285A JP S6211279 A JPS6211279 A JP S6211279A
Authority
JP
Japan
Prior art keywords
layer
doped
superlattice
fet
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15107285A
Other languages
Japanese (ja)
Inventor
Yoshiro Oishi
芳郎 大石
Masahiro Hagio
萩尾 正博
Masaru Kazumura
数村 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15107285A priority Critical patent/JPS6211279A/en
Publication of JPS6211279A publication Critical patent/JPS6211279A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET

Abstract

PURPOSE:To obtain an FET with low noise and high operation speed by a method wherein an AlGaAs layer, which is an electron supply source of the hetero-junction type FET, is composed of a superlattice structure to realize high electron concentration. CONSTITUTION:A high-purity and non-doped GaAs layer 12 and an AlGaAs superlattice layer 13 are laminated on a semi-insulating GaAs substrate 11 and a source electrode 14a, a gate electrode 14b and a drain electrode 14c are provided. The superlattice layer is composed of repetitive structure of a non-doped Al0.4Ga0.8As layer 15, a non-doped Al0.2Ga0.8As layer 16 and an N-type Al0.2Ga0.8As layer 17 whose thicknesses are about five atoms thick respectively. The N-type AlGaAs layer is an electron supply source and if the layer can supply electrons with higher concentration, the characteristics of the element can be better. The Al mixed crystal ratio (x) is selected to be less than 0.2 in the layer 17 doped with donors and, in the layer 15, x 0.4 to increase the actual mixed crystal ratio of the superlattice and the layer 15 is not doped and, in the layer 16, x=0.2 to make the layer 16 serve as a buffer layer for protecting the donors from the influence of the layer 15. With this constitution, most of the donor electrons added to the layer 17 are activated in the conduction band and the electron concentration of about 10<19>cm<-3> can be obtained for the whole layer 13 so that an FET with low noise and high operation speed can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、動作速度の速いデジタルICやGH2帯の低
雑音増幅器などに用いることのできる電界効果トランジ
スタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a field effect transistor that can be used in high-speed digital ICs, low-noise amplifiers in the GH2 band, and the like.

従来の技術 近年、電界効果トランジスタは、ヘテロ構造作成技術の
進歩によって、新しい段階を迎えている。
BACKGROUND OF THE INVENTION In recent years, field effect transistors have entered a new phase due to advances in heterostructure fabrication technology.

特にG a A sとA立GaAsとは、熱膨張係数お
よび格子定数の差が小さいため、良好なヘテロ接合を実
現できる。このへテロ接合を利用した電界効果トランジ
スタは、高速動作を実現できるため注目されている。
In particular, GaAs and A-vertical GaAs have a small difference in thermal expansion coefficient and lattice constant, so a good heterojunction can be realized. Field-effect transistors that utilize this heterojunction are attracting attention because they can achieve high-speed operation.

このような従来のへテロ構造の電界効果トランジスタに
ついて、第3図を用いて説明する。第3図は従来のへテ
ロ接合型の電界効果トランジスタの断面図で、1は半絶
縁性G a A s基板、2はその上に成長された高純
度アンドープG a A s層、3はN型AJL x 
G ax −X A s層(X″;0.3)、 4 a
はソース電極、4bはゲート電極、4cはドレイン電極
である。
Such a conventional heterostructure field effect transistor will be explained with reference to FIG. FIG. 3 is a cross-sectional view of a conventional heterojunction field effect transistor, in which 1 is a semi-insulating GaAs substrate, 2 is a high purity undoped GaAs layer grown thereon, and 3 is an N Type AJL x
G ax −X A s layer (X″; 0.3), 4 a
is a source electrode, 4b is a gate electrode, and 4c is a drain electrode.

N型A蛎亀a、−2AsJ13から放出された電子は、
高純度アンドープG a A s層2とN型AuxGa
1−2As層3との界面の高純度アンドープG a A
 8層2側にたまる。高純度アンドープG a A s
層2は高純度で不純物が少ないため、この電子は、不純
物と衝突する度合が小さく、移動度は大きい。
The electrons emitted from N-type A oyster turtle a, -2AsJ13 are
High-purity undoped GaAs layer 2 and N-type AuxGa
1-2 High purity undoped Ga A at the interface with As layer 3
It accumulates on the 2nd side of the 8th layer. High purity undoped Ga As
Since the layer 2 has high purity and contains few impurities, the electrons collide with impurities to a small degree and have a high mobility.

発明が解決しようとする問題点 しかしながら、上記従来の構成では、N型AlxGax
AsABO39Jの混晶比Xが0.2〜0.6のときド
ナー準位が深くなり、ドナーの電子は伝導帯に上がらず
、電子密度は高くならないという現象がある(DXセン
ター)ため、電子密度を高くしようと、ドナーを多量に
ドープしても、電子密度は高くできず、予想されたほど
高速動作ができないという欠点を有していた。
Problems to be Solved by the Invention However, in the above conventional configuration, N-type AlxGax
When AsABO39J's mixed crystal ratio Even if a large amount of donor is doped to increase the electron density, the electron density cannot be increased and the device cannot operate as fast as expected.

本発明は上記従来の問題点を解消するもので、電子濃度
を高くして、低雑音で高速動作を実現できる電界効果ト
ランジスタを提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and aims to provide a field effect transistor that can increase electron concentration and realize high-speed operation with low noise.

問題点を解決するための手段 上記問題点を解決するため、本発明の電界効果トランジ
スタは、半絶縁性G a A s基板と、この半絶縁性
G a A s基板上に形成され゛たGaAs層と、こ
のG a A s層上に形成された不純物をドープして
いないAAGaAs層と不純物をドープしたAuxGa
z −X A s層(X≦0.2)との超格子層とを備
えた構成としたものである。
Means for Solving the Problems In order to solve the above problems, the field effect transistor of the present invention includes a semi-insulating GaAs substrate and a GaAs layer formed on the semi-insulating GaAs substrate. layer, an undoped AAGaAs layer formed on this GaAs layer, and an impurity-doped AuxGaAs layer.
The structure includes a z −X As layer (X≦0.2) and a superlattice layer.

作用 上記構成によれば、ドナーはAMの混晶比Xが0.2以
下のA M)(Ga1−xAs層にのみ存在することに
なる。そのため、ドナー準位が深くなって電子が伝導帯
に励起されなくなるという現象は起こらず、電子濃度を
増すことができる。
Effect According to the above configuration, the donor exists only in the AM (Ga1-xAs) layer where the mixed crystal ratio The phenomenon of no longer being excited occurs, and the electron concentration can be increased.

実施例 以下、本発明の一実施例を第1図〜第2図に基づいて説
明する。
EXAMPLE Hereinafter, an example of the present invention will be described based on FIGS. 1 and 2.

第1図は本発明の一実施例における電界効果トランジス
タの断面図で、11は半絶縁性G a A s基板、1
2は高純度アンドープG a A s層、13はアンド
ープAM。4Ga0.、As層とN型Au、、、Ga、
、、As層との超格子層、14aはソース電極、14b
はゲート電極。
FIG. 1 is a cross-sectional view of a field effect transistor according to an embodiment of the present invention, in which 11 is a semi-insulating GaAs substrate;
2 is a high purity undoped Ga As layer, and 13 is an undoped AM layer. 4Ga0. , As layer and N-type Au, ,Ga,
,, superlattice layer with As layer, 14a is a source electrode, 14b
is the gate electrode.

14cはドレイン電極であり、超格子層13以外は第3
図に示した従来の電界効果トランジスタと同様の構成で
ある。前記超格子層13は、第2図に詳細に示すように
、各層約5原子厚の、アンドープAno、4Gaa、s
As層15とアンドープAn。2Gao、。
14c is a drain electrode, and the parts other than the superlattice layer 13 are the third
The structure is similar to that of the conventional field effect transistor shown in the figure. The superlattice layer 13 is made of undoped Ano, 4 Gaa, s, each layer having a thickness of about 5 atoms, as shown in detail in FIG.
As layer 15 and undoped An. 2Gao,.

Ass層6とN型Auo、zGao、++As層17と
の繰り返しによる超格子構造となっている。
A superlattice structure is formed by repeating the Ass layer 6 and the N-type Auo, zGao, and ++As layers 17.

ヘテロ接合型電界効果トランジスタにおいて、N型AA
GaAs層は電子供給源の役割をしているので、高濃度
に電子を供給できるほど、素子の特性は良くなる。本実
施例では、電子供給源であるドナーをドープした層17
のAMの混晶比Xは0.2以下、層15は超格子の実効
的な混晶比を上げるためにX≠0.4とし、この層15
には不純物をドーピングしない構造とした。x =0.
2のアンドープ層16は、バッファ層で、ドナーが層1
5の影響を受けないようにするための層である。
In a heterojunction field effect transistor, N-type AA
Since the GaAs layer plays the role of an electron supply source, the higher the concentration of electrons that can be supplied, the better the characteristics of the device will be. In this example, a layer 17 doped with a donor serving as an electron supply source is used.
The mixed crystal ratio X of AM is 0.2 or less, and in order to increase the effective mixed crystal ratio of the layer 15,
The structure is such that no impurities are doped. x=0.
The undoped layer 16 of 2 is a buffer layer, and the donor is in layer 1.
This is a layer to avoid being affected by 5.

このような構成では、N型Au。2GaI、、11As
層17にドープしたドナーの電子のほぼすべてが放出さ
れ、伝導帯に励起されるため、超格子層13全体として
見ると、10”cm’程度の電子濃度が得られることに
なる。
In such a configuration, N-type Au. 2GaI, 11As
Almost all of the donor electrons doped in the layer 17 are emitted and excited to the conduction band, so that when looking at the superlattice layer 13 as a whole, an electron concentration of about 10"cm" is obtained.

発明の効果 以上述べたごとく本発明によれば、ヘテロ接合型電界効
果トランジスタの電子供給源であるAMG a A s
層を超格子構造にしたので、従来よりも約1桁高い電子
濃度を実現できるため、高速デジタルICやGH2帯の
低雑音増幅器用などとして良好な特性を得ることができ
る。
Effects of the Invention As described above, according to the present invention, AMG a A s which is an electron supply source of a heterojunction field effect transistor
Since the layer has a superlattice structure, it is possible to achieve an electron concentration that is approximately one order of magnitude higher than that of the conventional method, and therefore, it is possible to obtain good characteristics for use in high-speed digital ICs and low-noise amplifiers in the GH2 band.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における電界効果トランジス
タの断面図、第2図は同電界効果トランジスタにおける
超格子層の拡大断面図、第3図は従来のへテロ接合型電
界効果トランジスタの断面図である。 11・・・半絶縁性G a A s基板、12・・・高
純度アンドープGaAs層、13・・・超格子層、15
・・・アンドープAio4Gao、6As層、17−N
型Ano20ao、sAs層代理人   森  本  
義  弘 第1図 第2図 第3図 rl−横り性6raAsTa&。 /2−114−ヘアンr−舟シAs層 13・−超朱与屓
FIG. 1 is a sectional view of a field effect transistor according to an embodiment of the present invention, FIG. 2 is an enlarged sectional view of a superlattice layer in the same field effect transistor, and FIG. 3 is a sectional view of a conventional heterojunction field effect transistor. It is a diagram. DESCRIPTION OF SYMBOLS 11... Semi-insulating GaAs substrate, 12... High purity undoped GaAs layer, 13... Superlattice layer, 15
...Undoped Aio4Gao, 6As layer, 17-N
Type Ano20ao, sAs layer agent Morimoto
YoshihiroFigure 1Figure 2Figure 3rl- Laterality 6raAsTa&. /2-114-Hean r-Funashi As layer 13--Super vermilion

