JP2506829B2 - Photovoltaic secondary battery - Google Patents

Photovoltaic secondary battery

Info

Publication number
JP2506829B2
JP2506829B2 JP62263458A JP26345887A JP2506829B2 JP 2506829 B2 JP2506829 B2 JP 2506829B2 JP 62263458 A JP62263458 A JP 62263458A JP 26345887 A JP26345887 A JP 26345887A JP 2506829 B2 JP2506829 B2 JP 2506829B2
Authority
JP
Japan
Prior art keywords
secondary battery
solid electrolyte
molded body
body layer
photovoltaic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62263458A
Other languages
Japanese (ja)
Other versions
JPH01106473A (en
Inventor
輝寿 神原
和典 高田
康治 山村
正 外邨
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62263458A priority Critical patent/JP2506829B2/en
Publication of JPH01106473A publication Critical patent/JPH01106473A/en
Application granted granted Critical
Publication of JP2506829B2 publication Critical patent/JP2506829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、太陽電池及び全固体二次電池からなる全固
体光発電二次電池、特に各種電力消費装置の駆動電源と
しての機能を有する光発電二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an all-solid-state photovoltaic secondary battery including a solar cell and an all-solid-state secondary battery, and more particularly to a photovoltaic power generation device having a function as a driving power source for various power consumption devices. Regarding the next battery.

従来の技術 太陽電池と二次電池とを一体化し、太陽電池で発生し
た電力を二次電池で貯蔵し、昼夜の区別なく電力源とし
て使用できる電源装置はこれまで数多く提案されている
(金子正夫著エレクトロニクスP97-104、昭和59)。
2. Description of the Related Art A number of power supply devices have been proposed that integrate a solar cell and a secondary battery, store the power generated by the solar cell in the secondary battery, and use it as a power source regardless of day and night (Masao Kaneko) Author Electronics P97-104, Showa 59).

発明が解決しようとする問題点 しかしながら、従来のものは二次電池部分の構成要素
である電解質に、液体状の電解質を用いたものがほとん
どであった。電解質に液体状のものを用いると、液洩れ
のため太陽電池と一体化するのが困難であり、その対策
を施すと構成も複雑で大きいものとなった。また、この
問題点を解決するため電解質に非溶液性のものを用いた
例もある。しかしながら、非溶液性電解質を用いた場
合、大きい充放電電流を取るためにはまず、電解質それ
自体が大きいイオン伝導度を有する必要があり、同時に
二次電池の活物質としては、太陽電池部分で発生する起
電圧で過充電することなく完全充電することができ、か
つ充放電反応に際しては可逆性に優れ、反応抵抗の小さ
いものであり、更に太陽電池が直射日光等にさらされ熱
的影響をおおきく受けるため、耐熱性に優れたものでな
ければならない。このような条件をすべて満足するよう
な電解質と活物質の組み合せが従来なかった。
Problems to be Solved by the Invention However, most of the conventional ones use a liquid electrolyte as an electrolyte that is a constituent element of the secondary battery portion. If a liquid electrolyte is used, it is difficult to integrate it with the solar cell due to liquid leakage, and the countermeasures made the structure complicated and large. In addition, in order to solve this problem, there is an example in which a non-solution type electrolyte is used. However, when using a non-solution type electrolyte, in order to obtain a large charging / discharging current, the electrolyte itself must first have a large ionic conductivity, and at the same time, as an active material of a secondary battery, It can be fully charged with the generated electromotive voltage without overcharging, has excellent reversibility during charge / discharge reactions, and has a low reaction resistance.In addition, the solar cells are exposed to direct sunlight etc. Since it receives a large amount, it must have excellent heat resistance. There has been no combination of an electrolyte and an active material that satisfies all of the above conditions.

問題点を解決するための手段 本発明はかかる問題点に鑑み、二次電池部分の構成要
素である電池活物質にシェブレル化合物を用い、電解質
としては固体電解質を用いるものである。
Means for Solving the Problems In view of such problems, the present invention uses a chevrel compound as a battery active material that is a constituent element of a secondary battery portion and uses a solid electrolyte as an electrolyte.

作用 上記のとおり電解質として固体状のものを用いると液
洩れの恐れがなく、そのため構成も簡単なものに成り、
小型化が容易になる。また、シェブレル化合物を活物質
に用いた二次電池は電池充放電反応に際し、その可逆性
は究めてよいものであり、かつ、0.6(V)で過充電す
ることなく完全充電が行え、この光起電圧を有する太陽
電池としては、シリコン等を用いればよい(特願昭61-2
6459)。また、シェブレル化合物および固体電解質は各
々1000℃、150℃まで熱的に極めて安定であることか
ら、上記問題点で指摘した全固体光二次電池としての必
要条件は、すべて満足する。
Action As described above, when a solid electrolyte is used, there is no risk of liquid leakage, and therefore the structure is simple.
Easy to miniaturize. In addition, the rechargeability of the secondary battery using the chevrel compound as the active material is good at the charge / discharge reaction of the battery, and it can be fully charged at 0.6 (V) without overcharging. Silicon or the like may be used as a solar cell having an electromotive voltage (Japanese Patent Application No. 61-2).
6459). In addition, since the chevrel compound and the solid electrolyte are extremely thermally stable up to 1000 ° C. and 150 ° C., respectively, all the necessary conditions as an all-solid-state photo secondary battery pointed out in the above problems are satisfied.

実施例 (実施例1) 第1図は、本発明の実施例である光発電二次電池の構
造を示す断面図である。大きさ20×20mm、厚さ1mmのガ
ラス基体1の上にIn2O3を蒸着した透明集電体2上に、
p型Si層3をCVD法により厚さ0.1μm形成、さらに連続
して上記CVD法によりi型Si層4及びn型Si層5をそれ
ぞれ0.1μm形成する。次に上記n型Si層5上にカーボ
ンを主体とする負極集電体層6をスクリーン印刷法によ
り形成、ひきつずき上記スクリーン印刷法により銅シェ
ブレル化合物Cu4Mo6S8を主体とする負極層7、RbCu4I
1.5Cl3.5で表される。固体電解質層8、銅シェブレル化
合物Cu2Mo6S7.8を主体とする正極層9を順次形成した。
なお上記三層の膜厚はすべて約1mmとした。上記正極層
7及び負極層9の作成法は上記銅シェブレル化合物と上
記固体電解質の各粉体を8:2の重量比で予め混合、3ton/
cm2の圧力によりプレス成形した後、200℃で17時間アニ
ールし、その後これを粉砕する。さらにこの混合剤100
重量部をトルエン溶液10重量部と混合し混合剤スラリー
を作成し、これをスクリーン印刷した。また固体電解質
層7の作成は、上記固体電解質粉体100重量部をトルエ
ン溶液10重量部と混合、固体電解質スラリーを作成、こ
れをスクリーン印刷した。次に上記正極層9上に、負極
集電体層6と同一の正極集電体層10を作成し、これを透
明電極2と接合させた。11及び12はリード端子であり、
最後にエポキシ樹脂より成る密封パッケージ13で全体を
封じ、光発電二次電池Aを作成した。
Example (Example 1) FIG. 1 is a cross-sectional view showing the structure of a photovoltaic secondary battery that is an example of the present invention. On a transparent current collector 2 in which In 2 O 3 is vapor-deposited on a glass substrate 1 having a size of 20 × 20 mm and a thickness of 1 mm,
The p-type Si layer 3 is formed to a thickness of 0.1 μm by the CVD method, and further, the i-type Si layer 4 and the n-type Si layer 5 are each formed to a thickness of 0.1 μm by the CVD method. Next, a negative electrode current collector layer 6 containing carbon as a main component is formed on the n-type Si layer 5 by a screen printing method, and the pull screen is mainly composed of a copper chevrel compound Cu 4 Mo 6 S 8 by the screen printing method. Negative electrode layer 7, RbCu 4 I
Expressed as 1.5 Cl 3.5 . A solid electrolyte layer 8 and a positive electrode layer 9 mainly composed of a copper chevrel compound Cu 2 Mo 6 S 7.8 were sequentially formed.
The thickness of each of the above three layers was about 1 mm. The positive electrode layer 7 and the negative electrode layer 9 are prepared by premixing the powder of the copper chevrel compound and the solid electrolyte in a weight ratio of 8: 2, 3 ton /
After press forming with a pressure of cm 2 , annealing is performed at 200 ° C. for 17 hours, and then this is crushed. Furthermore, this mixture 100
By weight, 10 parts by weight of a toluene solution was mixed to prepare a mixed agent slurry, which was screen-printed. The solid electrolyte layer 7 was prepared by mixing 100 parts by weight of the solid electrolyte powder with 10 parts by weight of a toluene solution to prepare a solid electrolyte slurry, which was screen-printed. Next, the same positive electrode current collector layer 10 as the negative electrode current collector layer 6 was formed on the positive electrode layer 9, and this was bonded to the transparent electrode 2. 11 and 12 are lead terminals,
Finally, the whole was sealed with a hermetically sealed package 13 made of an epoxy resin to prepare a photovoltaic secondary battery A.

このようにして作成した光発電二次電池の充放電反応
は以下に示すようになる。
The charging / discharging reaction of the photovoltaic secondary battery thus produced is as follows.

p−i−n接合を形成したシリコン層に光を照射する
と、価電子帯から励起された電子が伝導帯を通り負極集
電電極6に集められ、負極7に置いて Cu4Mo5S8+X(Cu++e-)→Cu4+xMo5S8 で示される反応を誘発する。これに同調して正極9では Cu2Mo6S7.8→Cu2-xMo6S7.8+X(Cu++e-) で示される反応が起こり、この反応で生成された電子が
正極集電体10を通り、透明電極2よりp型Si層3に流れ
込み、電子の流れを形成する。これが光充電反応での電
流である。そして一定の時間が経過すると二次電池部分
は完全充電の形に成り、電池活物質である銅シェブレル
化合物はそれぞれ正極ではMo6S8、負極ではCu6Mo6S8
示される組成になる。完全充電状態に成ると、太陽電池
で発生する起電圧はMo6S7.8とCu6Mo6S8との電位差で相
殺され、充電は自動的に停止する。
When the silicon layer having the pin junction is irradiated with light, the electrons excited from the valence band pass through the conduction band and are collected by the negative electrode current collecting electrode 6, and are placed on the negative electrode 7 and Cu 4 Mo 5 S 8 + X (Cu + + e - ) - > induces the reaction represented by Cu 4 + x Mo 5 S 8 . In the positive electrode 9 tuned to this Cu 2 Mo 6 S 7.8 → Cu 2-x Mo 6 S 7.8 + X (Cu + + e -) in the reaction takes place represented, electrons produced in this reaction is a positive electrode current collector It passes through the body 10 and flows into the p-type Si layer 3 from the transparent electrode 2 to form a flow of electrons. This is the current in the photocharge reaction. After a certain period of time, the secondary battery part becomes fully charged, and the battery active material of the copper chevrel compound has the composition of Mo 6 S 8 in the positive electrode and Cu 6 Mo 6 S 8 in the negative electrode, respectively. . In the fully charged state, the electromotive voltage generated in the solar cell is offset by the potential difference between Mo 6 S 7.8 and Cu 6 Mo 6 S 8, and charging automatically stops.

また、放電はリード端子11,12により行う。銅シェブ
レル化合物は、Cuの組成比が小さいほど電気的にエネル
ギーが高く、リード端子11,12を接合すると、正極9で
は Mo6S7.8+X(Cu++e-)→CuxMo6S7.8 負極7では、 Cu5Mo5S8→Cu5-xMo5S8+X(Cu++e-) で示される反応が自然に起こる。これが、放電反応と成
る。なお、電極2及び電極6の間は、シリコンのp−i
−n接合によるダイオードが形成されているため放電方
向の電流は流れず内部短絡の心配はない。
Further, the discharge is performed by the lead terminals 11 and 12. Copper Chevrel compound, as the composition ratio of Cu is less electrically energy is high, when bonding the lead terminals 11 and 12, the positive electrode 9 Mo 6 S 7.8 + X ( Cu + + e -) → Cu x Mo 6 S in 7.8 the negative electrode 7, Cu 5 Mo 5 S 8 → Cu 5-x Mo 5 S 8 + X (Cu + + e -) reaction occurs naturally indicated by. This becomes a discharge reaction. In addition, between the electrode 2 and the electrode 6, silicon p-i is used.
Since the diode is formed by the -n junction, the current in the discharge direction does not flow and there is no fear of internal short circuit.

上記光発電二次電池Aに対して、以下の充放電サイク
ル測定を行った。
The following charge / discharge cycle measurement was performed on the photovoltaic secondary battery A.

まずリード端子11及び12に外部負荷として1KΩの抵抗
を接続する。これに対し、1時間太陽光を照射し光充電
した後、暗所で1時間放置することで定抵抗放電を行っ
た。この操作を繰り返した時の、負荷抵抗にかかる電圧
を測定したものが第2図である。縦軸は電圧、横軸は経
過時間を示している。また、上記操作中に置ける放電終
了時の端子電圧のサイクル特性を示したものが、第3図
である。第3図を見ると分かるように、光充放電サイク
ル1000回を経た後でもその性能はほとんど劣化していな
いことがわかる。
First, a 1 KΩ resistor is connected to the lead terminals 11 and 12 as an external load. On the other hand, constant resistance discharge was performed by irradiating sunlight for 1 hour to perform photo-charging, and then leaving it in the dark for 1 hour. The voltage applied to the load resistance when this operation was repeated is shown in FIG. The vertical axis represents voltage and the horizontal axis represents elapsed time. FIG. 3 shows the cycle characteristics of the terminal voltage at the end of discharge that can be placed during the above operation. As can be seen from FIG. 3, the performance is hardly deteriorated even after 1000 photocharge / discharge cycles.

また、上記電池Aの熱的安定性を確認するため、上記
サイクル特性試験を100℃で行った。その結果を第4図
に示す。これを見ると分かるように、本実施例による電
池は熱的にも優れた特性を示すものである。
Further, in order to confirm the thermal stability of the battery A, the cycle characteristic test was conducted at 100 ° C. The results are shown in FIG. As can be seen from this, the battery according to this example exhibits excellent thermal characteristics.

(実施例2) 全体として可撓性を有する光発電二次電池を作成し
た。その断面構造は実施例1の第1図と同一である。大
きさ20×20mm、厚さ0.1mmのポリイミドフィルム1の上
にIn2O3を蒸着した透明集電体2上に、p型Si層3をCVD
法により厚さ0.1μm形成、さらに連続して上記CVD法に
よりi型Si層4及びn型Si層5をそれぞれ0.1μm形成
した。次に上記n型Si層5上にカーボンを主体とする負
極集電体層6をスクリーン印刷法により形成、ひきつず
き上記スクリーン印刷法により銅シェブレル化合物Cu4M
o6S8を主体とする負極層7、RbCu4I1.5Cl3.5で表される
固体電解質層8、銅シェブレル化合物Cu2Mo6S7.8を主体
とする正極層9を順次形成した。なお上記三層の膜厚は
すべて約1mmとした。上記正極層7及び負極層9の作成
法は上記銅シェブレル化合物と上記固体電解質の各粉体
を8:2の重量比で予め混合、3ton/cm2の圧力によりプレ
ス成形した後、200℃で17時間アニールし、その後これ
を粉砕する。さらにこの混合剤100重量部とスチレン−
エチレン−ブタジエン−スチレン共重合体1重量部をト
ルエン溶液10重量部と混合し混合剤スラリーを作成、こ
れをスクリーン印刷した。また固体電解質層7の作成
は、上記固体電解質粉体100重量部と上記スチレン−エ
チレン−ブタジエン−スチレン共重合体1重量部をトル
エン溶液10重量部と混合、固体電解質スラリーを作成、
これをスクリーン印刷した。次に上記正極層9上に、負
極集電体層6と同一の正極集電体層10を作成し、これを
透明電極2と接合させた。11及び12はリード端子であ
り、最後にエポキシ樹脂より成る密封パッケージ13で全
体を封じ、光発電二次電池Bを作成した。
(Example 2) A photovoltaic secondary battery having flexibility as a whole was prepared. The sectional structure is the same as that of FIG. 1 of the first embodiment. CVD of p-type Si layer 3 on transparent current collector 2 in which In 2 O 3 is vapor-deposited on polyimide film 1 having a size of 20 × 20 mm and a thickness of 0.1 mm.
Then, the i-type Si layer 4 and the n-type Si layer 5 were each formed to a thickness of 0.1 μm by the CVD method. Next, a negative electrode current collector layer 6 composed mainly of carbon is formed on the n-type Si layer 5 by a screen printing method, and the copper chevrel compound Cu 4 M is formed by the screen printing method.
A negative electrode layer 7 mainly composed of o 6 S 8 , a solid electrolyte layer 8 represented by RbCu 4 I 1.5 Cl 3.5 , and a positive electrode layer 9 mainly composed of a copper chevrel compound Cu 2 Mo 6 S 7.8 were sequentially formed. The thickness of each of the above three layers was about 1 mm. The positive electrode layer 7 and the negative electrode layer 9 are prepared by mixing the copper chevrel compound powder and the solid electrolyte powder in a weight ratio of 8: 2 in advance, press-molding at a pressure of 3 ton / cm 2 , and then at 200 ° C. Anneal for 17 hours, then grind it. Furthermore, 100 parts by weight of this mixture and styrene-
1 part by weight of the ethylene-butadiene-styrene copolymer was mixed with 10 parts by weight of a toluene solution to prepare a mixed agent slurry, which was screen-printed. Further, the solid electrolyte layer 7 is prepared by mixing 100 parts by weight of the solid electrolyte powder and 1 part by weight of the styrene-ethylene-butadiene-styrene copolymer with 10 parts by weight of a toluene solution to prepare a solid electrolyte slurry.
This was screen printed. Next, the same positive electrode current collector layer 10 as the negative electrode current collector layer 6 was formed on the positive electrode layer 9, and this was bonded to the transparent electrode 2. 11 and 12 are lead terminals, and finally, the whole is sealed with a hermetically sealed package 13 made of epoxy resin to prepare a photovoltaic secondary battery B.

この光発電二次電池Bに対して、実施例1の同一の充
放電サイクル特性試験の結果を示したものが、第5図及
び第6図である。本実施例2の光発電二次電池Bも実施
例1の光発電二次電池Aとほぼ同様の性能をもつことが
分かる。
FIG. 5 and FIG. 6 show the results of the same charge / discharge cycle characteristic test of Example 1 for this photovoltaic secondary battery B. It can be seen that the photovoltaic secondary battery B of Example 2 also has substantially the same performance as the photovoltaic secondary battery A of Example 1.

(実施例3) 本発明に従う光発電二次電池の特長の一つとして、製
造法が安易であるという点がある。つまり、予め作成さ
れた太陽電池に背面から全固体二次電池部分を電気的に
接続し一体化すれば完成するのである。この製造法に従
えば、用いる太陽電池の起電圧によらず、任意の太陽電
池に背面から固体二次電池部分を取り付ければ良い。以
下、本実施例で説明する。
Example 3 One of the features of the photovoltaic secondary battery according to the present invention is that the manufacturing method is easy. In other words, it is completed by electrically connecting and integrating the all-solid-state secondary battery portion from the back surface to the solar cell created in advance. According to this manufacturing method, the solid secondary battery portion may be attached to the rear surface of any solar cell regardless of the electromotive voltage of the solar cell used. Hereinafter, this example will be described.

予め第7図に示したP−N接合Si太陽電池を作成し
た。21は外見寸法27.5×29.5mmの樹脂製プリント基板、
22はAl電極、23はP−N接合太陽電池素子、24は透明電
極、25は密封パッケージであり、動作電圧は1.5ボルト
である。
The P-N junction Si solar cell shown in FIG. 7 was prepared in advance. 21 is a resin printed circuit board with an external dimension of 27.5 x 29.5 mm,
22 is an Al electrode, 23 is a P-N junction solar cell element, 24 is a transparent electrode, 25 is a sealed package, and the operating voltage is 1.5 volts.

次に、プリント基板30の裏面に固体二次電池部分39
を、他面に太陽電池部分31を作成した。固体二次電池素
子は3セル直列接続であり、これを第8図に示す。32は
正極端子、33は正極層、34は固体電解質層、35は負極
層、36は接続リード、37は負極端子、38は樹脂製密封パ
ッケージであり、33から35までの材料、厚み、及び作成
法は全て実施例1の電池と同じものである。
Next, on the back surface of the printed circuit board 30, a solid secondary battery portion 39
A solar cell portion 31 was formed on the other surface. The solid state secondary battery element has three cells connected in series, which is shown in FIG. 32 is a positive electrode terminal, 33 is a positive electrode layer, 34 is a solid electrolyte layer, 35 is a negative electrode layer, 36 is a connection lead, 37 is a negative electrode terminal, 38 is a resin sealed package, 33 to 35 materials, thickness, and The manufacturing method is the same as that of the battery of Example 1.

このようにして作成した本実施例の電池Cに対して、
実施例1の同一の充放電サイクル特性試験の結果を示し
たものが、第9図及び第10図である。実施例3の全固体
光発電二次電池も実施例1の光発電二次電池とほぼ同様
の性能をもつことが分かる。
With respect to the battery C of this example created in this way,
9 and 10 show the results of the same charge / discharge cycle characteristic test of Example 1. It can be seen that the all-solid-state photovoltaic secondary battery of Example 3 also has substantially the same performance as the photovoltaic secondary battery of Example 1.

発明の効果 以上のように、本発明に従うと、熱的安定性に優れ
た、小型薄型の全固体光発電二次電池を得ることが出来
る。
EFFECTS OF THE INVENTION As described above, according to the present invention, a small and thin all-solid-state photovoltaic secondary battery having excellent thermal stability can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の全固体光発電二次電池の構
成図、第2図,第3図及び第4図は、同光発電二次電池
の特性図、第5図及び第6図は、本発明の他の実施例の
光発電二次電池の特性図、第7図は、本発明の他の実施
例の光発電二次電池の太陽電池部分の構成図、第8図は
第7図に示す太陽電池部分を構成要素とする光発電二次
電池の全体構成図、第9図及び第10図は第8図に示す光
発電二次電池の特性図である。 1……支持基体、2……透明電極、3……p型Si、4…
…i型Si、5……n型Si、6……集電電極、7……負
極、8……固体電解質、9……正極、10……集電電極、
11……正極リード端子、12……負極リード端子、13……
密封パッケージ。
FIG. 1 is a configuration diagram of an all-solid-state photovoltaic secondary battery according to an embodiment of the present invention, FIGS. 2, 3, and 4 are characteristic diagrams of the photovoltaic secondary battery, FIG. 5, and FIG. FIG. 6 is a characteristic diagram of a photovoltaic secondary battery according to another embodiment of the present invention, FIG. 7 is a configuration diagram of a solar cell portion of a photovoltaic secondary battery according to another embodiment of the present invention, and FIG. FIG. 7 is an overall configuration diagram of a photovoltaic secondary battery having the solar cell portion shown in FIG. 7 as a constituent element, and FIGS. 9 and 10 are characteristic diagrams of the photovoltaic secondary battery shown in FIG. 1 ... Support substrate, 2 ... Transparent electrode, 3 ... P-type Si, 4 ...
... i-type Si, 5 ... n-type Si, 6 ... current collecting electrode, 7 ... negative electrode, 8 ... solid electrolyte, 9 ... positive electrode, 10 ... current collecting electrode,
11 …… Positive lead terminal, 12 …… Negative lead terminal, 13 ……
Sealed package.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 外邨 正 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 近藤 繁雄 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭61−88468(JP,A) 特開 昭59−63673(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadashi Sotobe, 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Shigeo Kondo, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. In-house (56) References JP 61-88468 (JP, A) JP 59-63673 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シェブレル化合物を主体とする正極成形体
層、固体電解質成形体層、シェブレル化合物を主体とす
る負極成形体層を順次積層することにより形成された全
固体二次電池と、対向する一対の電極間に光電変換膜を
介在させて形成された太陽電池とを電気的に接続し、一
体構成したことを特徴とする光発電二次電池。
1. An all-solid secondary battery formed by sequentially laminating a positive electrode molded body layer mainly containing a chevrel compound, a solid electrolyte molded body layer, and a negative electrode molded body layer mainly containing a chevrel compound. A photovoltaic secondary battery, characterized in that a solar cell formed by interposing a photoelectric conversion film between a pair of electrodes is electrically connected and integrally configured.
【請求項2】正極成形体層及び負極成形体層は少なくと
も各々の電極主体材料と可塑性バインダーからなる混合
物であり、固体電解質成形体層は、固体電解質,可塑性
バインダー,必要に応じて芯材より成る固体電解質成形
体であり、これらにより形成された全固体二次電池は可
撓性を有する透明樹脂基体上で、光電変換素子と電気的
に接続したことを特徴とする特許請求の範囲第1項記載
の光発電二次電池。
2. The positive electrode molded body layer and the negative electrode molded body layer are a mixture of at least respective electrode main materials and a plastic binder, and the solid electrolyte molded body layer comprises a solid electrolyte, a plastic binder and, if necessary, a core material. A solid electrolyte molded body consisting of the above, and an all-solid secondary battery formed by these is electrically connected to a photoelectric conversion element on a flexible transparent resin substrate. The photovoltaic secondary battery according to the item.
【請求項3】シェブレル化合物は、銅シェブレル化合物
または銀シェブレル化合物でありかつ、これに対応して
固体電解質はそれぞれ銅イオン導電性固体電解質または
銀イオン導電性固体電解質であることを特徴とする特許
請求の範囲第1項または第2項記載の光発電二次電池。
3. A chevrel compound is a copper chevrel compound or a silver chevrel compound, and correspondingly, the solid electrolyte is a copper ion conductive solid electrolyte or a silver ion conductive solid electrolyte, respectively. The photovoltaic secondary battery according to claim 1 or 2.
JP62263458A 1987-10-19 1987-10-19 Photovoltaic secondary battery Expired - Fee Related JP2506829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62263458A JP2506829B2 (en) 1987-10-19 1987-10-19 Photovoltaic secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62263458A JP2506829B2 (en) 1987-10-19 1987-10-19 Photovoltaic secondary battery

Publications (2)

Publication Number Publication Date
JPH01106473A JPH01106473A (en) 1989-04-24
JP2506829B2 true JP2506829B2 (en) 1996-06-12

Family

ID=17389788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62263458A Expired - Fee Related JP2506829B2 (en) 1987-10-19 1987-10-19 Photovoltaic secondary battery

Country Status (1)

Country Link
JP (1) JP2506829B2 (en)

Also Published As

Publication number Publication date
JPH01106473A (en) 1989-04-24

Similar Documents

Publication Publication Date Title
US4740431A (en) Integrated solar cell and battery
JP4437890B2 (en) Solar cell composite thin film solid lithium ion secondary battery
US4916035A (en) Photoelectrochemical cells having functions as a solar cell and a secondary cell
JPS58216476A (en) Photoelectric-generating storage device
KR20050013992A (en) Power source device
JPS61283173A (en) Power source element
EP0537730A2 (en) Solar cell
US4119768A (en) Photovoltaic battery
EP0108492A2 (en) Composite photocell
JP2506829B2 (en) Photovoltaic secondary battery
Kanbara et al. Photo-rechargeable solid state battery
JPH08330616A (en) Photoelectric converter
US4637969A (en) Photoelectro-chemical cell for conversion of solar energy to electricity and method of its manufacture
JP2713419B2 (en) Photo secondary battery
CN111092597A (en) Energy storage type solar cell and energy storage type photovoltaic module
JPS61104567A (en) Power source apparatus using solar cell
JPS61211965A (en) Photo-secondary cell
JPH07118332B2 (en) Solar battery
JPH07118333B2 (en) Solar battery
JP2758741B2 (en) Photoelectric conversion element and method for manufacturing the same
JPS6188468A (en) Battery
JPH01248482A (en) Secondary battery by photovoltaic power generation
JPH01259573A (en) Secondary photo cell
JPH0677513A (en) Photoelectricity source capable of displaying output
CN100517768C (en) Photovoltaic element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees