JPH01106473A - Light emitting secondary cell - Google Patents

Light emitting secondary cell

Info

Publication number
JPH01106473A
JPH01106473A JP62263458A JP26345887A JPH01106473A JP H01106473 A JPH01106473 A JP H01106473A JP 62263458 A JP62263458 A JP 62263458A JP 26345887 A JP26345887 A JP 26345887A JP H01106473 A JPH01106473 A JP H01106473A
Authority
JP
Japan
Prior art keywords
solid electrolyte
secondary battery
molded body
layer
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62263458A
Other languages
Japanese (ja)
Other versions
JP2506829B2 (en
Inventor
Teruhisa Kanbara
神原 輝寿
Kazunori Takada
和典 高田
Koji Yamamura
康治 山村
Tadashi Tonomura
正 外邨
Shigeo Kondo
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62263458A priority Critical patent/JP2506829B2/en
Publication of JPH01106473A publication Critical patent/JPH01106473A/en
Application granted granted Critical
Publication of JP2506829B2 publication Critical patent/JP2506829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enable a cell to be produced compactly and to allow it to be stable thermally by using Chevrel compound for cell active substance which is a constituting element of secondary cell part and by using a solid electrolyte as an electrolyte. CONSTITUTION:With a positive-polarity layer 7 and a negative-polarity layer 9, each powder body of copper Chevrel compound and solid electrolyte is blended in a weight ratio of 8:2 beforehand and is subject to press mold at a pressure of 3ton/cm<2>. Then, it is annealed and then is crashed into powder. After this, blended agent 100 weight part is blended with a toluene solution 10 weight part to create a blended agent slurry and it is screen-printed. Also, with the solid electrolyte layer 7, the solid electrolyte powder 100 weight part is blended with the toluene solution 10 weight part to create solid electrolyte slurry and then it is screen-printed. Then, the positive-polarity pyroelectric layer 10 which is the same as a negative pyroelectric layer 6 is created and it is conjugated with a transparent electrode 2.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、太陽電池及び全固体二次電池からなる全固体
光発電二次電池、特に各種電力消費装置の駆動電源とし
ての機能を有する光発電二次電池に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an all-solid-state photovoltaic secondary battery consisting of a solar cell and an all-solid-state secondary battery, and particularly to a photovoltaic secondary battery that functions as a driving power source for various power consumption devices. Regarding the next battery.

従来の技術 太陽電池と二次電池とを一体化し、太陽電池で発生した
電力を二次電池で貯蔵し、麗夜の区別なく電力源として
使用できる電源装置はこれまで数多く提案されている(
金子正夫著エレクトロニクスP97−104、昭和69
)。
Conventional Technology A number of power supply devices have been proposed to date that integrate solar cells and secondary batteries, store the electricity generated by the solar cells in the secondary battery, and can be used as a power source regardless of the power source (
Masao Kaneko Electronics P97-104, 1988
).

発明が解決しようとする問題点 しかしながら、従来のものは二次電池部分の構成要素で
ある電解質に、液体状の電解質を用いたものがほとんど
であった。電解質に液体状のものを用いる浜、液洩れの
ため太陽電池と一体化するのが困難であり、その対策を
施すと構成も複雑で大きいものとなった。また、この問
題点を解決するため電解質に非溶液性のものを用いた例
もある。
Problems to be Solved by the Invention However, in most conventional batteries, a liquid electrolyte was used as a component of the secondary battery. Since Hama uses a liquid electrolyte, it is difficult to integrate it with a solar cell due to liquid leakage, and when countermeasures were taken, the structure became complicated and large. There are also examples of using non-solvent electrolytes to solve this problem.

しかしながら、非溶液性電解質を用いた場合、大きい充
放電電流を取るためにはまず、電解質それ自体が大きい
イオン伝導度を有する必要があシ、同時に二次電池の活
物質としては、太陽電池部分で発生する起電圧で過充電
することなく完全充電することができ、かつ充放電反応
に際しては可逆性に優れ、反応抵抗の小さいものであり
、更に太陽電池が直射日光等にさらされ熱的影響をおお
きく受けるため、耐熱性に優れたものでなければならな
い。このような条件をすべて満足するような電解質と活
物質の組み合せが従来なかった。
However, when using a non-solution electrolyte, in order to obtain a large charge/discharge current, the electrolyte itself must first have high ionic conductivity, and at the same time, the active material of the secondary battery must be It can be fully charged without overcharging with the electromotive voltage generated by the solar cell, and the charge/discharge reaction is highly reversible and has low reaction resistance.In addition, the solar cell is exposed to direct sunlight and is not affected by thermal effects. It must have excellent heat resistance as it will be exposed to a lot of heat. Until now, there has been no combination of electrolyte and active material that satisfies all of these conditions.

問題点を解決するための手段 本発明はかかる問題点に鑑み、二次電池部分の構成要素
である電池活物質にシェブレル化合物を用い、電解質と
しては固体電解質を用いるものである。
Means for Solving the Problems In view of the above problems, the present invention uses a Chevrel compound as a battery active material, which is a component of the secondary battery part, and uses a solid electrolyte as an electrolyte.

作用 上記のとおシミ解質として固体状のものを用いると液洩
れの恐れがなく、そのため構成も簡単なものに成り、小
型化が容易になる。また、シェブレル化合物を活物質に
用いた二次電池は電池充放電反応に際し、その可逆性は
究めてよいものであり、かつ、o、e(V)で過充電す
ることなく完全充電が行え、この光起電圧を有する太陽
電池としては、シリコン等を用いればよい(特願昭6l
−26459)。
Function As described above, if a solid substance is used as the stain solute, there is no fear of liquid leakage, and therefore the structure becomes simple and miniaturization becomes easy. In addition, secondary batteries using Chevrel compounds as active materials have excellent reversibility during battery charging and discharging reactions, and can be fully charged at o and e (V) without overcharging. As a solar cell having this photovoltaic voltage, silicon or the like may be used (patent application No. 61
-26459).

また、シェブレル化合物および固体電解質は各々100
0℃、150″cまで熱的に極めて安定であることから
、上記問題点で指摘した全固体光二次電池としての必要
条件は、すべて満足する。
In addition, Chevrel compound and solid electrolyte each have 100%
Since it is extremely thermally stable up to 0° C. and 150″c, it satisfies all the requirements for an all-solid-state photovoltaic battery as pointed out in the above-mentioned problems.

実施例 (実施例1) 第1図は、本発明の実施例である光発電二次電池の構造
を示す断面図である。大きさ20×20ff、厚さ1H
のガラス基体1の上にIn2O3を蒸着した透明集電体
2上に、p型S1層3をCVD法によシ厚さ0.1μm
形成、さらに連続して上記CVD法によりl型Si[4
及びn jJ S i 層6をそれぞれ0.1μm形成
する。次に上記n型Si層5上にカーボンを主体とする
負極集電体層6をスクリーン印刷法によシ形成、ひきつ
ずき上記スクリーン印刷法によシ銅シェブレル化合物C
u 4Mo e S aを主体とする負極層7、Rb 
Cu a I * 、5 C41’ 3.5で表される
。固体電解質層8、銅シェブレル化合物Cu 2M o
 e S 7 、B  を主体とする正極層9を順次形
成した。なお上記三層の膜厚はすべて約111Mとしだ
。上記正極層7及び負極層9の作成法は上記銅シェブレ
ル化合物と上記固体電解質の各粉体を8:2の重量比で
予め混合、3ton/cdの圧力によシブレス成形した
後、200℃で17時間アニールし、その後これを粉砕
する。さらにこの混合剤100重量部をトルエン溶液1
0重量部と混合し混合剤スラリーを作成、これをスクリ
ーン印刷した。また固体電解質層7の作成は、上記固体
電解質粉体1oo重量部をトルエン溶液10重量部と混
合、固体電解質スラリーを作成、これをスクリーン印刷
した。次に上記正極層s上に、負極集電体層6と同一の
正極集電体層10を作成し、これを透明電極2と接合さ
せた。11及び12はリード端子であり、最後にエポキ
シ樹脂より成る密封パッケージ13で全体を封じ、光発
電二次電池Aを作成した。
Example (Example 1) FIG. 1 is a sectional view showing the structure of a photovoltaic secondary battery that is an example of the present invention. Size 20 x 20ff, thickness 1H
A p-type S1 layer 3 is formed by CVD on a transparent current collector 2 in which In2O3 is deposited on a glass substrate 1 of 0.1 μm in thickness.
formation, and then continuously by the above-mentioned CVD method to form l-type Si[4
and n jJ S i layers 6 each having a thickness of 0.1 μm are formed. Next, a negative electrode current collector layer 6 mainly composed of carbon is formed on the n-type Si layer 5 by a screen printing method, and then a copper Chevrel compound C is formed by the screen printing method.
Negative electrode layer 7 mainly composed of u 4Mo e Sa, Rb
Cu a I *, 5 C41' 3.5. Solid electrolyte layer 8, copper Chevrel compound Cu 2Mo
A positive electrode layer 9 mainly composed of e S 7 and B was sequentially formed. The thickness of the three layers mentioned above is approximately 111M. The above-mentioned positive electrode layer 7 and negative electrode layer 9 were prepared by mixing the above-mentioned copper Chevrel compound and the above-mentioned solid electrolyte powders in advance at a weight ratio of 8:2, press-molding them under a pressure of 3 ton/cd, and then heating them at 200°C. Anneal for 17 hours and then grind. Furthermore, 100 parts by weight of this mixture was added to 1 part of toluene solution.
0 parts by weight to prepare a mixture slurry, which was screen printed. The solid electrolyte layer 7 was created by mixing 10 parts by weight of the solid electrolyte powder with 10 parts by weight of a toluene solution to create a solid electrolyte slurry, which was screen printed. Next, a positive electrode current collector layer 10 identical to the negative electrode current collector layer 6 was formed on the positive electrode layer s, and this was bonded to the transparent electrode 2. Reference numerals 11 and 12 are lead terminals, and finally the whole was sealed with a sealed package 13 made of epoxy resin to create a photovoltaic secondary battery A.

このようにして作成した光発電二次電池の充放電反応は
以下に示すようになる。
The charging/discharging reaction of the photovoltaic secondary battery thus produced is as shown below.

p−1−n接合を形成したシリコン層に光を照射すると
、価電子帯から励起された電子が伝導帯を通シ負極集電
電極6に集められ、負極7に置いて Cu  Mo  S  十X(Cu++e−)→Cu4
+、Mo6S8で示される反応を誘発する。これに同調
して正極9では Cu2Mo6S7.8→Cu2−、Mo687.8十X
(Cu++e−)で示される反応が起こシ、この反応で
生成された電子が正極集電体1oを通シ、透明電極2よ
りp型S1層3に流れ込み、電子の流れを形成する。
When the silicon layer forming the p-1-n junction is irradiated with light, electrons excited from the valence band pass through the conduction band and are collected at the negative current collecting electrode 6. (Cu++e-)→Cu4
+, induces the reaction indicated by Mo6S8. In line with this, in the positive electrode 9, Cu2Mo6S7.8 → Cu2-, Mo687.80X
A reaction represented by (Cu++e-) occurs, and electrons generated by this reaction flow through the positive electrode current collector 1o and from the transparent electrode 2 into the p-type S1 layer 3, forming a flow of electrons.

これが光発電反応での電流である。そして一定の時間が
経過すると二次電池部分は完全充電の形に成シ、電池活
物質である銅シェブレル化合物はそれぞれ正極ではMO
s S s、負極ではCu6Mo6S8で示される組成
になる。完全充電状態に成ると、太陽電池で発生する起
電圧はM Oe、 S 7. sとCu s MO68
sとの電位差で相殺され、充電は自動的に停止する。
This is the current in a photovoltaic reaction. Then, after a certain period of time, the secondary battery part becomes fully charged, and the copper Chevrel compound that is the battery active material is MO at the positive electrode.
s S s, and the negative electrode has a composition of Cu6Mo6S8. When fully charged, the electromotive force generated in the solar cell is M Oe, S 7. s and Cu s MO68
The potential difference with s cancels out the charge, and charging automatically stops.

また、放電はリード端子11.12により行う。Further, discharge is performed through lead terminals 11 and 12.

銅シェブレル化合物は、Cuの組成比が小さいほど電気
的にエネルギーが高く、リード端子11゜12を接合す
ると、正極9では MoeS 7.s 十X(Cu”+e −) →Cu、
MoeS 7.a負極7では、 Cu、Mo6S8−+Cu6−!Mo6S8+X(Cu
”+e−)で示される反応が自然に起こる。これが、放
電反応と成る。なお、電極2及び電極6の間は、シリコ
ンのp−1−n接合によるダイオードが形成されている
ため放電方向の電流は流れず内部短絡の心配はない。
In a copper Chevrel compound, the lower the Cu composition ratio, the higher the electrical energy, and when the lead terminals 11 and 12 are joined, the positive electrode 9 becomes MoeS 7. s 1X (Cu”+e −) →Cu,
MoeS 7. a In the negative electrode 7, Cu, Mo6S8-+Cu6-! Mo6S8+X(Cu
A reaction indicated by ``+e-'' occurs naturally. This is a discharge reaction. Note that a diode is formed between the electrode 2 and the electrode 6 by a p-1-n junction of silicon, so the direction of discharge is No current flows and there is no need to worry about internal short circuits.

上記光発電二次電池Aに対して、以下の充放電サイクル
測定を行った。
The following charge/discharge cycle measurements were performed on the photovoltaic secondary battery A.

まずリード端子11及び12に外部負荷として1にΩの
抵抗を接続する。これに対し、1時間太陽光を照射し光
発電した後、暗所で1時間放置することで定抵抗放電を
行った。この操作を繰り返した時の、負荷抵抗にかかる
電圧を測定したものが第2図である。縦軸は電圧、横軸
は経過時間を示している。また、上記操作中に置ける放
電終了時の端子電圧のサイクル特性を示したものが、第
3図である。第3図を見ると分かるように、先光放電サ
イクル10oO回を経た後でもその性能はほとんど劣化
していないことがわかる。
First, a resistor of Ω is connected to lead terminals 11 and 12 as an external load. On the other hand, after irradiating it with sunlight for 1 hour to generate photovoltaic power, it was left in a dark place for 1 hour to perform constant resistance discharge. Figure 2 shows the voltage applied to the load resistance measured when this operation was repeated. The vertical axis shows voltage, and the horizontal axis shows elapsed time. Further, FIG. 3 shows the cycle characteristics of the terminal voltage at the end of discharge during the above operation. As can be seen from FIG. 3, the performance has hardly deteriorated even after 1000 photodischarge cycles.

また、上記電池Aの熱的安定性を確認するため、上記サ
イクル特性試験を100℃で行った。その結果を第4図
に示す。これを見ると分かるように、本実施例による電
池は熱的にも優れた特性を示すものである。
Further, in order to confirm the thermal stability of the battery A, the cycle characteristic test was conducted at 100°C. The results are shown in FIG. As can be seen, the battery according to this example also exhibits excellent thermal characteristics.

(実施例2) 全体として可撓性を°有する光発電二次電池を作成した
。その断面構造は実施例1の第1図と同一である。大き
さ20x20m、厚さ0.1jl11のポリイミドフィ
ルム1の上にIn2O3を蒸着した透明集電体2上に、
p型St層3をCVD法により厚さ0.1μm形成、さ
らに連続して上記CVD法によ!lli型St層4及び
n型si層6をそれぞれ0.1μm形成した。次に上記
n型りt層5上にカーボンを主体とする負極集電体層6
をスクリーン印刷法によ多形成、ひきつずき上記スクリ
ーン印刷法によシ銅シェブレル化合物Cu4Mo638
を主体とする負極層7、RbCu411.6C13,5
で表される固体電解質層8、銅シェブレル化合物Cu 
2 M Ocs S −r 、 s  を主体とする正
極層9を順次形成した。なお上記五層の膜厚はすべて約
1MIIとした。上記正極層7及び負極層9の作成法は
上記銅シェブレル化合物と上記固体電解質の各粉体を8
=2の重量比で予め混合、3 ton/crIの圧力に
よシブレス成形した後、2oo℃で17時間アニールし
、その後これを粉砕する。さらにこの混合剤1oo重量
部とスチレン−エチレン−ブタジェン−スチレン共重合
体1重量部をトルエン溶液10重量部と混合し混合剤ス
ラリーを作成、これをスクリーン印刷した。また固体電
解質層7の作成は、上記固体電解質粉体1oo重量部と
上記スチレン−エチレン−ブタジェン−スチレン共重合
体1 重量部をトルエン溶液10重量部と混合、固体電
解質スラリーを作成、これをスクリーン印刷した。
(Example 2) A photovoltaic secondary battery having flexibility as a whole was created. Its cross-sectional structure is the same as that in FIG. 1 of Example 1. On a transparent current collector 2, In2O3 was deposited on a polyimide film 1 with a size of 20x20m and a thickness of 0.1jl11,
The p-type St layer 3 is formed to a thickness of 0.1 μm by the CVD method, and then continuously by the CVD method described above! An lli-type St layer 4 and an n-type Si layer 6 were each formed to have a thickness of 0.1 μm. Next, a negative electrode current collector layer 6 mainly made of carbon is placed on the n-type T layer 5.
The copper Chevrel compound Cu4Mo638 was formed by the screen printing method, and then the copper Chevrel compound Cu4Mo638 was formed by the screen printing method.
Negative electrode layer 7 mainly composed of RbCu411.6C13,5
Solid electrolyte layer 8 represented by copper Chevrel compound Cu
A positive electrode layer 9 mainly composed of 2 M Ocs S -r,s was sequentially formed. The film thicknesses of the five layers mentioned above were all approximately 1 MII. The method for producing the positive electrode layer 7 and the negative electrode layer 9 is to prepare powders of the copper Chevrel compound and the solid electrolyte.
After pre-mixing at a weight ratio of = 2 and press molding under a pressure of 3 ton/crI, annealing was performed at 2oo°C for 17 hours, and then the mixture was pulverized. Further, 10 parts by weight of this mixture and 1 part by weight of the styrene-ethylene-butadiene-styrene copolymer were mixed with 10 parts by weight of a toluene solution to prepare a mixture slurry, which was screen printed. The solid electrolyte layer 7 was created by mixing 10 parts by weight of the solid electrolyte powder and 1 part by weight of the styrene-ethylene-butadiene-styrene copolymer with 10 parts by weight of a toluene solution to create a solid electrolyte slurry, which was screened. Printed.

次に上記正極層9上に、負極集電体層6と同一の正極集
電体層1oを作成し、これを透明電極2と接合させた。
Next, a positive electrode current collector layer 1o identical to the negative electrode current collector layer 6 was formed on the positive electrode layer 9, and this was bonded to the transparent electrode 2.

11及び12はリード端子であり、最後にエポキシ樹脂
より成る密封パッケージ13で全体を封じ、光発電二次
電池Bを作成した。
Reference numerals 11 and 12 are lead terminals, and finally the whole was sealed with a sealed package 13 made of epoxy resin to create a photovoltaic secondary battery B.

この光発電二次電池Bに対して、実施例1の同一の充放
電サイクル特性試験の結果を示したものが、第4図及び
第り図である。本実施例2の光発電二次電池Bも実施例
1の光発電二次電池Aとほぼ同様の性能をもつことが分
かる。
FIGS. 4 and 4 show the results of the same charge-discharge cycle characteristic test as in Example 1 for this photovoltaic secondary battery B. It can be seen that the photovoltaic secondary battery B of Example 2 also has substantially the same performance as the photovoltaic secondary battery A of Example 1.

(実施例3) 本発明に従う光発電二次電池の特長の一つとして、製造
法が安易であるという点がある。つまり、予め作成され
た太陽電池に背面から全固体二次電池部分を電気的に接
続し一体化すれば完成するのである。この製造法に従え
ば、用いる太陽電池の起電圧によらず、任意の太陽電池
に背面から固体二次電池部分を取り付ければ良い。以下
、本実施例で説明する。
(Example 3) One of the features of the photovoltaic secondary battery according to the present invention is that the manufacturing method is easy. In other words, it is completed by electrically connecting the all-solid-state secondary battery part to the solar cell that has been created in advance and integrating it from the back. According to this manufacturing method, the solid secondary battery portion can be attached to any solar cell from the back side, regardless of the electromotive voltage of the solar cell used. This will be explained below using this example.

予め第7図に示したP−N接合St太陽電池を作成した
。21は外見寸法27.5 X29.51111の樹脂
製プリント基板、22はA4電極、23はP −N接合
太陽電池素子、24は透明電極、26は密封パッケージ
であり、動作電圧は1.6ボルトである。 。
A PN junction St solar cell shown in FIG. 7 was prepared in advance. 21 is a resin printed circuit board with external dimensions of 27.5 x 29.51111, 22 is an A4 electrode, 23 is a P-N junction solar cell element, 24 is a transparent electrode, 26 is a sealed package, and the operating voltage is 1.6 volts. It is. .

次に、プリント基板3oの裏面に固体二次電池部分39
を、他面に太陽電池部分31を作成した。
Next, a solid secondary battery portion 39 is placed on the back side of the printed circuit board 3o.
A solar cell portion 31 was created on the other side.

固体二次電池素子は3セル直列接続であり、これを第8
図に示す。32は正極端子、33は正極層、34は固体
電解質層、36は負極層、36は接続リード、37は負
極端子、38は樹脂製密封パッケージであり、33から
35までの材料、厚み、及び作成法は全て実施例1の電
池と同じものである。
The solid-state secondary battery element has 3 cells connected in series, and this
As shown in the figure. 32 is a positive electrode terminal, 33 is a positive electrode layer, 34 is a solid electrolyte layer, 36 is a negative electrode layer, 36 is a connection lead, 37 is a negative electrode terminal, 38 is a resin sealed package, and the material, thickness, and All the manufacturing methods were the same as those for the battery of Example 1.

このようにして作成した本実施例の電池Cに対して、実
施例1の同一の充放電サイクル特性試験の結果を示した
ものが、第9図及び第10図である。実施例3の全固体
光発電二次電池も実施例1の光発電二次電池と#1ぼ同
様の性能をもつことが分かる。
FIGS. 9 and 10 show the results of the same charge-discharge cycle characteristic test as in Example 1 for Battery C of this example prepared in this manner. It can be seen that the all-solid-state photovoltaic secondary battery of Example 3 also has the same performance as the photovoltaic secondary battery of Example 1 and #1.

発明の効果 以上のように、本発明に従うと、熱的安定性に優れた、
小型薄型の全固体光発電二次電池を得ることが出来る。
As described above, according to the present invention, a product with excellent thermal stability can be obtained.
A small and thin all-solid-state photovoltaic secondary battery can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の全固体光発電二次電池の構
成図、第2図、第3図及び第4図は、同光発電二次電池
の特性図、第6図及び第6図は、本発明の他の実施例の
光発電二次電池の特性図、第7図は、本発明の他の実施
例の光発電二次電池の太陽電池部分の構成図、第8図は
第7図に示す太陽電池部分を構成要素とする光発電二次
電池の全体構成図、第9図及び第10図は第8図に示す
光発電二次電池の特性図である。 1・・・・・・支持基体、2・・・・・・透明電極、3
・・・・・・p型Si、4・・・・・・i型si、s・
・・・・・n型st、e・・・・・・集電電極、7・・
・・・・負極、8・・・・・・固体電解質、9・・・・
・・正極、10・・・・・・集電電極、11・・・・・
・正極リード端子、12・・・・・・負極リード端子、
13・・・・・・密封ノくッケージ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/−
−−支将基体  7 負極 2−itQ iUi&   8  固avzs頁3−f
”is、l     q  正a4=−を犯3L   
  //  工種す−ドi各第1 図  5−7L i
蟇i   12 電装リード端子4、/θ−−−集t、
t、t!j   ts   t、灯バツヶージts2図 鏝過時間(時間) 第3図 /     6120    /θρ0ブイクル数(百
) 第4図 1イクル数 (回) 第5図 θ     /       234 ぺ逼時開(時間) 第6図 19ρ   l〃θ 丈イグル数(rm) 第7図 第8図 第9図 0   /   2  3  4 圧え時間(時閉) 第1O図 15ρり         lりρθ ブイグル数ζ回)
FIG. 1 is a block diagram of an all-solid-state photovoltaic secondary battery according to an embodiment of the present invention, FIGS. 2, 3, and 4 are characteristic diagrams of the same photovoltaic secondary battery, and FIGS. FIG. 6 is a characteristic diagram of a photovoltaic secondary battery according to another embodiment of the present invention, FIG. 7 is a configuration diagram of a solar cell portion of a photovoltaic secondary battery according to another embodiment of the present invention, and FIG. 7 is an overall configuration diagram of a photovoltaic secondary battery having the solar cell portion shown in FIG. 7 as a component, and FIGS. 9 and 10 are characteristic diagrams of the photovoltaic secondary battery shown in FIG. 8. 1...Supporting base, 2...Transparent electrode, 3
...p-type Si, 4...i-type Si, s.
...N-type st, e...Collector electrode, 7...
...Negative electrode, 8...Solid electrolyte, 9...
...Positive electrode, 10...Collecting electrode, 11...
・Positive lead terminal, 12...Negative lead terminal,
13... Sealed package. Name of agent: Patent attorney Toshio Nakao and 1 other person/-
--Support base 7 Negative electrode 2-itQ iUi & 8 Solid avzs page 3-f
”is, l q correct a4=- 3L
// Work Type I Each 1st Figure 5-7L i
Toad i 12 Electrical lead terminal 4, /θ---collection t,
T-t! j ts t, lamp cage ts2 diagram passing time (hours) Fig. 3 / 6120 /θρ0 number of cycles (hundreds) Fig. 4 number of cycles per cycle (times) Fig. 5 θ / 234 time to open (time) 6th Fig. 19ρ l〃θ Length angle number (rm) Fig. 7 Fig. 8 Fig. 9 Fig. 9 0 / 2 3 4 Pressing time (time closed)

Claims (3)

【特許請求の範囲】[Claims] (1)シェブレル化合物を主体とする正極成形体層、固
体電解質成形体層、シェブレル化合物を主体とする負極
成形体層を順次積層することにより形成された全固体二
次電池と、対向する一対の電極間に光電変換膜を介在さ
せて形成された太陽電池とを電気的に接続し、一体構成
したことを特徴とする光発電二次電池。
(1) An all-solid-state secondary battery formed by sequentially laminating a positive electrode molded body layer mainly composed of a Chevrel compound, a solid electrolyte molded body layer, and a negative electrode molded body layer mainly composed of a Chevrel compound; A photovoltaic secondary battery characterized in that it is integrally configured by electrically connecting a solar cell formed with a photoelectric conversion film interposed between electrodes.
(2)正極成形体層及び負極成形体層は少なくとも各々
の電極主体材料と可塑性バインダーからなる混合物であ
り、固体電解質成形体層は、固体電解質、可塑性バイン
ダー、必要に応じて芯材より成る固体電解質成形体であ
り、これらにより形成された全固体二次電池は可撓性を
有する透明樹脂基体上で、光電変換素子と電気的に接続
したことを特徴とする特許請求の範囲第1項記載の光発
電二次電池。
(2) The positive electrode molded body layer and the negative electrode molded body layer are a mixture consisting of at least each electrode main material and a plastic binder, and the solid electrolyte molded body layer is a solid consisting of a solid electrolyte, a plastic binder, and, if necessary, a core material. Claim 1 is characterized in that the electrolyte molded body is an all-solid-state secondary battery formed from the electrolyte molded body, and is electrically connected to a photoelectric conversion element on a flexible transparent resin substrate. photovoltaic secondary battery.
(3)シェブレル化合物は、銅シェブレル化合物または
銀シェブレル化合物でありかつ、これに対応して固体電
解質はそれぞれ銅イオン導電性固体電解質または銀イオ
ン導電性固体電解質であることを特徴とする特許請求の
範囲第1項または第2項記載の光発電二次電池。
(3) The Chevrel compound is a copper Chevrel compound or a silver Chevrel compound, and correspondingly, the solid electrolyte is a copper ion conductive solid electrolyte or a silver ion conductive solid electrolyte, respectively. The photovoltaic secondary battery according to item 1 or 2.
JP62263458A 1987-10-19 1987-10-19 Photovoltaic secondary battery Expired - Fee Related JP2506829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62263458A JP2506829B2 (en) 1987-10-19 1987-10-19 Photovoltaic secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62263458A JP2506829B2 (en) 1987-10-19 1987-10-19 Photovoltaic secondary battery

Publications (2)

Publication Number Publication Date
JPH01106473A true JPH01106473A (en) 1989-04-24
JP2506829B2 JP2506829B2 (en) 1996-06-12

Family

ID=17389788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62263458A Expired - Fee Related JP2506829B2 (en) 1987-10-19 1987-10-19 Photovoltaic secondary battery

Country Status (1)

Country Link
JP (1) JP2506829B2 (en)

Also Published As

Publication number Publication date
JP2506829B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
US10083770B2 (en) High energy-density radioisotope micro power sources
US4916035A (en) Photoelectrochemical cells having functions as a solar cell and a secondary cell
WO2009139295A1 (en) Thermoelectric generation apparatus
JPS61283173A (en) Power source element
US4119768A (en) Photovoltaic battery
JPH01106473A (en) Light emitting secondary cell
EP0108492A2 (en) Composite photocell
JPS5630261A (en) Battery and its manufacturing method
Kanbara et al. Photo-rechargeable solid state battery
JP2713419B2 (en) Photo secondary battery
DE19926318A1 (en) Electrical energy storage device for autonomous current supply for electrical device uses storage battery in combination with solar cell device for topping-up battery charge
JPS61211965A (en) Photo-secondary cell
DE2924079A1 (en) Secondary cell charged by light incidence - with PN junction acting as integrated photocell
JPH01248482A (en) Secondary battery by photovoltaic power generation
JPH01124975A (en) Photocell
JPS6188468A (en) Battery
Kimemia et al. Effect of Varying Titanium Dioxide and Iodine on Open Circuit Voltage and Short Current Density
JPS6012677A (en) Solid electrolyte secondary battery
JPH01259573A (en) Secondary photo cell
JPH07118332B2 (en) Solar battery
JPH01175774A (en) Manufacture of solar cell with self-contained reverse current blocking diode
JPH07118333B2 (en) Solar battery
JPH01315967A (en) Photocell
JPH0534789B2 (en)
JPS634556A (en) Photo-secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees