JPH0477423B2 - - Google Patents

Info

Publication number
JPH0477423B2
JPH0477423B2 JP61102339A JP10233986A JPH0477423B2 JP H0477423 B2 JPH0477423 B2 JP H0477423B2 JP 61102339 A JP61102339 A JP 61102339A JP 10233986 A JP10233986 A JP 10233986A JP H0477423 B2 JPH0477423 B2 JP H0477423B2
Authority
JP
Japan
Prior art keywords
positive electrode
battery
light
powder
zrs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61102339A
Other languages
Japanese (ja)
Other versions
JPS62259360A (en
Inventor
Teruhisa Kanbara
Tadashi Tonomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DODENSEI MUKI KAGOBUTSU GIJUTSU KENKYU KUMIAI
Original Assignee
DODENSEI MUKI KAGOBUTSU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DODENSEI MUKI KAGOBUTSU GIJUTSU KENKYU KUMIAI filed Critical DODENSEI MUKI KAGOBUTSU GIJUTSU KENKYU KUMIAI
Priority to JP61102339A priority Critical patent/JPS62259360A/en
Publication of JPS62259360A publication Critical patent/JPS62259360A/en
Publication of JPH0477423B2 publication Critical patent/JPH0477423B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • H01M10/465Accumulators structurally combined with charging apparatus with solar battery as charging system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電力だけではなく、光で充電できる
二次電池、すなわち太陽電池と二次電池を併せた
働きをする電池に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a secondary battery that can be charged not only with electricity but also with light, that is, a battery that functions as a combination of a solar cell and a secondary battery.

従来の技術 光で充電する二次電池の試みは、例えば金子正
夫著、エレクトロニクス、P97〜104(S59、10)
の総説で示されたように数多くなされているが、
実用されているのは太陽電池で通常の二次電池を
充電する方式のものである。このように太陽電池
で発電した電力を二次電池に貯える二段階型の他
に、n型TiO2のような半導体からなる電極を、
白金のような金属、あるいはp型GaPのような半
導体からなる電極と共に電解液に浸漬して半導体
電極を光で照射して電荷分離を起こさせ(価電帯
にホール、導電帯に電子を生ずる)、光誘起した
電荷で電解液中の物質を酸化、還元して活物質と
して貯え、放電時にこれを使用する試みもなされ
ているが、未だ実用の域に達していない。光励起
した電荷で、後続する酸化、還元反応を行わせる
には、電解質中の物質の酸化、還元電位が、半
導体電極の価電帯の上端より上部、還元電位が導
電帯の下端より下部にあること、光励起により
出来るだけ多くの電荷分離を行なわせるに、半導
体電極のバンドギヤツプが小さいこと、が必要で
あるが、バンドギヤツプが余り小さいとの条件
が満足できず、後続する電気化学反応が進行しな
い。それゆえ、及びの条件を満たし、太陽光
または蛍光灯の光を吸収して反応を効率よく進め
るのに望ましい半導体のバンドギヤツプは、1〜
2.5eV程度であるが、そのようなバンドギヤツプ
をもつ半導体、(n型Si〜1.1eV、n型GaAs〜
1.35eV、CdS〜2.4eV)は何れもそれ自体が反応
に関与して腐食してしまう問題点を有しており、
水溶液電解質中で安定なものは紫外光しか利用で
きないTiO2、ZnOなどバンドギヤツプが3.0〜
3.2eVの材料に限られるのが現状である。
Conventional technology Attempts to develop secondary batteries that can be charged with light include, for example, Masao Kaneko, Electronics, P97-104 (S59, 10).
As shown in the review paper, many studies have been done,
The one currently in use uses solar cells to charge ordinary secondary batteries. In addition to the two-stage type, which stores power generated by solar cells in a secondary battery, electrodes made of a semiconductor such as n-type TiO2 ,
The semiconductor electrode is immersed in an electrolyte with an electrode made of a metal such as platinum or a semiconductor such as p-type GaP, and the semiconductor electrode is irradiated with light to cause charge separation (creating holes in the valence band and electrons in the conduction band). ), attempts have been made to oxidize and reduce substances in the electrolyte with photo-induced charges, store them as active materials, and use them during discharge, but this has not yet reached the level of practical use. In order for the photo-excited charges to carry out the subsequent oxidation and reduction reactions, the oxidation and reduction potentials of the substances in the electrolyte must be above the top of the valence band of the semiconductor electrode, and the reduction potential must be below the bottom of the conduction band. In particular, in order to perform as much charge separation as possible by photoexcitation, it is necessary that the band gap of the semiconductor electrode be small, but if the band gap is too small, the condition cannot be satisfied, and the subsequent electrochemical reaction will not proceed. Therefore, the bandgap of a semiconductor that satisfies the conditions of and is desirable for absorbing sunlight or fluorescent light and efficiently proceeding with the reaction is 1 to 1.
Semiconductors with such a band gap (n-type Si ~ 1.1 eV, n-type GaAs ~
1.35eV, CdS to 2.4eV) have the problem that they themselves participate in the reaction and corrode.
Stable materials in aqueous electrolytes include TiO 2 and ZnO, which can only be used with ultraviolet light, and have a band gap of 3.0 or more.
Currently, it is limited to materials with a voltage of 3.2eV.

また、最近、、、族の遷移金属のジカル
コゲナイトを正極材料に使用する二次電池の研究
が多く行なわれて来ている。その多くはLiを負極
材料とし、有機電解質を用いるものである。
Further, recently, much research has been conducted on secondary batteries using dichalcogenite, a transition metal of the , , , group, as a positive electrode material. Most of them use Li as the negative electrode material and an organic electrolyte.

ごく最近、これらの遷移金属のジカルコゲナイ
ドが電力ばかりでなく、光によつてもイオンを出
し入れすることができ、例えば、エイチ トリビ
ツチ“フオトエレクトロケミカル エナジー コ
ンバージヨン インヴオルヴイング トランジシ
ヨン メタル デイー ステイツ アンド イン
ターカレーシヨン オブ レイヤーコンパウン
ヅ、ストラクチアー アンド ボンデイング (H.Tributch,“Photoelectrochemical
energy conversion involving transition metal
d−states and intercalation of layer
compounds”,Structure and Bonding 49、162
〜166´82)は自他の研究を総合して総説的に光で
充電できる電池の可能性を述べている。その中で
太陽光を利用するということを考慮すると、Liを
負極とする電池では充電に必要なエネルギーが大
き過ぎて効率の高い充電が出来ない。効率の上か
ら負極はもつと貴な酸化、還元電位をもつCuの
ようなものに置き換える方がよいことを予言して
いる。このことは上記、の条件から容易に考
えられることである。また、光充電の過程におい
て電極は半導性をとり続けることが必要でFeと
かCuのZrS2とかHfS2へのインターカレーシヨン
を取扱つた、ビー、ジー、ヤコブ他ジヤーナル
フイジツクス シー(ソリツド ステイト フイ
ジツクス)(B.G.Jacob,et al,J.Phys.C.(Solid
State Phys)12、2189(´79))を引用して、こ
れらの二硫化物が光電極として有望なことを述べ
ている。
Very recently, dichalcogenides of these transition metals have been shown to be able to transfer ions in and out not only by electric power but also by light, for example, H. Intercalation of layer compounds, structure and bonding (H. Tribuch, “Photoelectrochemical
energy conversion involving transition metal
d-states and intercalation of layers
compounds”,Structure and Bonding 49, 162
~166´82) summarizes the research of his own and others and discusses the possibility of batteries that can be charged with light. Considering the use of sunlight, batteries with Li as the negative electrode require too much energy to charge efficiently, making it impossible to charge them efficiently. From the viewpoint of efficiency, it is predicted that it would be better to replace the negative electrode with something like Cu, which has a noble oxidation and reduction potential. This can be easily considered from the above conditions. In addition, it is necessary for the electrode to maintain semiconductivity during the photocharging process, and B.G. , Jacob et al.
Physics (Solid State Physics) (BGJacob, et al, J.Phys.C. (Solid State Physics)
State Phys) 12, 2189 (´79)) states that these disulfides are promising as photoelectrodes.

発明が解決しようとする問題点 発明者らは先にn型ZrS2及びHfS2を用いた光
で充電できる二次電池を提供した。しかしなが
ら、上記材料を正極とした電池では放電に際して
の、電池としての分極が大きい欠点を有してい
た。本発明はこのような問題を解決することを目
的としたものである。
Problems to be Solved by the Invention The inventors have previously provided a secondary battery that uses n-type ZrS 2 and HfS 2 and can be charged with light. However, batteries using the above-mentioned materials as positive electrodes have the drawback of large polarization during discharge. The present invention aims to solve such problems.

問題点を解決するための手段 本発明は光二次電池の正極材料として、 MoXZr-1XSy(0<x<1、1.8≦y≦2.1)または
MoS2とZrS2の混合物のようなMoとZrの硫化物
を主体とする材料を用いたことを特徴としたもの
である。
Means for Solving the Problems The present invention uses Mo X Zr -1X Sy (0<x<1, 1.8≦y≦2.1) or
It is characterized by using a material mainly composed of sulfides of Mo and Zr, such as a mixture of MoS 2 and ZrS 2 .

作 用 電池の分極の大きな原因として、電解質と正極
質との接触面における電荷移動の活性化エネルギ
ーがある。これはつまり、電解質中を通つてきた
Cu+は正極物質から電子を受け取りCuとなつて正
極物質中に貯えられ、この電子の流れが電池とし
ての機能なのであるが、このCu+と正極物質との
間の電子の授受の際に消費するエネルギーの事を
電荷移動の活性化エネルギーと言うのである。そ
して勿論、この活性化エネルギーが低い方が電子
の授受は敏感に行なわれ、電池としての分極も小
さくなる。Zr硫化物にMoをドーブすると上述の
活性化エネルギーが低下し、結果的に分極が小さ
くなつた。
Function A major cause of battery polarization is the activation energy of charge transfer at the interface between the electrolyte and the positive electrode material. This means that it has passed through the electrolyte.
Cu + receives electrons from the positive electrode material, becomes Cu, and is stored in the positive electrode material. This flow of electrons is the function of the battery, but it is consumed during the exchange of electrons between Cu + and the positive electrode material. The energy that occurs is called the activation energy of charge transfer. Of course, the lower the activation energy, the more sensitive the transfer of electrons, and the smaller the polarization of the battery. Doping Zr sulfide with Mo lowered the activation energy mentioned above, resulting in smaller polarization.

実施例 以下本発明の実施例について説明する。Example Examples of the present invention will be described below.

実施例 1 電池を構成する材料は下記の通りである。Example 1 The materials constituting the battery are as follows.

正極:Mo0.1Zr0.9S2粉末+RbCu4I1.5Cl3.5
末(重量比2:3) ……60mg 固体電解質:RbCu4I1.5Cl3.5粉末 ……50mg 負極:Cu粉末+Cu1.59S粉末+RbCu4I1.5Cl3.
粉末(重量比4:19:5) ……50mg 上記正極粉末と固体電解質と負極粉末とを層状
に三層に重ね、約3トンの圧力でプレスし、直径
10mmの電池ペレツトとし、第1図に概略を示すよ
うに光二次電池を構成した。図中、1は上記の正
極層、2は固体電解質層、3は負極層であり、4
は透明電極でIn2O3にSnO2をドーブしたものをガ
ラスの上に蒸着したものを用いた。5は集電体で
スチレン・ブタジエンゴムに線径が7〜8μ、長
さが30〜100μの炭素繊維を分散させた導電ゴム
を用いた。6はリード線、7は高絶縁性樹脂を用
いた密封パツケージ、8は光充電の際の逆電流遮
断のためのダイオードである。
Positive electrode: Mo 0.1 Zr 0.9 S 2 powder + RbCu 4 I 1.5 Cl 3.5 powder (weight ratio 2:3) ...60mg Solid electrolyte: RbCu 4 I 1.5 Cl 3.5 powder ... 50mg Negative electrode: Cu powder + Cu 1.59 S powder + RbCu 4 I 1.5 Cl 3.
5 powder (weight ratio 4:19:5)...50 mg The above positive electrode powder, solid electrolyte, and negative electrode powder are stacked in three layers and pressed with a pressure of about 3 tons to reduce the diameter.
A 10 mm battery pellet was used to construct a photosecondary battery as schematically shown in FIG. In the figure, 1 is the above-mentioned positive electrode layer, 2 is the solid electrolyte layer, 3 is the negative electrode layer, and 4 is the positive electrode layer.
used a transparent electrode made by doping In 2 O 3 with SnO 2 and depositing it on glass. 5 is a current collector, and a conductive rubber made of styrene-butadiene rubber in which carbon fibers having a wire diameter of 7 to 8 μm and a length of 30 to 100 μm are dispersed is used. 6 is a lead wire, 7 is a sealed package using a highly insulating resin, and 8 is a diode for blocking reverse current during photocharging.

上記電池において、放電と光充電の繰り返しを
行なつた時の電池電圧の時間変化を示したものが
第2図である。放電は1MΩ定抵抗負荷放電を1
時間行ない、放電を中止すると同時に光照射を行
なつた。図中○印は本発明の実施例を示し、□印
はZrS2を正極の主体材料とする比較例である。
なお光源には100WのXeランプを用い、距離50cm
で照射した。そしてこの電池の放電特性を第3図
に示す。放電電流は200μAであり、○印、□印は
第2図のそれと同様である。これを見ると本実施
例品の放電特性は比較例に比べ著しく向上してい
る事がわかる。
FIG. 2 shows the change in battery voltage over time when discharging and photocharging were repeated in the above battery. Discharge is 1MΩ constant resistance load discharge.
After a certain period of time, light irradiation was performed at the same time as the discharge was stopped. In the figure, the ○ mark indicates an example of the present invention, and the □ mark indicates a comparative example in which ZrS 2 is the main material of the positive electrode.
A 100W Xe lamp was used as the light source, and the distance was 50cm.
It was irradiated with The discharge characteristics of this battery are shown in FIG. The discharge current was 200 μA, and the ○ and □ marks are the same as those in FIG. 2. Looking at this, it can be seen that the discharge characteristics of the product of this example are significantly improved compared to the comparative example.

実施例 2 正極としてMoS2粉末とZrS2粉末と RbCu4I1.5Cl3.5粉末を重量比で1:1:3に混
合したものを60mg使い、他は上記実施例1とまつ
たく同じ条件で作製した電池を上記同様の1MΩ
の定抵抗負荷放電と光充電のくり返しを行なつた
時の電池電圧の時間変化を示したものが第4図で
ある。この場合も実施例1と同様に放電特性の著
しい向上が見られる。ただし、正極はまずMoS2
とZrS2とを混合し、約3トンの圧力でプレスし
たものを800℃に72時間保持し、それを室温まで
冷却したものにRbCu4I1.5Cl3.5を混合した。
Example 2 As a positive electrode, 60 mg of a mixture of MoS 2 powder, ZrS 2 powder, and RbCu 4 I 1.5 Cl 3.5 powder in a weight ratio of 1:1:3 was used, and the rest was the same as in Example 1 above. The same 1MΩ battery as above was prepared under the same conditions.
FIG. 4 shows the change in battery voltage over time when constant resistance load discharge and photocharging were repeated. In this case as well, as in Example 1, a remarkable improvement in discharge characteristics is observed. However, the positive electrode is first made of MoS 2
and ZrS 2 were mixed, pressed under a pressure of about 3 tons, held at 800°C for 72 hours, cooled to room temperature, and mixed with RbCu 4 I 1.5 Cl 3.5 .

なお、上記正極材料のMoS2及びZrS2は不定比
化合物であり、これがMoSY、ZrSy(1.8≦Y≦
2.1)であつても、同様の結果を得る事は言うま
でもない。
In addition, MoS 2 and ZrS 2 of the above-mentioned positive electrode materials are non-stoichiometric compounds, which are MoS Y and ZrS y (1.8≦Y≦
2.1), it goes without saying that similar results can be obtained.

また、固体電解質を用いた理由は、電解質が液
体の場合、正極との接合面に光が照射されると、
カチオンとアニオンの両者が反応に関与し、そこ
で正極材料の腐食がおこるが、この例の光二次電
池に用いた固体電解質の場合は、反応するのは
Cu+のみであり、正極材料の腐食はおこらない点
にある。
In addition, the reason for using a solid electrolyte is that when the electrolyte is a liquid, when light is irradiated on the bonding surface with the positive electrode,
Both cations and anions participate in the reaction, which causes corrosion of the positive electrode material, but in the case of the solid electrolyte used in the photosecondary battery in this example, it is only the cations and anions that react.
Since it is only Cu + , corrosion of the positive electrode material does not occur.

発明の効果 本発明は以上のように正極にMoXZr-1XSy
MoS2−ZrS2混合系の材料を用いる事で電池の放
電の際の分極を著しく低減し、より大きい放電電
流を得る事が出来る。
Effects of the Invention As described above, the present invention provides the positive electrode with Mo X Zr -1X S y
By using a MoS 2 -ZrS 2 mixed material, polarization during battery discharge can be significantly reduced and a larger discharge current can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における光二次電池の概略構成
図、第2図及び第3図は実施例1の特性を示す
図、第4図は実施例2の特性を示す図である。 1……正極、2……固体電解質、3……負極、
4……透明電極、5……集電体、6……リード
線、7……密封パツケージ、8……ダイオード。
FIG. 1 is a schematic configuration diagram of a photo secondary battery according to the present invention, FIGS. 2 and 3 are diagrams showing characteristics of Example 1, and FIG. 4 is a diagram showing characteristics of Example 2. 1... Positive electrode, 2... Solid electrolyte, 3... Negative electrode,
4... Transparent electrode, 5... Current collector, 6... Lead wire, 7... Sealed package, 8... Diode.

Claims (1)

【特許請求の範囲】 1 金属銅を主体とする負極と、Cu+イオン導電
性固体電解質と、MoとZrの硫化物を主体とする
正極を順次積層し、前記正極に光を照射すること
により充電可能であることを特徴とする光二次電
池。 2 硫化物はMoXZr1-XSy(0<x<1、1.8≦y
≦2.1)である特許請求の範囲第1項記載の光二
次電池。 3 硫化物はMoS2とZrS2の混合物である特許請
求の範囲第1項記載の光二次電池。
[Claims] 1. By sequentially laminating a negative electrode mainly made of metallic copper, a Cu + ion conductive solid electrolyte, and a positive electrode mainly made of sulfides of Mo and Zr, and irradiating the positive electrode with light. A photo secondary battery characterized by being rechargeable. 2 Sulfide is Mo X Zr 1-X S y (0<x<1, 1.8≦y
≦2.1). 3. The photosecondary cell according to claim 1, wherein the sulfide is a mixture of MoS 2 and ZrS 2 .
JP61102339A 1986-05-02 1986-05-02 Photoelectric secondary cell Granted JPS62259360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61102339A JPS62259360A (en) 1986-05-02 1986-05-02 Photoelectric secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61102339A JPS62259360A (en) 1986-05-02 1986-05-02 Photoelectric secondary cell

Publications (2)

Publication Number Publication Date
JPS62259360A JPS62259360A (en) 1987-11-11
JPH0477423B2 true JPH0477423B2 (en) 1992-12-08

Family

ID=14324747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61102339A Granted JPS62259360A (en) 1986-05-02 1986-05-02 Photoelectric secondary cell

Country Status (1)

Country Link
JP (1) JPS62259360A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8835654B2 (en) 2004-12-22 2014-09-16 Bhi Limited Partnership Method and compositions for treating amyloid-related diseases

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2713419B2 (en) * 1988-04-14 1998-02-16 松下電器産業株式会社 Photo secondary battery
JPH0246665A (en) * 1988-08-05 1990-02-16 Matsushita Electric Ind Co Ltd Photo cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8835654B2 (en) 2004-12-22 2014-09-16 Bhi Limited Partnership Method and compositions for treating amyloid-related diseases

Also Published As

Publication number Publication date
JPS62259360A (en) 1987-11-11

Similar Documents

Publication Publication Date Title
TWI530007B (en) Quantum battery for repeatable charge and discharge
US8821700B2 (en) Photoelectrochemical cell and energy system using same
US4916035A (en) Photoelectrochemical cells having functions as a solar cell and a secondary cell
Sharon et al. Solar rechargeable battery—principle and materials
US10511055B2 (en) Metal plating-based electrical energy storage cell
EP0553023B1 (en) Photochargeable air battery
US4235955A (en) Solid state photoelectrochemical cell
JPH0477423B2 (en)
Sharon et al. Saur Viddyut Kosh IV: Study of a rechargeable solar battery with n-Pb3O4 electrodes
Cahen et al. Materials aspects of photo-electrochemical systems
JPH0477424B2 (en)
JPH0564437B2 (en)
JP3025798B2 (en) Photochemical secondary battery and method of manufacturing photochemical secondary battery
Hada et al. Energy conversion and storage in solid-state photogalvanic cells.
JPH0578912B2 (en)
JPH0564436B2 (en)
JPH07130408A (en) Photochemical secondary battery
JPH0578147B2 (en)
JPS634557A (en) Photo-secondary battery
JP2511905B2 (en) Optical secondary battery
JPS634558A (en) Photo-secondary battery
JPH0477422B2 (en)
JPH05198319A (en) Photoelectric air secondary battery
JPS62117278A (en) Photo-secondary cell
JPS61271758A (en) Total solid photo secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees