JP2713419B2 - Photo secondary battery - Google Patents

Photo secondary battery

Info

Publication number
JP2713419B2
JP2713419B2 JP63092026A JP9202688A JP2713419B2 JP 2713419 B2 JP2713419 B2 JP 2713419B2 JP 63092026 A JP63092026 A JP 63092026A JP 9202688 A JP9202688 A JP 9202688A JP 2713419 B2 JP2713419 B2 JP 2713419B2
Authority
JP
Japan
Prior art keywords
electrode
battery
active material
secondary battery
external load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63092026A
Other languages
Japanese (ja)
Other versions
JPH01262673A (en
Inventor
輝寿 神原
和典 高田
正 外邨
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63092026A priority Critical patent/JP2713419B2/en
Publication of JPH01262673A publication Critical patent/JPH01262673A/en
Application granted granted Critical
Publication of JP2713419B2 publication Critical patent/JP2713419B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • H01M10/465Accumulators structurally combined with charging apparatus with solar battery as charging system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Secondary Cells (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光起電圧を発生する太陽電池と通常の二次
電池の機能をあわせ持ち、特に各種電力消費装置駆動用
の無停電電源としての機能を有する光二次電池に関す
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a function of a solar cell that generates a photovoltaic voltage and a function of a normal secondary battery, and in particular, functions as an uninterruptible power supply for driving various power consuming devices. The present invention relates to an optical secondary battery having:

従来の技術 太陽エネルギーを電力として蓄えることにより昼夜の
区別なく電力源として使用できる電源装置はこれまで数
多く提案されている(金子正夫著エレクトロニクス P9
7−104、昭和59)。しかしながら現在実用化されている
ものは、太陽電池で発生した電力を二次電池で貯蔵し、
これを夜間利用しようとする二装置一体型であるが、こ
の方式のものは発電部分と充電部分とが各々独立してい
るため、装置構成は複雑で大きいものと成っていた。
2. Description of the Related Art There have been proposed many power supply devices that can be used as a power source regardless of day and night by storing solar energy as electric power (Masao Kaneko, Electronics P9).
7-104, Showa 59). However, those currently in practical use store power generated by solar cells in secondary batteries,
Although this is a two-device integrated type that is intended to be used at night, this type has a complicated and large device configuration because the power generation portion and the charging portion are independent of each other.

これに対して発明者等は、単一素子で光起電圧を発生
する太陽電池と通常の二次電池の機能をあわせ持つ光二
次電池を提案した(特願昭61−92711)。
On the other hand, the present inventors have proposed a photo secondary battery having both functions of a solar cell that generates a photovoltaic voltage with a single element and a normal secondary battery (Japanese Patent Application No. 61-92711).

発明が解決しようとする課題 しかしながら前記光二次電池では、光起電圧発生部分
と二次電池部分が電気回路的には並列接続されていたた
め、二次電池部分が充分充電されていない時光照射によ
り光起電圧発生部分で生じた電力はそのほとんどが二次
電池部分の充電に使われる。このためこれに並列接続さ
れた外部負荷を流れる電流は、光照射開始直後では極め
て小さいものであった。
SUMMARY OF THE INVENTION However, in the above-mentioned photo secondary battery, since the photovoltaic voltage generating portion and the secondary battery portion are connected in parallel in terms of electric circuit, when the secondary battery portion is not sufficiently charged, light is irradiated by light irradiation. Most of the electric power generated in the electromotive voltage generating portion is used for charging the secondary battery portion. Therefore, the current flowing through the external load connected in parallel to this was extremely small immediately after the start of light irradiation.

課題を解決するための手段 光起電圧発生素子からなる太陽電池部分と前記第1の
電池活物質電極,第2の電池活物質電極及び固体電解質
層とからなる二次電池部分とをあわせ持った光二次電池
において、第1の電池活物質電極及び第2の電池活物質
電極の少なくとも一方が、銅シェブレル化合物からな
り、かつ、固体電解質層が銅イオン導電性材料からな
り、 光照射時には二次電池部分に外部負荷を直列接続し、
太陽電池部分により外部負荷に電流を流しながら二次電
池部分の充電を行い、光照射のない時には外部負荷の両
端をそれぞれ第2の電極及び第3の電極に接続し、 二次電池部分により外部負荷に電流を流すことを特徴
とする光二次電池によって上記課題を解決する。
Means for Solving the Problems A solar cell part composed of a photovoltaic voltage generating element and a secondary battery part composed of the first battery active material electrode, the second battery active material electrode and the solid electrolyte layer are combined. In the photorechargeable battery, at least one of the first battery active material electrode and the second battery active material electrode is made of a copper chevrel compound, and the solid electrolyte layer is made of a copper ion conductive material. Connect an external load to the battery part in series,
The secondary battery portion is charged while a current is applied to the external load by the solar cell portion, and when there is no light irradiation, both ends of the external load are connected to the second electrode and the third electrode, respectively. The above problem is solved by an optical secondary battery characterized by flowing a current to a load.

また、電池活物質電極の一方を銀シェブレル化合物と
し、固体電解質層を銀イオン導電性材料とすることによ
っても上記課題を解決できる。
Further, the above problem can also be solved by using one of the battery active material electrodes as a silver chevrel compound and the solid electrolyte layer as a silver ion conductive material.

作用 上述のような光二次電池の構造にすると、光照射時に
は、外部負荷と二次電池部分とは回路的には直列接続と
なる。そのため、光照射により光起電圧発生部分で生じ
た電力は全て外部負荷を通ることに成り、従来例で述べ
た問題は起こらないものとなる。
Operation With the structure of the photo secondary battery as described above, at the time of light irradiation, the external load and the secondary battery portion are connected in series in terms of circuit. Therefore, all the electric power generated in the photovoltaic voltage generating portion by the light irradiation passes through the external load, and the problem described in the conventional example does not occur.

実施例 (実施例1) 第1図は、本発明の実施例である光二次電池の構造を
示す断面図である。大きさ20×20mm、厚さ1mmのガラス
基板1の上にIn2O3とSnO2の化合物よりなるITOを3箇所
蒸着し一方を透明電極2、他方を集電電極8及び10とし
た。つぎに前記透明電極2の上にアモルファスシリコン
層3をCVD方により厚さ0.04μm形成した後、不純物と
してBをドープしP型半導体特性を与えた。さらに連続
して前記CVD法によりI型アモルファスシリコン層4を
0.4μm形成する。ひきつずき前記I型アモルファスシ
リコン層および集電電極8に接続するように真空加熱蒸
着法により金属銅層5を10μm形成した。つぎに、前記
透明電極2と同時に形成した集電電極10上に、RFスパッ
タ法によりCu2Mo6S7.8で表される銅シェブレル化合物層
7を10μm形成し、最後に前記真空加熱蒸着法により銅
イオン導電性材料であるRbCu4I1.75Cl3.25で表される固
体電解質層6を1μm形成し、エポキシ樹脂9により全
体をコートし本実施例の電池Aとした。このようにして
作成した電池Aの動作機構を以下説明する。本実施例の
電池に於て、特許請求の範囲第一項に記載した半導体電
極は、P−I接合型アモルファスシリコンであり、第1
の電池活物質電極は金属銅層5であり、第2の電池活物
質電極は銅シェブレル層7である。金属銅はアモルファ
スシリコンより小さい仕事関数を有するため前記P−I
アモルファスシリコンと金属銅との接合面に光を照射す
ると光起電圧が発生し、透明電極2、P型アモルファス
シリコン層3、I型アモルファスシリコン層4、金属銅
層5、集電電極8により、透明電極2をプラスとし集電
電極8をマイナスとする太陽電池が構成される。他方、
本構成の素子は、集電電極8、金属銅層5、固体電解質
層6、銅シェブレル化合物層7、集電電極10により2次
電池部分を構成している。そこで透明電極2と集電電極
10の間に外部負荷を接続し、前記アモルファスシリコン
部分に光照射を行うと、前述の太陽電池部分と2次電池
部分と外部負荷が直列接続されているため、2次電池部
分の充電を行いつつ外部負荷を駆動することができる。
また夜間等の光照射の行なわれないときには、集電電極
8及び10の間に外部負荷を接続し、光照射の際充電され
た電力を使用することにより昼夜を問わない無停電電源
として用いることができる。
Example (Example 1) FIG. 1 is a cross-sectional view showing the structure of a photo secondary battery according to an example of the present invention. ITO consisting of a compound of In 2 O 3 and SnO 2 was deposited at three places on a glass substrate 1 having a size of 20 × 20 mm and a thickness of 1 mm, one of which was a transparent electrode 2, and the other was a current collecting electrode 8 and 10. Next, after forming an amorphous silicon layer 3 on the transparent electrode 2 by a CVD method to a thickness of 0.04 μm, B was doped as an impurity to give a P-type semiconductor characteristic. Further, the I-type amorphous silicon layer 4 is continuously formed by the CVD method.
Form 0.4 μm. A copper metal layer 5 having a thickness of 10 μm was formed by vacuum heating evaporation so as to be connected to the I-type amorphous silicon layer and the current collecting electrode 8. Next, on the current collecting electrode 10 formed simultaneously with the transparent electrode 2, a copper chevrel compound layer 7 represented by Cu 2 Mo 6 S 7.8 was formed by RF sputtering to a thickness of 10 μm, and finally by the vacuum heating evaporation method. A solid electrolyte layer 6 represented by RbCu 4 I 1.75 Cl 3.25 which is a copper ion conductive material was formed to a thickness of 1 μm, and the whole was coated with an epoxy resin 9 to obtain a battery A of this example. The operation mechanism of the battery A thus created will be described below. In the battery of the present embodiment, the semiconductor electrode described in claim 1 is a PI junction type amorphous silicon,
The battery active material electrode is a metal copper layer 5, and the second battery active material electrode is a copper chevrel layer 7. Since metallic copper has a work function smaller than that of amorphous silicon, the PI
When light is applied to the bonding surface between the amorphous silicon and the metal copper, a photovoltaic voltage is generated, and the transparent electrode 2, the P-type amorphous silicon layer 3, the I-type amorphous silicon layer 4, the metal copper layer 5, and the collecting electrode 8 A solar cell is constructed in which the transparent electrode 2 is positive and the current collecting electrode 8 is negative. On the other hand,
In the element of this configuration, a secondary battery portion is configured by the current collecting electrode 8, the metal copper layer 5, the solid electrolyte layer 6, the copper chevrel compound layer 7, and the current collecting electrode 10. Therefore, the transparent electrode 2 and the collecting electrode
When an external load is connected between 10 and the amorphous silicon portion is irradiated with light, the above-described solar cell portion, secondary battery portion, and external load are connected in series, so that the secondary battery portion is charged. Further, the external load can be driven.
When light irradiation is not performed at night or the like, connect an external load between the collecting electrodes 8 and 10 and use the charged power at the time of light irradiation to use as an uninterruptible power supply day and night. Can be.

比較例として、光起電圧発生部分と二次電池部分とが
電気回路的に並列接続された電池を作成した。その断面
図を第2図に示す。大きさ20×20mm、厚さ1mmのガラス
基体11の上にITOをコの字型に蒸着し一方の端を透明電
極12、他方を負極集電電極13とし、また同時に正極集電
電極14も作成した。つぎに前記透明電極12の上にCdS層1
5を真空加熱蒸着法により厚さ10μm形成した。さらに
連続して前記真空加熱蒸着法によりCu2S層16を前記CdS
層15および正極集電電極14に接続するように10μm形成
した。ひきつずき前記透明電極12と同時に形成した集電
電極13上に真空加熱蒸着法により金属銅層17を10μm形
成した。最後に前記真空加熱蒸着法によりRbCu4I1.75Cl
3.25で表される固体電解質層18を1μm形成し、エポキ
シ樹脂19により全体をコートし比較例の電池Bとした。
As a comparative example, a battery in which a photovoltaic voltage generating portion and a secondary battery portion were connected in parallel in an electric circuit was prepared. FIG. 2 shows a cross-sectional view thereof. ITO is deposited in a U-shape on a glass substrate 11 having a size of 20 × 20 mm and a thickness of 1 mm, and one end is a transparent electrode 12 and the other is a negative current collecting electrode 13, and at the same time, a positive current collecting electrode 14 is also provided. Created. Next, a CdS layer 1 is formed on the transparent electrode 12.
5 was formed to a thickness of 10 μm by a vacuum heating evaporation method. Further continuously, the Cu 2 S layer 16 is formed by the CdS by the vacuum heating evaporation method.
10 μm was formed so as to be connected to the layer 15 and the positive electrode current collecting electrode 14. A 10 μm-thick metallic copper layer 17 was formed on the current collecting electrode 13 formed simultaneously with the transparent electrode 12 by vacuum heating evaporation. Finally, RbCu 4 I 1.75 Cl by the vacuum heating evaporation method
A solid electrolyte layer 18 represented by 3.25 was formed to a thickness of 1 μm, and the whole was coated with an epoxy resin 19 to obtain a battery B of a comparative example.

以上の方法により作成した電池A,Bに対し以下に述べ
る試験を行なった。まず外部負荷として10kΩの固定抵
抗を用い、これを電池Aでは光照射時には端子2と10、
光遮断時には端子8と10に、また電池Bでは端子13と14
に接続し、光を断続的に照射しながら外部負荷に流れる
を測定した。その結果を第3図に示す。縦軸は外部負荷
に流れる電流値を示し、横軸は経過時間を示している。
なお光源には白色蛍光灯1000ルクスを使用し、2時間の
周期で照射と無照射を繰り返した。
The tests described below were performed on the batteries A and B prepared by the above method. First, a fixed resistance of 10 kΩ was used as an external load.
Terminals 8 and 10 when light is blocked, and terminals 13 and 14 for battery B
And flowing to an external load while intermittently irradiating light was measured. FIG. 3 shows the results. The vertical axis shows the value of the current flowing to the external load, and the horizontal axis shows the elapsed time.
The light source used was a 1000 lux white fluorescent lamp, and irradiation and non-irradiation were repeated at a cycle of 2 hours.

第3図を見ると明らかなように、比較例の電池Bでは
光照射と無照射の切り替の際の外部負荷に流れる電流の
上下動が非常に大きいのに較べ、本実施例の電池Aで
は、この変動が小さく、従来例の問題点はこれにより解
決されたということができる。
As is clear from FIG. 3, in the battery B of the present example, the up and down movement of the current flowing to the external load when switching between light irradiation and non-irradiation was very large in the battery B of the comparative example. It can be said that this variation is small, and the problem of the conventional example has been solved by this.

(実施例2) 実施例1の電池A及び比較例の電池Bにおける銅シェ
ブレル化合物Cu2Mo6S7.8の代りに銀シェブレル化合物Ag
2Mo6S8、また固体電解質としてRbCu4I1.75Cl3.25の代り
に銀イオン導電性材料であるRbAg4I5、金属銅の代りに
金属銀を用いた以外は電池構成及び作成法が同一である
実施例の電池Cこれに対し、実施例1と同一の性能評価
試験を行なった。その結果を第4図に示す。これを見る
と分かるように、本実施例の電池Cも無停電電源として
の機能を充分果たしている。
(Example 2) Instead of the copper chevrel compound Cu 2 Mo 6 S 7.8 in the battery A of Example 1 and the battery B of the comparative example, a silver chevrel compound Ag was used.
Battery structure and preparation method are the same except that 2 Mo 6 S 8 , RbAg 4 I 5 which is a silver ion conductive material instead of RbCu 4 I 1.75 Cl 3.25 as solid electrolyte, and metallic silver instead of metallic copper The same performance evaluation test as that of Example 1 was performed on the battery C of the example. The result is shown in FIG. As can be seen, the battery C of the present embodiment also sufficiently functions as an uninterruptible power supply.

(実施例3) 光起電圧発生部分の構造として、MIS(Metal Insulat
or Semiconductor メタル インシュレーター セミコ
ンダクター)型光起電圧発生構造を有する電池Dを作成
した。電池構成及び作成法は電池Aと同一であるが、MI
S型構造とするため第1図におけるI−型アモルファス
シリコン層4と金属銅層5の間にCu2Oで表される金属酸
化物絶縁層を5nmの膜厚で形成している。この金属酸化
物絶縁層の形成方法は、酸素圧力1.5×10-2torrの酸素
雰囲気中で金属銅を加熱蒸着法することにより行なっ
た。これに対し、実施例1と同一の性能評価試験を行な
った。その結果を第5図に示す。本実施例3の電池Dも
上記実施例1の電池Aと同等の性能を有することが分か
る。
(Example 3) As a structure of a photovoltaic voltage generating portion, an MIS (Metal Insulat
or Semiconductor Metal Insulator Battery D having a photovoltaic voltage generation structure was prepared. The battery configuration and fabrication method are the same as Battery A, but MI
In order to obtain an S-type structure, a metal oxide insulating layer represented by Cu 2 O is formed to a thickness of 5 nm between the I-type amorphous silicon layer 4 and the metal copper layer 5 in FIG. This metal oxide insulating layer was formed by heating and depositing copper metal in an oxygen atmosphere at an oxygen pressure of 1.5 × 10 −2 torr. On the other hand, the same performance evaluation test as in Example 1 was performed. The results are shown in FIG. It can be seen that the battery D of the third embodiment also has the same performance as the battery A of the first embodiment.

(実施例4) 本実施例では、N−P接合型半導体電極のP面に第1
の電池活物質電極を接合した電池Eを作成した。
Embodiment 4 In this embodiment, the first surface of the NP junction type semiconductor electrode is
A battery E in which the battery active material electrodes were bonded was prepared.

第6図は、本発明の実施例である電池の構造を示す断
面図である。大きさ100×100mm、厚さ1mmのガラス基体2
0の上にIn,Ag、カーボンよりなる電極材料をクシ型に3
箇所スクリーン印刷し一方を半導体用電極21、他方を正
極用集電電極22及び負極用集電電極23とした。つぎに上
記半導体用電極21と接触部分を持つようにN型CdS層24
をスクリーン印刷した後赤外線乾燥炉内で120℃の温度
で乾燥厚さ25μmの薄膜とした。次ぎにこの上に上記ス
クリーン印刷法によりCu2S層25を50μm形成した後、上
記赤外線乾燥炉内で120℃の温度で乾燥した。さらにこ
の上に正極集電電極22に接触するようにCu2Mo6S7.8で表
される銅シェブレル化合物層26をスクリーン印刷法によ
り100μm形成、第一の電池活物質電極とし、これと同
時に負極集電電極23上にも上記銅シェブレル化合物Cu2M
o6S7.8層27を100μm形成し第二の電池活物質電極とし
た。その後、窒素雰囲気中650℃で焼成下。最後にRbCu4
I1.75Cl3.25で表される固体電解質層28を上記スクリー
ン印刷法により50μm形成した後、全体を乾燥窒素雰囲
気中130℃でアニールし、最後に、エポキシ樹脂29によ
り全体をコートし本実施例の電池Fとした。
FIG. 6 is a sectional view showing the structure of a battery according to an embodiment of the present invention. 100x100mm size, 1mm thick glass substrate 2
Electrode material consisting of In, Ag, and carbon on 0
One portion was screen printed, and one was a semiconductor electrode 21 and the other was a positive electrode current collecting electrode 22 and a negative electrode current collecting electrode 23. Next, an N-type CdS layer 24 is formed so as to have a contact portion with the semiconductor electrode 21.
Was screen-printed and dried in an infrared drying oven at a temperature of 120 ° C. to form a thin film having a thickness of 25 μm. Next, a Cu 2 S layer 25 was formed thereon to a thickness of 50 μm by the screen printing method, and then dried at a temperature of 120 ° C. in the infrared drying oven. Further, a copper chevrel compound layer 26 represented by Cu 2 Mo 6 S 7.8 was formed thereon by a screen printing method to have a thickness of 100 μm so as to be in contact with the positive electrode current collecting electrode 22, and was used as a first battery active material electrode. The above-mentioned copper chevrel compound Cu 2 M is also provided on the collecting electrode 23.
The o 6 S 7.8 layer 27 was set to the second battery active material electrode to 100μm formed. Then, it is fired at 650 ° C in a nitrogen atmosphere. Finally RbCu 4
After forming a solid electrolyte layer 28 represented by I 1.75 Cl 3.25 by 50 μm by the above screen printing method, the whole was annealed at 130 ° C. in a dry nitrogen atmosphere, and finally, the whole was coated with an epoxy resin 29 to form a solid electrolyte layer of the present embodiment. Battery F was used.

これに対し、実施例1と同一の性能評価試験を行なっ
た。但し、負荷抵抗は1kΩを用いた。その結果を第7図
に示す。
On the other hand, the same performance evaluation test as in Example 1 was performed. However, a load resistance of 1 kΩ was used. The results are shown in FIG.

(実施例5) 本実施例ではP型半導体電極とN型半導体特性を有す
る電池活物質電極との接合により、光起電圧発生構造を
有する電池Fを作成した。
(Example 5) In this example, a battery F having a photovoltaic voltage generation structure was formed by joining a P-type semiconductor electrode and a battery active material electrode having N-type semiconductor characteristics.

第8図は、本発明の実施例である全固体光発電二次電
池の構造を示す断面図である。大きさ20×20mm、厚さ1m
mのガラス基体30の上にITOを3箇所に蒸着し一方を透明
電極31、他方を正極集電電極32及び負極集電電極33とし
た。つぎに上記透明電極31の上に半導体電極層34として
P型CuInSe2をRFスパッタ法により0.05μm形成、さら
にこの上にN型Cu1.6Sで表される第1の電池活物質電
極層35を真空加熱蒸着法により10μm形成した。つぎ
に、上記正極集電電極32上に、RFスパッタ法によりCu2M
o6S7.8で表される銅シェブレル化合物層36を10μm形成
し、最後に上記真空加熱蒸着法によりRbCu4I1.75Cl3.25
で表される固体電解質層37を10μm形成し、エポキシ樹
脂38により全体をコートし本実施例の電池Fとした。な
お39は上記透明電極作成時に同時に作成したITOよりな
る正極リード端子であり、上記第一の電池活物質電極35
と電気的に接触させたものである。これに対し、実施例
1と同一の性能評価試験を行なった。その結果を第9図
に示す。これを見ると分かるように本実施例の電池Gも
無停電電源としての機能を充分果たしていると言うこと
ができる。
FIG. 8 is a sectional view showing the structure of an all-solid-state photovoltaic secondary battery according to an embodiment of the present invention. Size 20 × 20mm, thickness 1m
ITO was vapor-deposited at three places on a glass substrate 30 of m, and one was a transparent electrode 31 and the other was a positive electrode current collecting electrode 32 and a negative electrode current collecting electrode 33. Next, P-type CuInSe 2 was formed as a semiconductor electrode layer 34 on the transparent electrode 31 by RF sputtering to a thickness of 0.05 μm, and a first battery active material electrode layer 35 represented by N-type Cu 1.6 S was further formed thereon. 10 μm was formed by a vacuum heating evaporation method. Next, Cu 2 M was deposited on the positive electrode current collecting electrode 32 by RF sputtering.
copper Chevrel compound layer 36 represented by o 6 S 7.8 to 10μm formed, RbCu 4 I 1.75 Cl 3.25 finally by the vacuum heating deposition
A solid electrolyte layer 37 of 10 μm was formed, and the whole was coated with an epoxy resin 38 to obtain a battery F of this example. Reference numeral 39 denotes a positive electrode lead terminal made of ITO which was simultaneously formed when the transparent electrode was formed, and the first battery active material electrode 35 was formed.
Is electrically contacted. On the other hand, the same performance evaluation test as in Example 1 was performed. The results are shown in FIG. As can be seen from this, it can be said that the battery G of this embodiment also sufficiently functions as an uninterruptible power supply.

発明の効果 以上のように本発明の光二次電池の構造にすると、光
照射時には、外部負荷と二次電池部分とは回路的には直
列接続となり、光照射により光起電圧発生部分で生じた
電力は全て外部負荷を通るこので、光照射時においても
外部負荷に大きい電流を流せる。
Effect of the Invention As described above, when the structure of the photorechargeable battery of the present invention is used, at the time of light irradiation, the external load and the secondary battery portion are connected in series in terms of circuit, and are generated at the photovoltaic voltage generation portion by light irradiation. Since all electric power passes through the external load, a large current can flow through the external load even during light irradiation.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例1の電池Aの構造図、第2図は
同実施例1の比較例の電池Bの構造図、第3図は同実施
例1の特性図、第4図は本発明の実施例2の特性図、第
5図は本発明の実施例3の特性図、第6図は本発明の実
施例4の構造図、第7図は同実施例4の特性図、、第8
図は本発明の実施例5の構造図、第9図は同実施例の特
性図である。 1……ガラス基体、2……透明電極、3……P型アモル
ファスシリコン層、4……I型アモルファスシリコン
層、5……金属銅層、6……固体電解質層、7……銅シ
ェブレル化合物層、8……集電電極、9……エポキシ樹
脂、10……集電電極、11……ガラス基体、12……透明電
極、13……負極集電電極、14……正極集電電極、15……
CdS層、16……Cu2S、17……金属銅、18……固体電解質
層、19……エポキシ樹脂、20……ガラス基体、21……半
導体用電極、22……正極集電電極、23……負極集電電
極、24……CdS、25……Cu2S、26……銅シェブレル化合
物層、27……銅シェブレル化合物層、28……固体電解質
層、29……エポキシ樹脂、30……ガラス基体、31……透
明電極、32……正極集電電極、33……負極集電電極、34
……CuInSe2層、35……Cu2S、36……銅シェブレル化合
物層、37……固体電解質層、38……ポキシ樹脂。
1 is a structural diagram of a battery A of Example 1 of the present invention, FIG. 2 is a structural diagram of a battery B of a comparative example of Example 1, FIG. 3 is a characteristic diagram of Example 1, and FIG. Fig. 5 is a characteristic diagram of the second embodiment of the present invention, Fig. 5 is a characteristic diagram of the third embodiment of the present invention, Fig. 6 is a structural diagram of the fourth embodiment of the present invention, and Fig. 7 is a characteristic diagram of the fourth embodiment. , 8th
FIG. 9 is a structural diagram of a fifth embodiment of the present invention, and FIG. 9 is a characteristic diagram of the fifth embodiment. DESCRIPTION OF SYMBOLS 1 ... Glass base, 2 ... Transparent electrode, 3 ... P-type amorphous silicon layer, 4 ... I-type amorphous silicon layer, 5 ... Metal copper layer, 6 ... Solid electrolyte layer, 7 ... Copper chevrel compound Layers, 8 current collecting electrodes, 9 epoxy resin, 10 current collecting electrodes, 11 glass substrate, 12 transparent electrodes, 13 negative current collecting electrodes, 14 positive current collecting electrodes, 15 ……
CdS layer, 16 Cu2S, 17 Copper metal, 18 Solid electrolyte layer, 19 Epoxy resin, 20 Glass substrate, 21 Semiconductor electrode, 22 Positive current collecting electrode, 23 ... negative electrode current collector electrode, 24 ... CdS, 25 ... Cu2S, 26 ... copper chevrel compound layer, 27 ... copper chevrel compound layer, 28 ... solid electrolyte layer, 29 ... epoxy resin, 30 ... glass substrate , 31 ... Transparent electrode, 32 ... Positive current collecting electrode, 33 ... Negative current collecting electrode, 34
... CuInSe2 layer, 35 ... Cu2S, 36 ... Copper chevrel compound layer, 37 ... Solid electrolyte layer, 38 ... Poxy resin.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 外邨 正 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 近藤 繁雄 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭61−91975(JP,A) 特開 昭62−47973(JP,A) 特開 昭63−241863(JP,A) 実開 昭62−48761(JP,U) ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Tadashi Soson 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. In-company (56) References JP-A-61-91975 (JP, A) JP-A-62-47973 (JP, A) JP-A-63-241863 (JP, A) Jpn. )

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】透明基板と、 前記透明基板上に分離して設けられた第1の電極,第2
の電極及び第3の電極と、 前記透明基板上に設けられ、かつ第1の電極上に積層さ
れた光起電圧発生素子と、 前記透明基板上に設けられ、かつ前記光起電圧発生素子
上及び第2の電極上に積層された第1の電池活物質電極
と、 前記透明基板上に設けられ、かつ第3の電極上に積層さ
れた第2の電池活物質電極と、 前記透明基板上に設けられ、かつ第1の電池活物質電極
上及び第2の電池活物質電極上に積層された固体電解質
層 を具備し、 前記光起電圧発生素子からなる太陽電池部分と前記第1
の電池活物質電極,第2の電池活物質電極及び固体電解
質層とからなる二次電池部分とをあわせ持った光二次電
池において、 第1の電池活物質電極及び第2の電池活物質電極の少な
くとも一方が、銅シェブレル化合物からなり、かつ、前
記固体電解質層が銅イオン導電性材料からなり、光照射
時には前記二次電池部分に前記外部負荷を直列接続し、
前記太陽電池部分により前記外部負荷に電流を流しなが
ら前記二次電池部分の充電を行い、光照射のない時には
前記外部負荷の両端をそれぞれ第2の電極及び第3の電
極に接続し、前記二次電池部分により前記外部負荷に電
流を流す ことを特徴とする光二次電池。
1. A transparent substrate, a first electrode and a second electrode provided separately on the transparent substrate.
And a third electrode, a photovoltaic voltage generating element provided on the transparent substrate and laminated on the first electrode, and a photovoltaic voltage generating element provided on the transparent substrate and And a first battery active material electrode laminated on a second electrode; a second battery active material electrode provided on the transparent substrate and laminated on a third electrode; And a solid electrolyte layer laminated on the first battery active material electrode and the second battery active material electrode, wherein the solar cell portion comprising the photovoltaic voltage generating element and the first
In a photo-rechargeable battery having both a battery active material electrode, a second battery active material electrode, and a solid electrolyte layer, a photovoltaic secondary battery comprising: a first battery active material electrode and a second battery active material electrode; At least one is made of a copper chevrel compound, and the solid electrolyte layer is made of a copper ion conductive material, and the light source irradiates the external load in series with the secondary battery portion,
The solar cell portion charges the secondary battery portion while passing a current to the external load, and when there is no light irradiation, both ends of the external load are connected to a second electrode and a third electrode, respectively. An optical secondary battery, wherein a current flows to the external load by a secondary battery portion.
【請求項2】透明基板と、 前記透明基板上に分離して設けられた第1の電極,第2
の電極及び第3の電極と、 前記透明基板上に設けられ、かつ第1の電極上に積層さ
れた光起電圧発生素子と、 前記透明基板上に設けられ、かつ前記光起電圧発生素子
上及び第2の電極上に積層された第1の電池活物質電極
と、 前記透明基板上に設けられ、かつ第3の電極上に積層さ
れた第2の電池活物質電極と、 前記透明基板上に設けられ、かつ第1の電池活物質電極
上及び第2の電池活物質電極上に積層された固体電解質
層 を具備し、 前記光起電圧発生素子からなる太陽電池部分と前記第1
の電池活物質電極,第2の電池活物質電極及び固体電解
質層とからなる二次電池部分とをあわせ持った光二次電
池において、 第1の電池活物質電極及び第2の電池活物質電極の一方
が、銀シェブレル化合物からなり、かつ、前記固体電解
質層が銀イオン導電性材料からなり、 光照射時には前記二次電池部分に前記外部負荷を直列接
続し、前記太陽電池部分により前記外部負荷に電流を流
しながら前記二次電池部分の充電を行い、光照射のない
時には前記外部負荷の両端をそれぞれ第2の電極及び第
3の電極に接続し、前記二次電池部分により前記外部負
荷に電流を流す ことを特徴とする光二次電池。
2. A transparent substrate, a first electrode and a second electrode separately provided on the transparent substrate.
And a third electrode, a photovoltaic voltage generating element provided on the transparent substrate and laminated on the first electrode, and a photovoltaic voltage generating element provided on the transparent substrate and And a first battery active material electrode laminated on a second electrode; a second battery active material electrode provided on the transparent substrate and laminated on a third electrode; And a solid electrolyte layer laminated on the first battery active material electrode and the second battery active material electrode, wherein the solar cell portion comprising the photovoltaic voltage generating element and the first
In a photo-rechargeable battery having both a battery active material electrode, a second battery active material electrode, and a solid electrolyte layer, a photovoltaic secondary battery comprising: a first battery active material electrode and a second battery active material electrode; One is made of a silver chevrel compound, and the solid electrolyte layer is made of a silver ion conductive material. At the time of light irradiation, the external load is connected in series to the secondary battery portion, and the external load is connected to the external load by the solar cell portion. The secondary battery portion is charged while a current is flowing, and when there is no light irradiation, both ends of the external load are connected to a second electrode and a third electrode, respectively, and a current is applied to the external load by the secondary battery portion. An optical secondary battery characterized by flowing electricity.
JP63092026A 1988-04-14 1988-04-14 Photo secondary battery Expired - Lifetime JP2713419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63092026A JP2713419B2 (en) 1988-04-14 1988-04-14 Photo secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63092026A JP2713419B2 (en) 1988-04-14 1988-04-14 Photo secondary battery

Publications (2)

Publication Number Publication Date
JPH01262673A JPH01262673A (en) 1989-10-19
JP2713419B2 true JP2713419B2 (en) 1998-02-16

Family

ID=14043025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63092026A Expired - Lifetime JP2713419B2 (en) 1988-04-14 1988-04-14 Photo secondary battery

Country Status (1)

Country Link
JP (1) JP2713419B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6174456B2 (en) * 2013-10-30 2017-08-02 本田技研工業株式会社 Photoelectric storage battery and optical storage battery system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4117506A (en) * 1977-07-28 1978-09-26 Rca Corporation Amorphous silicon photovoltaic device having an insulating layer
JPS5713185A (en) * 1980-06-26 1982-01-23 Asahi Chem Ind Co Ltd Photoelectrolysis device
JPS57104551U (en) * 1980-12-17 1982-06-28
JPS5928244U (en) * 1982-08-14 1984-02-22 松下電工株式会社 Power supply device using solar cells
JPS6191975A (en) * 1984-10-12 1986-05-10 Matsushita Electric Ind Co Ltd Energy accumulator
JPH07118333B2 (en) * 1986-04-22 1995-12-18 松下電器産業株式会社 Solar battery
JPS62259360A (en) * 1986-05-02 1987-11-11 Tech Res Assoc Conduct Inorg Compo Photoelectric secondary cell
JPS634556A (en) * 1986-06-25 1988-01-09 Tech Res Assoc Conduct Inorg Compo Photo-secondary battery

Also Published As

Publication number Publication date
JPH01262673A (en) 1989-10-19

Similar Documents

Publication Publication Date Title
US4740431A (en) Integrated solar cell and battery
US4916035A (en) Photoelectrochemical cells having functions as a solar cell and a secondary cell
JP5217074B2 (en) Thin-film solid lithium ion secondary battery
JPS60149178A (en) Solar cell
JP2713419B2 (en) Photo secondary battery
US3982260A (en) Light sensitive electronic devices
EP0108492A2 (en) Composite photocell
JPS5630261A (en) Battery and its manufacturing method
JP2615465B2 (en) Photovoltaic secondary battery
JPH08330616A (en) Photoelectric converter
JP2698401B2 (en) Thin-film photoelectric conversion element
JP3249619B2 (en) Solar cell
JPS61104567A (en) Power source apparatus using solar cell
JPS62128571A (en) Amorphous silicon solar battery
JPS61199672A (en) Photovoltaic device
JPH01169973A (en) Integral type element of amorphous solar cell and thin-film secondary battery
JPS5975679A (en) Photoelectromotive force generating device
JP2726045B2 (en) Light power generator
JP2506829B2 (en) Photovoltaic secondary battery
JP3573869B2 (en) Method for manufacturing photovoltaic device
JPH07147422A (en) Cadmium telluride solar cell
JPS62290184A (en) Photocell
KR910007468B1 (en) Solar cell of armophous silicon
JPH07118332B2 (en) Solar battery
JPH01259573A (en) Secondary photo cell