JPH07118333B2 - Solar battery - Google Patents

Solar battery

Info

Publication number
JPH07118333B2
JPH07118333B2 JP61092711A JP9271186A JPH07118333B2 JP H07118333 B2 JPH07118333 B2 JP H07118333B2 JP 61092711 A JP61092711 A JP 61092711A JP 9271186 A JP9271186 A JP 9271186A JP H07118333 B2 JPH07118333 B2 JP H07118333B2
Authority
JP
Japan
Prior art keywords
negative electrode
type semiconductor
solar
solid electrolyte
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61092711A
Other languages
Japanese (ja)
Other versions
JPS62249366A (en
Inventor
正 外邨
輝寿 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61092711A priority Critical patent/JPH07118333B2/en
Publication of JPS62249366A publication Critical patent/JPS62249366A/en
Publication of JPH07118333B2 publication Critical patent/JPH07118333B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体のp/n接合の光起電力を使った太陽電
池より得られる電力を固体電解質二次電池を用いて蓄電
する太陽光蓄電池に関し、さらに詳しくは、前記p/n接
合を構成するp型半導体であるCu2SがCu+イオン導電性
固体電解質を用いる前記固体電解質二次電池の正極を兼
ねる新規な太陽光蓄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar battery that uses a solid electrolyte secondary battery to store electric power obtained from a solar cell that uses photovoltaic power of a semiconductor p / n junction. More specifically, the present invention relates to a novel solar battery in which Cu 2 S, which is a p-type semiconductor forming the p / n junction, also serves as the positive electrode of the solid electrolyte secondary battery using a Cu + ion conductive solid electrolyte.

従来の技術 半導体のp/n接合の光起電力を使う太陽電池は、それ自
体蓄電機能がないため、太陽電池単独では光が照射され
ている間しか電力を供給することが出来ない。
2. Description of the Related Art Solar cells that use the photovoltaic power of semiconductor p / n junctions do not have a power storage function by themselves, so solar cells alone can supply power only while light is being irradiated.

又光の照射がない場合でも電力を供給するために、従
来、太陽電池は、ニッケル・カドミウム電池といった二
次電池と組み合わせた太陽光蓄電装置として最ら用いら
れている。このような目的に用いられる二次電池とし
て、在来の液体電解質を用いるニッケル・カドミウム電
池等に換えて、電池構成要素がすべて固体状であり、原
理的に液もれがなく、薄形,小形化が容易な固体電解質
二次電池を用いることで、太陽電池と二次電池の一体
化,パッケージの共有化等がはかれるなど数々の従来に
はない利点が得られる。
Further, in order to supply electric power even when there is no light irradiation, the solar cell is conventionally most used as a solar power storage device in combination with a secondary battery such as a nickel-cadmium battery. As a secondary battery used for such a purpose, in place of a nickel-cadmium battery using a conventional liquid electrolyte, etc., all the battery constituent elements are solid, and in principle, there is no liquid leakage, a thin type, By using a solid electrolyte secondary battery that can be easily miniaturized, a number of unprecedented advantages such as integration of solar cells and secondary batteries and sharing of packages can be obtained.

本発明者らは先に、このような固体電解質二次電池のう
ち、Cu+イオン導電性固体電解質を用いる二次電池と太
陽電池とを複合化した太陽光蓄電装置を提案した。太陽
電池の単セル数と、二次電池の単セル数を好適に組み合
せることで、蓄電効率の優れた装置とすることができる
という利点をこの装置は有している。
The present inventors have previously proposed a solar power storage device in which, of such solid electrolyte secondary batteries, a secondary battery using a Cu + ion conductive solid electrolyte and a solar battery are combined. This device has an advantage that a device having excellent storage efficiency can be obtained by suitably combining the number of single cells of a solar battery and the number of single cells of a secondary battery.

発明が解決しようとする問題点 しかし、このような太陽光蓄電装置は、正極と負極と電
解質とにより構成される二次電池と、半導体のp/n接合
で構成される太陽電池との2つの独立した素子をあくま
でも複合化したもので、各々独立した製造プロセスで作
られた各素子を同一パッケージ内に納めたものである。
構成要素あるいは材料としては少なくとも、正極,負
極,固体電解質の3つの他に、p型,n型の各半導体の合
計5つの要素が必要である。また、電圧の好適な組み合
せを得るためには、各々複数個の素子が必要となる。
Problems to be Solved by the Invention However, such a solar power storage device includes two types of a secondary battery including a positive electrode, a negative electrode, and an electrolyte, and a solar cell including a semiconductor p / n junction. It is a composite of independent elements, and each element manufactured by an independent manufacturing process is housed in the same package.
In addition to the three components of the positive electrode, the negative electrode, and the solid electrolyte, a total of five components of p-type and n-type semiconductors are required as constituent elements or materials. Moreover, in order to obtain a suitable combination of voltages, a plurality of elements are required for each.

出来上がった装置に高信頼性を期待するとき、構成要素
はできるだけ少ない方が望ましいし、また、太陽電池と
二次電池とが連続したひとつの製造プロセスで構成され
ることが望ましい。
When expecting high reliability in the finished device, it is desirable that the number of constituent elements is as small as possible, and it is desirable that the solar cell and the secondary battery are configured by one continuous manufacturing process.

問題点を解決するための手段 本発明は、太陽電池を構成するp型半導体が、二次電池
の正極としても作用できるCu2Sを正極として用いること
で、最小限必要な構成要素を5つから4つに減らすこと
のできる太陽光蓄電池を提供するものである。また、太
陽電池と二次電池とが連続したひとつの製造プロセスで
構成することが可能となる。
Means for Solving the Problems In the present invention, the p-type semiconductor that constitutes the solar cell uses Cu 2 S, which can also act as the positive electrode of the secondary battery, as the positive electrode, so that the minimum required five constituent elements are provided. To provide four solar storage batteries. Further, it becomes possible to construct the solar cell and the secondary battery in one continuous manufacturing process.

すなわち、本発明に従う太陽光蓄電池は、p型半導体で
あるCu2Sを正極とし、Cu+イオン導電性固体電解質と、
金属銅を主体とする負極から成る起電力が約0.3〜0.4V
の固体電解質二次電池である蓄電部(a)と、n型半導
体であるCdSと前記正極としても作用するp型半導体で
あるCu2Sとの接合により形成されるp/n接合から成る起
電力が0.50Vである発電部(b)より構成される。CdS層
上にCu2Sが形成され、さらにその上に順次形成されたCu
+イオン導電性固体電解質層と、金属銅を主体とする負
極層(以下Cu負極層と略す)の4層より成り、CdS層とC
u負極層とを電気的に接続することで本発明による太陽
光蓄電池が形成される。Cu負極層は、光がp/n接合部ま
で達することが出来るように、網目状,格子状,あるい
はくし状等に形成される。
That is, the solar battery according to the present invention uses Cu 2 S, which is a p-type semiconductor, as a positive electrode, a Cu + ion conductive solid electrolyte,
Electromotive force consisting of negative electrode mainly composed of metallic copper is about 0.3-0.4V
Of the solid electrolyte secondary battery, and a p / n junction formed by the junction of CdS, which is an n-type semiconductor, and Cu 2 S, which is a p-type semiconductor that also acts as the positive electrode. It is composed of a power generation unit (b) whose electric power is 0.50V. Cu 2 S is formed on the CdS layer, and Cu is formed on top of it.
+ Ion conductive solid electrolyte layer and four layers of negative electrode layer mainly composed of metallic copper (hereinafter abbreviated as Cu negative electrode layer), CdS layer and C
The solar battery according to the present invention is formed by electrically connecting with the negative electrode layer. The Cu negative electrode layer is formed in a mesh shape, a lattice shape, a comb shape, or the like so that light can reach the p / n junction.

Cu+イオン導電性固体電解質としては、光の透過性を考
慮して、一般式 RbCu4I2-XCl3+X(x=0.25〜0.75) 表わされるCu+イオン導電性固体電解質が好適に用いら
れる。
As the Cu + ion conductive solid electrolyte, a Cu + ion conductive solid electrolyte represented by the general formula RbCu 4 I 2 -X Cl 3 + X (x = 0.25 to 0.75) is suitable in consideration of light transmittance. Used.

第3図は、石英ガラス板上に、5×10-5Torrの真空下で
抵抗加熱法が形成した前述の一般式でx=0.5であるRbC
u4I15Cl35膜(膜厚3.5μ)の光吸収スペクトルを示した
ものである。
Fig. 3 shows RbC where x = 0.5 in the above-mentioned general formula formed by the resistance heating method on a quartz glass plate under a vacuum of 5 × 10 -5 Torr.
FIG. 4 shows the optical absorption spectrum of a u 4 I 15 Cl 35 film (thickness: 3.5 μ).

450nm以下で吸収があり、太陽光の紫外部の光は通しに
くいけれども、実用上問題なく使用することができる。
また、x=0.25〜0.75の範囲では、RbCu4I2-XCl3+Xの分
解電圧は約0.6Vであり、長期間に渡って発電部(b)よ
り0.5Vの電圧が蓄電部(a)の充電のために印加された
場合でも、Cu+イオン導電性固体電解質層の分解による
蓄電部(a)の劣化が生じる恐れは全くない。
It absorbs at 450 nm or less and it is difficult for sunlight to pass the ultraviolet light, but it can be used without any problems in practical use.
Further, the range of x = 0.25~0.75, RbCu 4 decomposition voltage of I 2-X Cl 3 + X is about 0.6V, a voltage of 0.5V from the power generating section (b) over a long period of time storage unit ( Even if it is applied for charging a), there is no possibility of deterioration of the electricity storage unit (a) due to decomposition of the Cu + ion conductive solid electrolyte layer.

次に、CdS層とCu負極との電気的接続は、必要に応じ、
順方向の電圧降下が0.1〜0.2V程度のダイオードを介し
て行うことができる。このようなダイオードとしては通
常グルマニウムダイオードが使用できる。接続は、CdS
層からCu負極層に向って電子が流れる方向が順方向とな
るようになされる。こうすることで、光照射がない場
合、蓄電部(a)に蓄えられた電気が、発電部(b)を
通して漏れるのを有効に防止することができる。
Next, the electrical connection between the CdS layer and the Cu negative electrode is, if necessary,
This can be done through a diode having a forward voltage drop of about 0.1 to 0.2V. As such a diode, a germanium diode can usually be used. Connection is CdS
The direction in which electrons flow from the layer toward the Cu negative electrode layer is the forward direction. By doing so, it is possible to effectively prevent the electricity stored in the power storage unit (a) from leaking through the power generation unit (b) when there is no light irradiation.

作 用 光が照射している場合、発電部(b)で生じた電圧部0.
50Vの電子は、外部負荷へ送られ、そこで利用消費され
るとともに、その一部はCdS層とCu負極の電気接続部を
通ってCu負極に至り、ここで正極層であるCu2Sより遊離
し、Cu+イオン導電性固体電解質層を通ってきたCu+イオ
ンと結合してCuとしてCu負極層に整えられる。光が照射
していない場合は、このようにして蓄電部(a)に蓄え
られた電気は、Cu2S層を正極とし、Cu負極層を負極とす
る蓄電部(a)より外部負荷へ供給することができる。
When operating light is radiated, the voltage part generated in the power generation part (b) is 0.
The 50V electrons are sent to an external load, where they are consumed and used, and some of them reach the Cu negative electrode through the electrical connection between the CdS layer and Cu negative electrode, where they are liberated from the positive electrode layer Cu 2 S. Then, it combines with Cu + ions that have passed through the Cu + ion conductive solid electrolyte layer to prepare Cu as a Cu negative electrode layer. When light is not applied, the electricity thus stored in the power storage unit (a) is supplied to the external load from the power storage unit (a) in which the Cu 2 S layer is the positive electrode and the Cu negative electrode layer is the negative electrode. can do.

以下、実施例により説明する。Hereinafter, description will be made with reference to examples.

実施例 第1図は本発明の実施例の1つである太陽光蓄電池の構
造を示す断面略図である。
Example FIG. 1 is a schematic sectional view showing the structure of a solar battery which is one of the examples of the present invention.

厚さ0.2mmの銅(Cu)箔1の上に真空蒸着法で厚さ10
μ,大きさ5×5mm角のCdS層2を形成し、さらにその上
に厚さ0.1μのCu2S層3をCuCl溶液中にCdS層2を浸して
表面のCdをCuに置換することで形成する。次に、厚さ3.
5μのRbCu4I1.5Cl3.5より成るCu+イオン導電性固体電解
質層4を真空蒸着法によりCu2S層3上に形成し、さらに
この上に、厚さ0.3μの金属銅膜より成るCu負極層5が
格子状に形成される。6は、片面に導電性の酸化インジ
ウム・スズ薄膜6aおよび6bを有するガラス板であり、Cu
負極層5と導電性薄膜6a、およびCu2S′層の一部と導電
性薄膜6bとが各々電気的に接続さるように配置されてい
る。
The thickness of the copper (Cu) foil 1 with a thickness of 0.2 mm is 10 by vacuum deposition.
Forming a CdS layer 2 having a size of 5 × 5 mm square and further immersing a Cu 2 S layer 3 having a thickness of 0.1 μ on the CdS layer 2 in a CuCl solution to replace Cd on the surface with Cu. To form. Then thickness 3.
A Cu + ion conductive solid electrolyte layer 4 composed of 5 μm of RbCu 4 I 1.5 Cl 3.5 is formed on the Cu 2 S layer 3 by a vacuum deposition method, and further, a Cu composed of a metal copper film having a thickness of 0.3 μm is formed thereon. The negative electrode layer 5 is formed in a grid shape. 6 is a glass plate having conductive indium tin oxide thin films 6a and 6b on one surface, and Cu
Negative electrode layer 5 and the conductive thin film 6a, and Cu 2 and a part and the conductive thin film 6b of S 'layer are arranged so as monkey respectively electrically connected.

6cは、Cu2S層3と導電性薄膜6bとを電気的に接続するた
めにCu2S層3上にptペーストにより形成した電気接続端
子である。ガラス板6と銅箔1とはエポキシ樹脂系接着
剤7により接着されている。8は、ゲルマニウム・ダイ
オードであり、図中、ダイオードの回路記号で示したよ
うに、CdS層2から電子がCu負極層5へ流れ込むように
接続されている。9は極端子、10は極端子である。
6c is an electrical connection terminal formed by pt paste on the Cu 2 S layer 3 in order to electrically connect the Cu 2 S layer 3 and the conductive thin film 6b. The glass plate 6 and the copper foil 1 are adhered by an epoxy resin adhesive 7. Reference numeral 8 denotes a germanium diode, which is connected so that electrons flow from the CdS layer 2 to the Cu negative electrode layer 5 as indicated by the circuit symbol of the diode in the figure. Reference numeral 9 is a pole terminal, and 10 is a pole terminal.

第2図は、このような太陽光蓄電池を、30分間太陽光に
さらした後、暗所で極端子9と極端子10を通して20
℃で50μAの一定電流で30分間放電した際の極端子9
と極端子10間の電圧変化を示したものである。
Fig. 2 shows that such a solar battery was exposed to sunlight for 30 minutes and then passed through pole terminal 9 and pole terminal 10 in the dark.
Pole terminal 9 when discharged at a constant current of 50μA for 30 minutes at ℃
3 shows a voltage change between the pole terminal 10 and the pole terminal 10.

図中、10サイクル目,100サイクル目とあるのは、30分間
太陽光による充を行った後、50μAで30分間放電する充
・放電サイクルを10サイクル,100サイクルくり返した際
の放電時の端子間電圧の変化を示したものである。100
サイクル後でもほとんど初期特性と変りない放電特性を
与える。
In the figure, the 10th and 100th cycles are the terminals at the time of discharging after repeating the charging / discharging cycle of charging for 30 minutes with sunlight for 30 minutes and discharging at 50μA for 30 minutes. It shows the change of the voltage between the two. 100
It gives almost the same initial discharge characteristics as the discharge characteristics even after cycling.

発明の効果 以上のように本発明によれば、太陽光発電部のp型半導
体であるCu2Sを、固体電解質二次電池より成る蓄電部の
正極としても作用させることで、構成要素の数を従来の
5つから4つに減じた太陽光蓄電池を提供できる。
EFFECTS OF THE INVENTION As described above, according to the present invention, Cu 2 S, which is a p-type semiconductor of a solar power generation unit, is caused to act as a positive electrode of a power storage unit including a solid electrolyte secondary battery, so that the number of components is increased. It is possible to provide a solar storage battery in which the number of solar cells is reduced from the conventional five to four.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例の1つである太陽光蓄電池の断
面構造を示す略図、第2図は実施例の太陽光蓄電池の放
電特性を示す図、第3図は本発明の太陽光蓄電池に用い
られるCu+イオン導電性固体電解質膜の光吸収スペクト
ルを示す図である。 1……銅箔、2……CdS層、3……Cu2S層、4……Cu+
オン導電性固体電解質層、5……Cu負極層。
FIG. 1 is a schematic view showing a cross-sectional structure of a solar storage battery which is one of the embodiments of the present invention, FIG. 2 is a view showing discharge characteristics of the solar storage battery of the embodiment, and FIG. 3 is the solar light of the present invention. It is a figure which shows the light absorption spectrum of the Cu + ion conductive solid electrolyte membrane used for a storage battery. 1 ... Copper foil, 2 ... CdS layer, 3 ... Cu 2 S layer, 4 ... Cu + ion conductive solid electrolyte layer, 5 ... Cu negative electrode layer.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−107577(JP,A) 特開 昭60−264060(JP,A) 実願昭55−143642号(実開昭57−66868 号)の願書に添付した明細書及び図面の内 容を撮影したマイクロフィルム(JP, U) 実願昭60−194150号(実開昭62−102266 号)の願書に添付した明細書及び図面の内 容を撮影したマイクロフィルム(JP, U) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-59-107577 (JP, A) JP-A-60-264060 (JP, A) Japanese Patent Application No. 55-143642 (No. Contents of the description and drawings attached to the application of Microfilm (JP, U) Description of the specification and drawings attached to the application of Japanese Patent Application No. Sho 60-194150 (No. Sho 62-102266) Micro film (JP, U)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(a)p型半導体Cu2Sを正極とし、Cu+
オン導電性固体電解質と、金属銅を主体とする負極とに
より構成される蓄電部と;(b)n型半導体CdSと前記
蓄電部(a)の正極であるp型半導体Cu2Sとの接合によ
り形成されるp/n接合より成る発電部とにより構成さ
れ、前記n型半導体CdSと前記金属銅を主体とする負極
とが電気的に接続されていることを特徴とする太陽光蓄
電池。
1. A power storage unit comprising: (a) a p-type semiconductor Cu 2 S as a positive electrode, a Cu + ion conductive solid electrolyte, and a negative electrode mainly containing metallic copper; and (b) an n-type semiconductor CdS. And a power generation section having a p / n junction formed by joining with the p-type semiconductor Cu 2 S which is the positive electrode of the power storage section (a), and is mainly composed of the n-type semiconductor CdS and the metallic copper. A solar storage battery, which is electrically connected to a negative electrode.
【請求項2】n型半導体CdSと金属銅を主体とする負極
とが、n型半導体CdSから金属銅を主体とする負極へ向
かって電子が流れる方向を順方向として、ダイオードを
介して電気的に接続されることを特徴とする特許請求の
範囲第1項記載の太陽光蓄電池。
2. An n-type semiconductor CdS and a negative electrode mainly composed of metallic copper are electrically connected via a diode with a forward direction of electrons flowing from the n-type semiconductor CdS to a negative electrode mainly composed of metallic copper. The solar storage battery according to claim 1, wherein the solar storage battery is connected to.
【請求項3】Cu+イオン導電性固体電解質が一般式、 RbCu4I2-XCl3+X (x=0.25〜0.75) で表わされる化合物であることを特徴とする特許請求の
範囲第1項又は第2項記載の太陽光蓄電池。
3. A Cu + ion conductive solid electrolyte is a compound represented by the general formula: RbCu 4 I 2 -X Cl 3 + X (x = 0.25 to 0.75). Item 2. The solar battery according to Item 2 or Item 2.
JP61092711A 1986-04-22 1986-04-22 Solar battery Expired - Lifetime JPH07118333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61092711A JPH07118333B2 (en) 1986-04-22 1986-04-22 Solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61092711A JPH07118333B2 (en) 1986-04-22 1986-04-22 Solar battery

Publications (2)

Publication Number Publication Date
JPS62249366A JPS62249366A (en) 1987-10-30
JPH07118333B2 true JPH07118333B2 (en) 1995-12-18

Family

ID=14062049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61092711A Expired - Lifetime JPH07118333B2 (en) 1986-04-22 1986-04-22 Solar battery

Country Status (1)

Country Link
JP (1) JPH07118333B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2713419B2 (en) * 1988-04-14 1998-02-16 松下電器産業株式会社 Photo secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766868U (en) * 1980-10-08 1982-04-21
FR2529716B1 (en) * 1982-06-30 1985-06-28 Centre Nat Rech Scient METHOD OF MANUFACTURING CADMIUM SULFIDE PHOTOPILES-COPPER SULFIDE
JPS60264060A (en) * 1984-06-13 1985-12-27 Matsushita Electric Ind Co Ltd Solar light storage device
JPS62102266U (en) * 1985-12-17 1987-06-29

Also Published As

Publication number Publication date
JPS62249366A (en) 1987-10-30

Similar Documents

Publication Publication Date Title
US4740431A (en) Integrated solar cell and battery
US7649140B2 (en) Photovoltaic module with full utilization of surface area
JPH0460355B2 (en)
US4916035A (en) Photoelectrochemical cells having functions as a solar cell and a secondary cell
WO2003100867A1 (en) Power source device
US20100012186A1 (en) Bulb-Type Light Concentrated Solar Cell Module
EP0108492A2 (en) Composite photocell
JPH07118333B2 (en) Solar battery
JPH07118332B2 (en) Solar battery
CN111092597A (en) Energy storage type solar cell and energy storage type photovoltaic module
CN211266857U (en) Energy storage type solar cell and energy storage type photovoltaic module
JP2713419B2 (en) Photo secondary battery
JP2506829B2 (en) Photovoltaic secondary battery
RU2750533C2 (en) Flexible multilayer photovoltaic module and method for manufacture thereof
JP2615465B2 (en) Photovoltaic secondary battery
JPH04127581A (en) Solar cell module
JPH0677513A (en) Photoelectricity source capable of displaying output
JP2511905B2 (en) Optical secondary battery
JPH0244778A (en) Optical power source
JPS6188468A (en) Battery
JPH02272777A (en) Solar cell
JPH01315966A (en) Photocell
JPH04312985A (en) Amorphous silicon solar cell
JPH01259573A (en) Secondary photo cell
JPS58197888A (en) Module type solar battery provided with storage system