Claims (1)

【特許請求の範囲】[Claims] 1、半絶縁性GaAs基板と、この半絶縁性GaAs基
板上に形成されたGaAs層と、このGaAs層上に形
成された不純物をドープしていないAl_xGa_1_
−_xAs層と不純物をドープしたAl_xGa_1_
−_xAs層(但し、不純物をドープしたAl_xGa
_1_−_xAs層のxは0.2以下とする)との超格
子層とを備えた電界効果トランジスタ。
1. A semi-insulating GaAs substrate, a GaAs layer formed on this semi-insulating GaAs substrate, and an undoped Al_xGa_1_ formed on this GaAs layer.
−_xAs layer and impurity-doped Al_xGa_1_
−_xAs layer (However, Al_xGa doped with impurities)
_1_-_x x of the As layer is 0.2 or less) and a superlattice layer.
JP15107285A 1985-07-08 1985-07-08 Field effect transistor Pending JPS6211279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15107285A JPS6211279A (en) 1985-07-08 1985-07-08 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15107285A JPS6211279A (en) 1985-07-08 1985-07-08 Field effect transistor

Publications (1)

Publication Number Publication Date
JPS6211279A true JPS6211279A (en) 1987-01-20

Family

ID=15510691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15107285A Pending JPS6211279A (en) 1985-07-08 1985-07-08 Field effect transistor

Country Status (1)

Country Link
JP (1) JPS6211279A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100542A (en) * 1996-11-19 2000-08-08 Denso Corporation InP-based HEMT with superlattice carrier supply layer
CN105390541A (en) * 2015-10-30 2016-03-09 江苏能华微电子科技发展有限公司 HEMT epitaxial structure and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963769A (en) * 1982-10-05 1984-04-11 Agency Of Ind Science & Technol High-speed semiconductor element
JPS6028273A (en) * 1983-07-26 1985-02-13 Nec Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963769A (en) * 1982-10-05 1984-04-11 Agency Of Ind Science & Technol High-speed semiconductor element
JPS6028273A (en) * 1983-07-26 1985-02-13 Nec Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100542A (en) * 1996-11-19 2000-08-08 Denso Corporation InP-based HEMT with superlattice carrier supply layer
CN105390541A (en) * 2015-10-30 2016-03-09 江苏能华微电子科技发展有限公司 HEMT epitaxial structure and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2804041B2 (en) Field-effect transistor
JPH0810751B2 (en) Semiconductor device
JPS6211279A (en) Field effect transistor
JPH0312769B2 (en)
JPS63288061A (en) Semiconductor negative resistance element
JP3447438B2 (en) Field effect transistor
JPS61147577A (en) Complementary semiconductor device
JPS63278277A (en) Compound semiconductor device
JPH01128473A (en) Field effect transistor
JPS63161678A (en) Field effect transistor
JP2921835B2 (en) Heterojunction field effect transistor
JPH084140B2 (en) Field effect transistor
JPS609174A (en) Semiconductor device
JP2621854B2 (en) High mobility transistor
JP2000323499A (en) Compound semiconductor epitaxial wafer
JP3054216B2 (en) Semiconductor device
JPS6027172A (en) Fet device
JP2730511B2 (en) Heterojunction field effect transistor
JPS61161773A (en) Field effect transistor
JPH0684958A (en) Inp field effect semiconductor device
JPS6197966A (en) Semiconductor device
JPS6196769A (en) Field effect transistor
JPH0666334B2 (en) Field effect transistor
JPS63155772A (en) Field effect transistor
JPH07169946A (en) Field effect transistor