JPH01259573A - Secondary photo cell - Google Patents

Secondary photo cell

Info

Publication number
JPH01259573A
JPH01259573A JP63087497A JP8749788A JPH01259573A JP H01259573 A JPH01259573 A JP H01259573A JP 63087497 A JP63087497 A JP 63087497A JP 8749788 A JP8749788 A JP 8749788A JP H01259573 A JPH01259573 A JP H01259573A
Authority
JP
Japan
Prior art keywords
amorphous silicon
layer
copper
metallic copper
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63087497A
Other languages
Japanese (ja)
Inventor
Teruhisa Kanbara
神原 輝寿
Kazunori Takada
和典 高田
Tadashi Tonomura
正 外邨
Shigeo Kondo
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63087497A priority Critical patent/JPH01259573A/en
Publication of JPH01259573A publication Critical patent/JPH01259573A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve light charging efficiency by integrating a photovoltaic force generation part consisting of amorphous silicon and metallic copper, and a secondary cell part consisting of a copper ion conductive solid electrolyte and Cu MS2 with metallic copper as a common part. CONSTITUTION:An amorphous silicon layer 3 and an I-type amorphous silicon layer 4 are formed on a transparent electrode 2 and a metallic copper layer 5 is formed on this layer by a vacuum heat deposition method. Next, a TiS2 layer 7 is formed on a collector electrode 8 and finally a solid electrolyte layer 6 to be expressed by RbCu4I1.75Cl3.25 is formed; the whole is coated with epoxy resin 9. Then, a photovoltaic generation part consisting of amorphous silicon and metallic copper is irradiated by light, a secondary cell part formed of metallic copper, a copper ion conductive solid electrolyte and CuxMS2 comes to be charged by the photoelectromotive force. Thereby, the light charging efficiency due to recombination of holes and electrons inside CuxMS2 can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光起電圧を発生する太陽電池と通常の二次電
池の機能をあわせ持ち、特に各種電力消費装置駆動用の
無停電電源としての機能を有する光二次電池に間する。
[Detailed Description of the Invention] Industrial Application Field The present invention has both the functions of a solar cell that generates a photovoltaic voltage and a normal secondary battery, and in particular functions as an uninterruptible power source for driving various power consumption devices. It is used in photo secondary batteries with.

従来の技術 太陽エネルギーを電力として蓄えることにより昼夜の区
別なく電力源として使用できる電源装置はこれまで数多
く提案されている。 (金子正夫著エレクトロニクス 
P97−104、昭和59)しかしながら現在実用化さ
れているものは、太陽電池で発生した電力を二次電池で
貯蔵し、これを夜間利用しようとする二装置一体型であ
るが、この方式のものは発電部分と充電部分とが各々独
立しているため、装置構成は複雑で大きいものと成って
いた。
2. Description of the Related Art Many power supply devices have been proposed that can be used as a power source regardless of day or night by storing solar energy as electric power. (Electronics by Masao Kaneko
P97-104, 1982) However, what is currently in practical use is a two-device integrated type that stores the electricity generated by solar cells in a secondary battery and uses it at night. Since the power generation part and the charging part are each independent, the device configuration is complicated and large.

これに対して発明者等は、単一素子で光起電圧を発生す
る太陽電池と通常の二次電池の機能をあわせ持つ光二次
電池を提案した(特開昭61−118974号公報)。
In response, the inventors proposed a photo secondary battery that has both the functions of a solar cell that generates a photovoltaic voltage with a single element and a normal secondary battery (Japanese Patent Application Laid-Open No. 118974/1982).

発明が解決しよ、うとする課題 しかしながら上記光二次電池での光充電効率つまり人力
照射光に対する充電電流の比は低いものであった。
Problems to be Solved by the Invention However, the photo-charging efficiency, that is, the ratio of charging current to manually irradiated light, in the photo secondary battery is low.

課題を解決するための手段 アモルファスシリコンと金属銅による光起電圧発生部分
を作成し、上記金属銅を共通部分として、銅イオン導電
性固体電解質及びC,u xM S 2よりなる二次電
池部分を作成し一体化する。
Means for Solving the Problems A photovoltaic voltage generating part was created using amorphous silicon and metal copper, and a secondary battery part made of a copper ion conductive solid electrolyte and C, u x M S 2 was created using the metal copper as a common part. Create and integrate.

作用 上述の従来例で述べた光二次電池の光充電効率が低い原
因は次ぎのように考えられる。つまりこの光二次電池は
、Cu xM S 2で表される化合物を主体材料とし
ており、これはMB2を骨格とする層状化合物の層間に
銅原子が配位した構造である。
The reason for the low photocharging efficiency of the photovoltaic secondary battery described in the conventional example described above is considered to be as follows. In other words, this photosecondary battery is mainly made of a compound represented by Cu x M S 2, which has a structure in which copper atoms are coordinated between layers of a layered compound having MB2 as a skeleton.

その光充電反応はこれに光を照射するとMB2の価電子
帯にホールを作り、それを眉間に配位した銅原子と反応
させるものであった。ところが上記反応ではMB2と銅
原子との結合性が非常に弱く、MB2の価電子帯に発生
したホールはむしろ伝導帯に励起された電子と再結合す
る割合が多く、これにより光充電反応効率が低いもので
あったと考えられる。本発明ではアモルファスシリコン
と金属銅による光起電圧発生部分を形成し、この部分を
光照射すると、金属銅、銅イオン導電性固体電解質、C
u xM S 2により形成された二次電池部分を上記
光起電圧発生部分で発生させた電力で充電する形態とな
り、上述のごときCIJ XM S 2内部でのポール
と電子との再結合による効率の低下は発生しないものと
なる。
The photocharging reaction was such that when MB2 was irradiated with light, a hole was created in the valence band of MB2, which reacted with the copper atoms coordinated between the eyebrows. However, in the above reaction, the bond between MB2 and the copper atom is very weak, and the holes generated in the valence band of MB2 are rather more likely to recombine with the electrons excited in the conduction band, which reduces the photocharging reaction efficiency. It is thought that it was low. In the present invention, a photovoltaic voltage generating part is formed by amorphous silicon and metallic copper, and when this part is irradiated with light, metallic copper, copper ion conductive solid electrolyte, C
The secondary battery part formed by u xM S 2 is charged with the electric power generated by the photovoltaic voltage generation part, and the efficiency is increased by the recombination of the poles and electrons inside CIJ XM S 2 as described above. No decline will occur.

実施例 (実施例1) 第1図は、本発明の実施例である光二次電池の構造を示
すものである。大きさ20X20mm、厚さ1mmのガ
ラス基体lの上にIn2O3とSnO2の化合物よりな
るITOを草着し一方を透明電極2、他方を集電電極8
とした。つぎに上記透明電極2の1にアモルファスシリ
コン層3をCVD法により厚さ0.04μm形成した後
、不純物としてBをドープしP型半導体特性を与えた。
Example (Example 1) FIG. 1 shows the structure of a photo secondary battery which is an example of the present invention. ITO made of a compound of In2O3 and SnO2 is grown on a glass substrate 1 with a size of 20 x 20 mm and a thickness of 1 mm, with a transparent electrode 2 on one side and a current collecting electrode 8 on the other side.
And so. Next, an amorphous silicon layer 3 was formed on 1 of the transparent electrode 2 to a thickness of 0.04 μm by the CVD method, and then B was doped as an impurity to give it P-type semiconductor characteristics.

さらに連続して上記CVD法によりI型アモルファスシ
リコン層4を0.4μm形成する。ひきっずき上記■型
アモルファスシリコン層上に真空加熱蒸着法により金属
銅層5を10μm形成した。つぎに、上記透明電極2と
同時に形成した集電電極8上に、プラズマCVD法によ
りTi52F’7を1Oμm形成し、最後に上記真空加
熱蒸着法によりRb C11a I I 、75C13
,25で表される固体電解質層6を10μm形成し、エ
ポキシ樹脂9により全体をコートし本実施例の電池Aと
した。なお10は上記透明電極作成時に同時に作成した
ITOよりなる負極リード端子であり、上記金属銅層5
に電気的に接触させたものである。
Further, an I-type amorphous silicon layer 4 having a thickness of 0.4 μm is continuously formed by the above CVD method. A metal copper layer 5 having a thickness of 10 .mu.m was formed on the above-described amorphous silicon layer by vacuum heating evaporation. Next, 10 μm of Ti52F'7 was formed on the current collector electrode 8 formed at the same time as the transparent electrode 2 by the plasma CVD method, and finally, Rb C11a I I , 75C13 was formed by the vacuum heating evaporation method.
, 25 was formed to a thickness of 10 μm, and the entire body was coated with epoxy resin 9 to obtain battery A of this example. Note that 10 is a negative electrode lead terminal made of ITO that was created at the same time as the transparent electrode was created, and is connected to the metal copper layer 5.
It is electrically connected to the

このようにして作成した電池Aの動作機構を以下説明す
る。金属銅はアモルファスシリコンより小さい仕事間数
を有するため上記P−1アモルファスシリコンと金属銅
との接合面に光を照射すると光起電圧が発生し、金属銅
が負、P型アモルファスシリコンが正の電圧となる。そ
こで上記P型アモルファスシリコンに電気的に接合され
た透明電極2と上記TiS2に電気的に接合された集電
電極8を電気的に接続すると、TiS2に正電圧が印加
され、金属銅と固体電解質とにより形成された二次電池
はこれにより充電されることになる。
The operating mechanism of battery A produced in this manner will be described below. Metallic copper has a smaller number of work hours than amorphous silicon, so when light is irradiated on the junction surface between the P-1 amorphous silicon and metal copper, a photoelectromotive voltage is generated, and the metal copper has a negative voltage and the P-type amorphous silicon has a positive voltage. voltage. Therefore, when the transparent electrode 2 electrically connected to the P-type amorphous silicon and the current collecting electrode 8 electrically connected to the TiS2 are electrically connected, a positive voltage is applied to the TiS2, and the metal copper and the solid electrolyte The secondary battery formed by this will be charged.

そして外部電気機器の駆動は、これを透明電極2と集電
電極8の間に接続すると上記充電反応と同時に行なわれ
ることに成る。また夜間等の光照射の行なわれないとき
には、上記二次電池部分で光照射の際充電された電力を
集電電極8と負極リード端子10をとおして使用するこ
とにより昼夜を問わない無停電電源として用いることが
できる。
When the external electric device is connected between the transparent electrode 2 and the current collecting electrode 8, the external electric device is driven simultaneously with the above charging reaction. In addition, when light irradiation is not performed such as at night, the electric power charged in the secondary battery part during light irradiation is used through the current collector electrode 8 and the negative lead terminal 10 to create an uninterruptible power source that can be used day or night. It can be used as

比較例として、半導体電極に光を照射して生成したホー
ルと第1の電池活物質電極との酸化遭元反応による光充
電電池Bを作成した。その断面図を第2図に示す。大き
さ20X20mm、厚さ1mmのガラス基体11の上シ
こITOを2mm薫蒸し一方を透明電極12、他方を集
電電極13とした。つぎに上記透明電極12の上にZr
S2層14をRFスパッタ法により厚さ10μm形成し
た後、ひきつずき上記透明電極12と同時に形成した集
電電極13上に真空加熱蒸着法により金属銅r= t 
5をIOl、1m形成した。最後に上記真空加熱蒸着法
によりRb Cu a I 1.75CI 3.25で
表される固体電解質層16を10μm形成し、エポキシ
樹脂17により全体をコートし比較例の電池Bとした。
As a comparative example, a photo-chargeable battery B was created through an oxidation reaction between holes generated by irradiating a semiconductor electrode with light and the first battery active material electrode. A sectional view thereof is shown in FIG. A glass substrate 11 having a size of 20×20 mm and a thickness of 1 mm was made of 2 mm of ITO on which a transparent electrode 12 was smoke-steamed on one side and a current collecting electrode 13 on the other. Next, Zr is placed on the transparent electrode 12.
After forming the S2 layer 14 to a thickness of 10 μm by RF sputtering, metal copper r=t is subsequently deposited on the current collecting electrode 13 formed at the same time as the transparent electrode 12 by vacuum heating evaporation.
5 was formed with IOl, 1 m. Finally, a 10 μm thick solid electrolyte layer 16 represented by Rb Cu a I 1.75 CI 3.25 was formed by the vacuum heating vapor deposition method, and the entire body was coated with an epoxy resin 17 to obtain a battery B of a comparative example.

以上の方法により作成した電池A、  Bに対し以下に
述べる試験を行なった。まず外部負荷として100にΩ
の固定抵抗を用い、光を断続的に照射しながら固定抵抗
の両端の電圧を測定した。その結果を第3図に示す。縦
軸は電池の端子電圧を示し、横軸は経過時間を示してい
る。尚、固定抵抗の接続は電池Aでは光照射時には端子
2を正、8を負極とし、暗状態では8を正、lOを負極
として切り替、また電池Bでは光照射時には端子13正
と12負極とし5.暗状態では端子13負と12正極と
して接続した。なお光源にはtoooルクスの白色蛍光
灯を使用し、2時間の周期で照射と無照射を繰り返した
The following tests were conducted on batteries A and B produced by the above method. First, as an external load, 100Ω
Using a fixed resistor, we measured the voltage across the fixed resistor while intermittently irradiating it with light. The results are shown in FIG. The vertical axis shows the terminal voltage of the battery, and the horizontal axis shows the elapsed time. In addition, the connection of the fixed resistor is such that in battery A, terminal 2 is the positive pole and terminal 8 is the negative pole when irradiated with light, and in the dark state, 8 is switched as the positive pole and IO is the negative pole, and in battery B, when the light is irradiated, terminal 13 is the positive pole and terminal 12 is the negative pole. 5. In the dark state, terminals 13 were connected as negative terminals and terminals 12 were positive terminals. A too-lux white fluorescent lamp was used as the light source, and irradiation and non-irradiation were repeated in a 2-hour period.

第3図を見ると明らかなように、比較例の電池Bては端
子電圧が時間と共に低下している。これは光照射時の充
電効率が低いため外部負荷を駆動するのに必要な電力に
対し、二次電池部分の充電が不十分であるためと考えら
れる。これに対して、本実施例の電池Aでは光の断続的
照射サイクルに対しても端子電圧の低下は見られず、光
照射時の充電効率が低いと言う従来例の問題点はこれに
より解決されたということができる。
As is clear from FIG. 3, the terminal voltage of battery B of the comparative example decreases with time. This is thought to be because the charging efficiency during light irradiation is low, so the charging of the secondary battery part is insufficient for the power required to drive the external load. On the other hand, in battery A of this example, no decrease in terminal voltage was observed even with intermittent light irradiation cycles, and this solved the problem of the conventional case of low charging efficiency during light irradiation. It can be said that it was done.

(実施例2) 実施例1の電池AにおけるTiS2の代りにNbS2を
用いた以外は電池構成及び作成法が同一である実施例の
電池Cを作成した。これに対し、実施例1と同一の性能
評価試験を行なった。その結果を第4図に示す。これを
見ると分かるように、本実施例の電池Cも無停電電源と
しての機能を充分果たしている。
(Example 2) Battery C of Example 1 was manufactured using the same battery configuration and manufacturing method except that NbS2 was used instead of TiS2 in Battery A of Example 1. On the other hand, the same performance evaluation test as in Example 1 was conducted. The results are shown in FIG. As can be seen from this figure, the battery C of this example also satisfactorily functions as an uninterruptible power supply.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の電池Aの構造図、第2図は
比較例の電池Bの構造図、第3図は電池Aの特性図、第
4図は本発明の異なる実施例の電池Cの特性図である。 l・・・ガラス基体、2・・・透明電極、3・・・P型
アモルファスシリコン層、4・・・■型アモルファスシ
リコン層、5・・・金属銅層、6・・・固体電解質層、
7・・・TiS2層、8・・・集電電極、9・・・エポ
キシ樹脂、10・・・負極り・・・ド端子、  11・
・・ガラス基体、12・・・透明電極、13・・・集電
電極、14・・・Zr52N、15・・・金属銅層、1
6・・・固体電解質層、17・・・エポキシ樹脂。 代理人の氏名 弁理士 中尾敏男 はか1名第1図 第 2 図 1’3集電電糧 第3図 0 4− 8 12 76  K 経通棒間(時間) 第4図 艦通4間(時間)
Fig. 1 is a structural diagram of battery A as an example of the present invention, Fig. 2 is a structural diagram of battery B as a comparative example, Fig. 3 is a characteristic diagram of battery A, and Fig. 4 is a different embodiment of the present invention. FIG. 2 is a characteristic diagram of battery C. 1... Glass substrate, 2... Transparent electrode, 3... P-type amorphous silicon layer, 4... ■-type amorphous silicon layer, 5... Metallic copper layer, 6... Solid electrolyte layer,
7...TiS2 layer, 8...Collecting electrode, 9...Epoxy resin, 10...Negative electrode...de terminal, 11.
...Glass substrate, 12...Transparent electrode, 13...Collecting electrode, 14...Zr52N, 15...Metal copper layer, 1
6... Solid electrolyte layer, 17... Epoxy resin. Name of agent Patent attorney Toshio Nakao 1 person Figure 1 Figure 2 Figure 1'3 Current collector Figure 3 0 4-8 12 76 K Passage distance (hours) Figure 4 Ship passage 4 hours (hours) )

Claims (1)

【特許請求の範囲】[Claims]  P型アモルファスシリコン、I型アモルファスシリコ
ン、金属銅、銅イオン導電性固体電解質、Cu×MS_
2(0<=X<=0.15、MはTi、Nbのいずれか
)を順次積層してなり、前記I型アモルファスシリコン
と前記金属銅との接合面に光を照射することにより前記
P型アモルファスシリコンと前記金属銅との間に光起電
圧を発生し、これにより前記金属銅、銅イオン導電性固
体電解質、Cu_xMS_2により構成された光二次電
池。
P-type amorphous silicon, I-type amorphous silicon, metallic copper, copper ion conductive solid electrolyte, Cu×MS_
2 (0<=X<=0.15, M is either Ti or Nb), and the P A photovoltaic voltage is generated between the amorphous silicon type and the metal copper, whereby a photovoltaic voltage is generated between the metal copper, the copper ion conductive solid electrolyte, and Cu_xMS_2.
JP63087497A 1988-04-08 1988-04-08 Secondary photo cell Pending JPH01259573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63087497A JPH01259573A (en) 1988-04-08 1988-04-08 Secondary photo cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63087497A JPH01259573A (en) 1988-04-08 1988-04-08 Secondary photo cell

Publications (1)

Publication Number Publication Date
JPH01259573A true JPH01259573A (en) 1989-10-17

Family

ID=13916607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63087497A Pending JPH01259573A (en) 1988-04-08 1988-04-08 Secondary photo cell

Country Status (1)

Country Link
JP (1) JPH01259573A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911634A (en) * 2018-09-14 2020-03-24 比亚迪股份有限公司 Positive electrode material and preparation method thereof, lithium battery positive plate and solid-state lithium battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911634A (en) * 2018-09-14 2020-03-24 比亚迪股份有限公司 Positive electrode material and preparation method thereof, lithium battery positive plate and solid-state lithium battery

Similar Documents

Publication Publication Date Title
US4740431A (en) Integrated solar cell and battery
US4267398A (en) Thin film photovoltaic cells
JPH0460355B2 (en)
JPH0794772A (en) Nuclear battery
JPS61283173A (en) Power source element
US4119768A (en) Photovoltaic battery
EP0108492A2 (en) Composite photocell
JPH01259573A (en) Secondary photo cell
JP2615465B2 (en) Photovoltaic secondary battery
CN108963026B (en) Power generation and energy storage integrated battery and manufacturing method thereof
JPH08330616A (en) Photoelectric converter
JPH0636429B2 (en) Heterojunction photoelectric device and heterojunction photoelectric device
JPS61104567A (en) Power source apparatus using solar cell
RU2641100C1 (en) COMPACT BETAVOLTAIC POWER SUPPLY OF LONG USE WITH BETA EMITTER ON BASIS OF RADIOISOTOPE 63 Ni AND METHOD OF OBTAINING IT
JPS6188468A (en) Battery
CN212518464U (en) Voltage-stabilizing charging protection alarm circuit
JP2506829B2 (en) Photovoltaic secondary battery
CN211266857U (en) Energy storage type solar cell and energy storage type photovoltaic module
JPH0677513A (en) Photoelectricity source capable of displaying output
JPH01262673A (en) Optical secondary cell
US8138713B2 (en) Electrical energy storage device for solar cell
JPS62249366A (en) Sun light storage battery
JPS55124274A (en) Solar battery
CN100517768C (en) Photovoltaic element
JP2511905B2 (en) Optical secondary battery