JPH01124975A - Photocell - Google Patents

Photocell

Info

Publication number
JPH01124975A
JPH01124975A JP62283551A JP28355187A JPH01124975A JP H01124975 A JPH01124975 A JP H01124975A JP 62283551 A JP62283551 A JP 62283551A JP 28355187 A JP28355187 A JP 28355187A JP H01124975 A JPH01124975 A JP H01124975A
Authority
JP
Japan
Prior art keywords
current collector
electrode
current
photoelectrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62283551A
Other languages
Japanese (ja)
Inventor
Satoshi Sekido
聰 関戸
Teruo Yamashita
山下 暉夫
Takeshi Takeda
竹田 武司
Soji Tsuchiya
土屋 宗次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62283551A priority Critical patent/JPH01124975A/en
Priority to US07/232,637 priority patent/US4916035A/en
Publication of JPH01124975A publication Critical patent/JPH01124975A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • H01M10/465Accumulators structurally combined with charging apparatus with solar battery as charging system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To increase photocharge current and discharge current and to increase capacity density by forming basic structural elements with a negative current collector, a negative electrode, a solid electrolyte, a capacity electrode, a photo positive electrode, and a positive current collector. CONSTITUTION:Basic structural elements are formed with a negative current collector 1, a reversible copper negative electrode 2, a Cu<+> ion conductive solid electrolyte 3, a capacity electrode 4 comprising CuxMo6S8-y, a photoelectrode 5 comprising (Tix'Zr1-x')S2-y', and a positive current collector 6. To increase photocharge current and discharge current and to heighten charge acceptance, (Tix,Zr1-x')S2-y' is used as the photoelectrode and to improve the disadvantage of low capacity, CuxMo6S8-y is used as the capacity electrode, and both electrodes form a composite electrode. Disadvatages of small photocharge current and discharge current and low capacity density are eliminated, and a compact, lightweight cell capable of shortening charge time and durable to quick load change is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は太陽電池と二次電池とを併せた機能を有し、電
子時計、電卓の永久電源として、また光発電−電力貯 
分野等に広く利用される光電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention has the functions of a solar cell and a secondary battery, and can be used as a permanent power source for electronic watches and calculators, as well as for photovoltaic power generation and power storage.
The present invention relates to photovoltaic cells that are widely used in various fields.

従来の技術 従来は、太陽電池と二次電池との両機能を併せもつ電源
デバイスは市販されておらず、太陽電池と二次電池を別
々に備えて、それを負荷に対して並列に接続して太陽電
池で発電した電力を二次電池に貯え、夜間など光が入射
しない場合とか瞬間的な大電流を要する場合には二次電
池から負荷に電力を供給するようにしている。
Conventional technology Until now, there was no commercially available power supply device that had both the functions of a solar cell and a secondary battery. The power generated by the solar cells is stored in a secondary battery, and when there is no light, such as at night, or when a large instantaneous current is required, the secondary battery supplies power to the load.

最近、半導体電極を用い、光を入射して電気化学反応を
行わせ、有用な物質を得たり、電力として貯蔵すること
が試みられている。例えば、n−TtOz光電極と白金
電極を用い、水を光分解して光電極例からOtガスを、
白金電極側からH2ガスを得るのが有用物質を得る一つ
の例となっている。また、H,TRIBUTSCH氏は
ソリッドステイトイオニクス;5OLID  5TAT
E l0NIC89/10(1988)、PP41〜5
8、N0RIHHOLLANDPUBLISHING 
COMPANYおよびストラクチュアアンドボンデイン
グ;5TRUC’r(JRE & BONDING。
Recently, attempts have been made to use semiconductor electrodes to cause electrochemical reactions by injecting light to obtain useful substances or to store them as electricity. For example, using an n-TtOz photoelectrode and a platinum electrode, water is photolyzed and Ot gas is produced from the photoelectrode example.
Obtaining H2 gas from the platinum electrode side is one example of obtaining useful substances. Also, Mr. H, TRIBUTSCH is solid state ionics; 5OLID 5TAT
E l0NIC89/10 (1988), PP41-5
8, N0RIHHOLLAND PUBLISHING
COMPANY and STRUCTURE AND BONDING; 5 TRUC'r (JRE & BONDING.

49(1982)、PP127〜175.5PR−IN
GERVERLAGにおいて、放電によってC針イオン
を光によってデインタカレートするnuzrsz−yl
を用いる光二次電池の可能性を示した。
49 (1982), PP127-175.5PR-IN
In GERVERLAG, nuzrsz-yl deintercalates C needle ions with light through electrical discharge.
demonstrated the possibility of photo secondary batteries using

発明が解決しようとする問題点 しかしながら、n型Zr5z−y’光電極を水溶液電解
質と共に用いると、光充電反応の他に溶液との間に光腐
食反応を起して極めて短寿命である欠点を有していた。
Problems to be Solved by the Invention However, when an n-type Zr5z-y' photoelectrode is used with an aqueous electrolyte, in addition to the photocharging reaction, a photocorrosion reaction occurs with the solution, resulting in an extremely short lifespan. had.

本出願人は、先にCu+イオン導電性の固体電解質Rb
Cu4hscls、sを電解質に用いることによって光
腐食を防止できることを見出した。しかし、ZrSgy
’は電子導電率、Cu イオノ導電率共に低く、充放電
々流が大きくとれない欠点とZrS、□′にインタカレ
ートできるCu+イオンの数(CuxZrSz−5/の
Xに相当)が0.15と低く、い\かえると容量密度が
低い欠点を有していた。
The present applicant previously proposed a Cu+ ion conductive solid electrolyte Rb.
It has been found that photocorrosion can be prevented by using Cu4hscls,s as an electrolyte. However, ZrSgy
' has the disadvantage that both electronic conductivity and Cu ionoconductivity are low, and the charging/discharging current cannot be large, and the number of Cu+ ions that can be intercalated in ZrS, □' (corresponding to X in CuxZrSz-5/) is 0.15 However, it had the disadvantage of a low capacity density.

本発明は上記従来の欠点である、光充電電流及び放電電
流が大きくできないこと、容量密度が小さいことを解消
し、充電時間の短縮、急激な負荷に耐えうる、小型・軽
量の電池を得ることを目的とするものである。
The present invention solves the above-mentioned conventional drawbacks of inability to increase photocharging current and discharging current and low capacity density, and provides a small and lightweight battery that shortens charging time and can withstand sudden loads. The purpose is to

問題点を解決するための手段 本発明は上記目的を達成するためになされたもので、負
極集電体と、可逆性銅負極と、Cu+イオン導電性固体
電解質と、CuxMo6S8−yからなる容量電極と、
(T i/ Z r、  、l) S、−ylからなる
光電極と、正極集電体を基本構成要素とするものである
Means for Solving the Problems The present invention has been made to achieve the above object, and includes a capacitive electrode consisting of a negative electrode current collector, a reversible copper negative electrode, a Cu + ion conductive solid electrolyte, and CuxMo6S8-y. and,
(T i / Z r, , l) The basic components are a photoelectrode made of S, -yl and a positive electrode current collector.

作用 本発明は、光充電々流と放電々流を大きくし、チャージ
アクセプタンスを高めるために、光電極としてzrs2
 、;の代りに、(”xZr+−z)81 、’を用い
る。その形体としては、T iS 1−y h Z r
 S ! yとの混合物、または固溶体を用い、それら
の容量密度が小さい欠点を改良するために、容量電極と
してCuXMO6S8−yを別に設け、複合化によって
問題解決を図っている。
Function The present invention uses zrs2 as a photoelectrode in order to increase the photocharge current and discharge current and increase charge acceptance.
,; use ("xZr+-z)81,'. Its form is T iS 1-y h Z r
S! In order to improve the drawback of low capacitance density by using a mixture or a solid solution with CuXMO6S8-y as a capacitor electrode, the problem is solved by combining CuXMO6S8-y.

本発明の光電極あ作用は、n型半導性を示し、しかもC
uイオンを放電によってインタカレー トする性質を有
する。これらの物質に光を当てると、そのバンドギャッ
プ以上のエネルギーを有する光が吸収されて電子を導電
帯に励起し、導電帯にホールを生成する。この導電帯の
F縁のエネルギーレベルが、銅の酸化還え電位より上に
あり、また、導電帯の上級のエネルギーレベルが、Cu
イオンが半導体中にインタカレートするエネルギーレベ
ルよシ下にあれば、導電帯にある電子は、光電極と電解
質との界面にエネルギーバリアがあるために、光電極上
でCu+イオンと反応することなく、外部回路を通って
対極に達し、そこでCu+イオンを還えして x@(”u −1−x@e −+x−(’uのようにC
uを析出させる。また、導電帯に生成したホールは、C
ux(Ti);ZrI  、、’)s2 y’、あるい
はCuxMO@Sa  、を酸化してCux(TixZ
r+−x)S−+x−P■→x−cu+ (TjzZy
 I−X)St−yあるいは CuxMoss8.+X−P■4 x−(:u+Moa
 5s−yのようにCu+イオンを放出する。これらの
反応は、光二次電池の充電反応に他なら表い。光充電が
できる、できないは、光電極の導電帯と導電帯のバンド
レベルの間にCuの酸化還元電位とCux(T1xZr
+−2)St−>7%あるいはCuxMo6S8−yの
酸化還元電位が入るか、入らないかによってきまる。こ
のような状態を作るには、光電極のパンドギャップが大
きい方がよいが、他方、それだけ、有効利用できる光の
エネルギイのド限が高エネルギイ側に移って少なくなる
。Ti5ffi3:とzrs、−ρとの混合物、もしく
は固溶体を光電極として用いることは、従来のZrS、
−yのバンドギツプ1.68eVを下げ、それによって
光充電反応の効率を増す作用を有する。混合物、もしく
は固溶体を用いることは、また、光電極の電子導電率と
C♂イオン導電率をzrst馬よりいちじるしく増大せ
しめ、それによって充放電々流を増大せしめる作用を有
する。
The photoelectrode of the present invention exhibits n-type semiconductivity and is C
It has the property of intercalating u ions through discharge. When these materials are exposed to light, light with energy greater than the band gap is absorbed, excites electrons into the conductive band, and generates holes in the conductive band. The energy level of the F edge of this conductive band is above the oxidation-reduction potential of copper, and the upper energy level of the conductive band is
If the energy level is below that at which ions intercalate in the semiconductor, the electrons in the conductive band will not react with Cu+ ions on the photoelectrode because of the energy barrier at the interface between the photoelectrode and the electrolyte. , passes through an external circuit to reach the counter electrode, where it returns the Cu+ ions to x@("u -1-x@e -+x-(C
Precipitate u. In addition, the holes generated in the conductive band are C
ux(Ti);ZrI,,')s2y', or CuxMO@Sa, is oxidized to produce Cux(TixZ
r+-x)S-+x-P■→x-cu+ (TjzZy
I-X) St-y or CuxMoss8. +X-P■4 x-(:u+Moa
Releases Cu+ ions like 5s-y. These reactions are similar to the charging reactions of photosecondary batteries. Whether photocharging is possible or not depends on the redox potential of Cu and Cux (T1xZr
+-2) It depends on whether the redox potential of St->7% or CuxMo6S8-y is included or not. In order to create such a state, it is better to have a larger breadth gap of the photoelectrode, but on the other hand, the more effectively the energy limit of the light that can be used shifts to the higher energy side and decreases. The use of a mixture or solid solution of Ti5ffi3: and zrs, -ρ as a photoelectrode is similar to the conventional ZrS,
-y has the effect of lowering the band gap of 1.68 eV, thereby increasing the efficiency of the photocharging reaction. The use of a mixture or solid solution also has the effect of significantly increasing the electronic conductivity and C♂ ionic conductivity of the photoelectrode over the Zrst horse, thereby increasing the charging and discharging current.

Tl5t−yもzrst−−も、その中に可逆的にCu
イオンをインタカレートできる量は、Xが0.15と極
めて小さい。これに対してCuz MOa S a−y
を用いると、これらの光電極と同一電位範囲で、例えば
、y=0.1で0.9<x(1,9、0,2≦y<0.
4で0.2(X(1,1のように多量のCuイオンのイ
ンタカレートができる。言い換えると、光電極とシェプ
レル容量電極の複合化によって正極の容量密度をいちじ
るしく増大せしめる作用を有する。
Both Tl5t-y and zrst-- have Cu reversibly in them.
The amount of ions that can be intercalated is extremely small, with X being 0.15. On the other hand, Cuz MOa Sa-y
When using, for example, y=0.1 and 0.9<x (1,9, 0,2≦y<0.
4, a large amount of Cu ions can be intercalated as shown in 0.2(

実施例 以下に本発明の実施例を図面に基づいて詳細に説明する
Embodiments Below, embodiments of the present invention will be explained in detail based on the drawings.

第1図は本発明の一実施例におけるプレス成型を用いた
光電池の基本的構成図である。
FIG. 1 is a basic configuration diagram of a photovoltaic cell using press molding in one embodiment of the present invention.

図において、1は負極集電体となる約100meの銅網
、2は負極活物質となる電解銅粉とCutSとCL1+
イオン導電性固体電解質との混合成型物、3は固体電解
質のみの成型物、4は容量正極となるCuxMo、 5
s−7と電解質との混合成型物、5は光電極となる’r
ts、−yとZrS2−yとの混合物、あるいは固溶体
と電解質との混合成型物、6は正極集電体となる黒鉛で
ある。7,7′は、光=次電池を保持するためのベーク
ライト板からなる保持板で、保持板7には光電極側に光
を入射するための孔8を穿っである。
In the figure, 1 is a copper mesh of about 100 me that will be the negative electrode current collector, 2 is the electrolytic copper powder that will be the negative electrode active material, CutS and CL1+
3 is a molded mixture with an ion-conductive solid electrolyte, 4 is a molded product containing only a solid electrolyte, 4 is CuxMo, which becomes a capacitive positive electrode, 5
Mixed molded product of s-7 and electrolyte, 5 becomes a photoelectrode.
A mixture of ts, -y and ZrS2-y, or a mixed molded product of a solid solution and an electrolyte, 6 is graphite serving as a positive electrode current collector. Reference numerals 7 and 7' denote holding plates made of Bakelite plates for holding the photovoltaic battery, and the holding plate 7 has holes 8 for allowing light to enter the photoelectrode side.

径13mmφの金型の底にまず負極集電体1となる10
0me′、18mmφの銅網を入れ、その上に負極2の
活物質となる電解銅粉0.0961 、 Cu!S O
,064f 。
At the bottom of a mold with a diameter of 13 mmφ, first place 10 which will become the negative electrode current collector 1.
A copper net of 0me' and 18mmφ is placed on top of it, and electrolytic copper powder of 0.0961 mm, Cu! SO
,064f.

C、+イオン導電性固体電解質RbCu4IL6 C1
s、sO,OQの混合粉末を均等に入れて1001’4
/cJの圧力で仮成型し、つyいて電解質8を0.2s
入れて同様に仮成型し、さらに、光電極5として、Ti
SとZrS。
C, + ion conductive solid electrolyte RbCu4IL6 C1
Add mixed powder of s, sO, OQ evenly and make 1001'4
Temporarily molded at a pressure of /cJ, and then electrolyte 8 was added for 0.2 s.
Then, as the photoelectrode 5, a Ti
S and ZrS.

とを(A)0 : 1 、[F])0.25:0.75
.(C’IO,50:0.50゜II))0.75:0
.25.■1:Oの比に混合したものおよび■0.75
 : 0.25の比で固溶したものそれぞれ0.04に
電解質0.01Fを混合した粉を入れて8tAの圧力で
全体を本成型してペレットを作った。
and (A)0:1, [F])0.25:0.75
.. (C'IO, 50:0.50゜II))0.75:0
.. 25. ■ Mixed with a ratio of 1:O and ■ 0.75
: A solid solution of 0.04 and 0.01 F of electrolyte was added to each solid solution at a ratio of 0.25, and the whole was molded under a pressure of 8 tA to make pellets.

このペレットの光電極5上にlQmmφの光入射のだめ
の孔をあけた黒鉛から女る正極集電体6を設けて電池を
構成して0.55Vの定電圧充電を行なった後、および
さらに10μAで終止電圧0.8までまで放電して放電
曲線を求めた後、500WのXeランプを250の距離
から照射して20秒後の光充電電流を測定した。光充電
々流は、0.55Vと0.3vで暗電流が零となった状
態で光照射して求めた。
A positive electrode current collector 6 made of graphite with a hole for light incidence of 1Qmmφ was provided on the photoelectrode 5 of this pellet to form a battery, and after constant voltage charging of 0.55V, and an additional 10μA After discharging to a final voltage of 0.8 and obtaining a discharge curve, a 500 W Xe lamp was irradiated from a distance of 250 m, and the photocharging current was measured after 20 seconds. The light charge current was determined by irradiating light at 0.55V and 0.3V with the dark current being zero.

その結果は第2図(放電曲線)と第3図(光充電々流)
のようであった。これから、 (Tix Zr+ y ) S 2−yのX値が0.5
≦x<o、8にあるものは、光充電々流も大きく、また
放電曲線も優れていることが認められる。!が0.75
より大きいものは、放電曲線が優れているが、0.3V
まで放電すると光充電が出来なくなる。これは、バンド
ギャップが狭くなり過ぎるためと考えている。X′値が
0.50より小さいものは、光充電々流が小さく、また
、放電曲線も低くなる。これは光電極の電子およびCu
+イオン導電率が低くなるためと考えられる。
The results are shown in Figure 2 (discharge curve) and Figure 3 (light charging current).
It was like that. From now on, the X value of (Tix Zr+ y) S 2-y is 0.5
It is recognized that those in which ≦x<o and 8 have a large photo-charge current and an excellent discharge curve. ! is 0.75
The larger one has a better discharge curve, but 0.3V
If the battery is discharged to this point, photocharging will no longer be possible. We believe that this is because the bandgap becomes too narrow. If the X' value is smaller than 0.50, the photo-charge current will be small and the discharge curve will also be low. This is due to the photoelectrode electrons and Cu
This is thought to be due to the lower ion conductivity.

そこで、径13mmφの金型を負極集電体1として用い
、叙上と同様にして、負極2、電解質3を設は仮成型し
た後、容量正極4の物質としてCuz MOs S a
−yのyを(G) O、(FD O,1、(I) 0.
2 、(J)0.4としたもの0.04 fに電解質を
0.01 f混合した粉を入れ仮成型し、さらに光電極
5の物質としてTi5x−y’とZr!−y’を0.7
5 : 0.25の比で混合したもの0.04 flに
電解質0.01 (/を混合した粉を入れ、8t/Cl
11で本成型してペレットとした。この光電極5上に]
Qmmφの光入射のだめの孔をあけた黒鉛からなる正極
集電体6を設けて電池を組立て、0.55Vで定電圧充
電した後、容量正極4を設けなかった上述の資料0とと
もに、200μA、500μAおよび1mAで終止電圧
0.3Vまで定電流放電した際の放電曲線を求め、最後
に、O,aVでの光電流を上述と同様に測定し、各試料
間の比較を行なった。
Therefore, a mold with a diameter of 13 mmφ was used as the negative electrode current collector 1, and the negative electrode 2 and electrolyte 3 were temporarily molded in the same manner as described above.
-y of y as (G) O, (FD O,1, (I) 0.
2, (J) of 0.4 was mixed with 0.04 f and 0.01 f of electrolyte powder and temporarily molded, and Ti5x-y' and Zr! -y' to 0.7
5: Add powder mixed with 0.01 (/) of electrolyte to 0.04 fl mixed at a ratio of 0.25, and add 8t/Cl.
In step 11, the pellets were formed into pellets. on this photoelectrode 5]
After assembling a battery by providing a positive electrode current collector 6 made of graphite with a hole for light incidence of Qmmφ and charging it at a constant voltage of 0.55V, the capacity was 200 μA, along with the above-mentioned document 0 in which the positive electrode 4 was not provided. A discharge curve was obtained when a constant current discharge was performed at 500 μA and 1 mA to a final voltage of 0.3 V, and finally, the photocurrent at O and aV was measured in the same manner as described above, and the samples were compared.

その結果は第4図(放電曲線)と第5図6(光充電電流
)のようであった。これらから、まず、容量正極4をつ
けるととKよって放電容量が約10倍はど増大し、光充
電電流の垂下もそのために少ないことが認められる。容
量正極4のCu、MO6S8−y、−yのy値が零のも
のは放電容量が少なくなることも認められる。
The results were as shown in FIG. 4 (discharge curve) and FIG. 5 (photocharging current). From these results, it can be seen that when the capacitive positive electrode 4 is attached, the discharge capacity increases by about 10 times due to K, and the drooping of the photo-charging current is also reduced because of this. It is also recognized that when the y value of Cu, MO6S8-y, -y of the capacitive positive electrode 4 is zero, the discharge capacity decreases.

従ってCuXMO6S8−y、−7からなる容量正極4
としては、x =2 + 0−1≦y≦0.4であるこ
とが好ましく、また光電極5と複合することにより容量
密度を著しく高めることができる。(TjX’Zr l
−)!’)S 2−チからなる光極極5と12は、0.
5≦x’<0.8 pノン0.1であることが望ましい
Therefore, the capacitive positive electrode 4 consisting of CuXMO6S8-y, -7
It is preferable that x = 2 + 0-1≦y≦0.4, and by combining it with the photoelectrode 5, the capacity density can be significantly increased. (TjX'Zr l
−)! ') The optical poles 5 and 12 consisting of S 2-chi are 0.
It is desirable that 5≦x'<0.8 p non 0.1.

第6図に本発明の他の実施例である薄(厚)膜を用いた
光電池の断面図(a)及び平面図山)を示す。
FIG. 6 shows a cross-sectional view (a) and a top view of a photovoltaic cell using a thin (thick) film, which is another embodiment of the present invention.

図<a)は図Φ)のx−x’における断面図である。第
1図と同じ部位には同じ番号を付しである。
Figure <a) is a sectional view taken along line xx' of figure Φ). The same parts as in FIG. 1 are given the same numbers.

図において、ガラス基板7に正極集電体6となる黒鉛ペ
ーストを入射光部を除いてスクリーン印刷し、200℃
で30分焼付を行なった。スクリーン印刷の代りにスパ
ッタで2μ程度の膜を作っても、同程度の集電効果が得
られる。ついで、光電極5となるTiS2とZrS2 
弓との0.75 : 0.25−y の比のものをマグネットロンスパッタで■5oooCi
IL。
In the figure, graphite paste, which will become the positive electrode current collector 6, is screen printed on a glass substrate 7, excluding the incident light area, and heated to 200°C.
Baking was carried out for 30 minutes. Even if a film of about 2 μm is formed by sputtering instead of screen printing, the same current collecting effect can be obtained. Next, TiS2 and ZrS2, which will become the photoelectrode 5
■5oooCi with magnetron sputtering with a ratio of 0.75: 0.25-y to the bow
IL.

01μ、M2μの厚さにつけ、ついで容量正極4となる
Cut Mos S ?、 8をマグネットロンスパッ
タで1μの厚さに附着せしめた。ついで電解質8となる
RbCu4IいC1s、sを蒸着で約10μの厚さにつ
けた。さらに、負極2の活物質となる(’uとCn2S
との0.6 : 0.4の比の混合物をマグネットロン
スパッタで約1μの厚さに附着せしめた。最後に負極集
電体1となる(’uを蒸着で1μの厚さでつけ、各セル
の接続も完了する。8はセルをカバーするエポキレ樹脂
の層である。このようにしてl1ff角(露光部8.9
 ff角)のセル4セルを直列につ、tいたものを作っ
た。
Cut Mos S ? , 8 was deposited to a thickness of 1 μm using magnetron sputtering. Next, RbCu4ICls,s, which will become the electrolyte 8, was applied by vapor deposition to a thickness of about 10μ. Furthermore, it becomes the active material of negative electrode 2 ('u and Cn2S
A mixture with a ratio of 0.6:0.4 was deposited to a thickness of about 1 μm by magnetron sputtering. Finally, the negative electrode current collector 1 is formed ('u) with a thickness of 1μ by vapor deposition, and the connection of each cell is completed. 8 is a layer of epoxy resin that covers the cells. In this way, the l1ff angle ( Exposure section 8.9
ff angle) 4 cells were connected in series, and a t-shaped one was made.

このようにして作った光二次電池に2.2V ツェナー
ダイオード9をつ:1ぎ、つぎの実験に供した。ツェナ
ーダイオード9を用いる理由は、過充電(4セルで2.
2μ以上になると過充電となり、電となり、電池の寿命
が短かくなる)をおさえ、かつ無負荷時でも光充電でき
るようにするためである。
A 2.2 V Zener diode 9 was connected to the photo secondary battery thus produced, and the battery was subjected to the following experiment. The reason for using the Zener diode 9 is to prevent overcharging (2.
This is to prevent overcharging (if it exceeds 2 μ, it will lead to overcharging, which will generate electricity and shorten the life of the battery), and to enable optical charging even when there is no load.

実験は、まず500WXeランプで251の距離で光照
射して完全充電し、ついで光照射を止めて500μAの
電流で終止電圧1.2Vまで放電した後、再び光充電し
て充電電流の定常値(光充電開始後5分値)を求めた。
In the experiment, first, a 500 W 5 minutes after the start of photocharging) was determined.

この結果は第7図のようであった。これから、光電極が
5000A程度と薄くなるとn型半導体である光電極か
らP型半導体である容量正極に光が到達して光充電速度
が落ちることが認められるので薄(厚)膜で電池を構成
する場合に1μm以上の光電極を用いる必要のあること
も分る。
The results were as shown in FIG. From now on, when the photoelectrode becomes as thin as about 5000A, light reaches the capacitive positive electrode, which is a P-type semiconductor, from the photoelectrode, which is an n-type semiconductor, and the photocharging speed decreases, so a battery can be constructed with a thin (thick) film. It can also be seen that it is necessary to use a photoelectrode with a thickness of 1 μm or more in this case.

以上のように、n型半導体であるTiS2.;&ZrS
、’との混合物、もしくは固溶体からなる光正極を用い
ることによシ、従来、発明者の一人が提供したZrS2
 、;を光電極に用いる二次電池より光充電の効率が高
められ、また、充放電々流も大きくできること、また、
Cu2M0g5s□からなる容量正極を光電極と複合す
ることによって容量密度をいちじるしく高めることがで
きる。
As mentioned above, TiS2. which is an n-type semiconductor. ;&ZrS
, ' by using a photocathode consisting of a mixture or solid solution of ZrS2, which was provided by one of the inventors.
The efficiency of photocharging is higher than that of a secondary battery using , ; as a photoelectrode, and the charging and discharging current can be increased,
By combining a capacitive positive electrode made of Cu2M0g5s□ with a photoelectrode, the capacitance density can be significantly increased.

発明の効果 以上要するに本発明は、負極集電体、負極、固体電解質
、容量正極、光電極、正極集電体を基本構成要素とする
光電池を提供するもので、光充電電流及び放電電流を大
きくでき、容量密度を著しく高ることができ、充電時間
の短縮や急激な負荷に耐えうるとともに1小型、軽量化
が図れる利点を有する。
Effects of the Invention In short, the present invention provides a photovoltaic cell whose basic components are a negative electrode current collector, a negative electrode, a solid electrolyte, a capacitive positive electrode, a photoelectrode, and a positive electrode current collector, and which increases the photocharging current and discharging current. It has the advantage of significantly increasing capacity density, shortening charging time, being able to withstand sudden loads, and being smaller and lighter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるプレス成形を用いた
光電池の断面図、第2図は同実施例の光電極の放電曲線
に及ぼす効果を示す特性図、第3図は同実施例の光電極
の光充電電流に及ぼす効果を示す特性図、第4図は同実
施例の容量正極の放電曲線に及ぼす効果を示す図、第5
図は同実施例の容量正極の光充電電流に及ぼす効果を示
す図、第6図は本発明の他の実施例における薄膜形の光
電池の構成を示すもので、第6図(a)は断面図、第6
図tb)は平面図、第7図は同実施例の光電極の厚みの
光充電電流に及ぼす影響を示す特性図である。 1・・・負極集電体、2・・・負極、8・・・電解質、
4・・・容量正極、5・・・光電極、6・・・正極集電
体。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
111に 7保持坂 7保博祇 鍋子電圧(VJ 第 3 図 Ti52−y   25   50   15   Z
h 52−(担 戚(771s/ゾ、ジ 馬子電圧CV)        ゝ 第5図 (、uy Mob 5s−y M  Ca2 No45
g−1のS欠謹(v値〕116 図 第7図 九電掻の厚み(pm)
FIG. 1 is a cross-sectional view of a photovoltaic cell using press molding according to an embodiment of the present invention, FIG. 2 is a characteristic diagram showing the effect of the photoelectrode of the same embodiment on the discharge curve, and FIG. 3 is a diagram showing the effect of the photoelectrode of the same embodiment on the discharge curve. FIG. 4 is a characteristic diagram showing the effect of the photoelectrode on the photocharging current; FIG. 4 is a diagram showing the effect on the discharge curve of the capacitive positive electrode of the same example; FIG.
The figure shows the effect of the capacitive positive electrode of the same embodiment on the photocharging current, and FIG. 6 shows the structure of a thin film photovoltaic cell in another embodiment of the present invention, and FIG. 6(a) is a cross-sectional view. Figure, 6th
Figure tb) is a plan view, and Figure 7 is a characteristic diagram showing the effect of the thickness of the photoelectrode on the photocharging current of the same example. 1... Negative electrode current collector, 2... Negative electrode, 8... Electrolyte,
4... Capacitive positive electrode, 5... Photoelectrode, 6... Positive electrode current collector. Name of agent: Patent attorney Toshio Nakao and 1 other person
111 to 7 holding slope 7 Hohiro Ginabeko voltage (VJ Figure 3 Ti52-y 25 50 15 Z
h 52-(Relationship (771s/zo, Jimako Voltage CV) ゝFigure 5(, uy Mob 5s-y M Ca2 No45
S deficiency of g-1 (v value) 116 Figure 7 Thickness of nine electric scrapers (pm)

Claims (4)

【特許請求の範囲】[Claims] (1)負極集電体、可逆性銅負極、Cu^+イオン導電
性固体電解質、Cu_xMO_6S_8_−_y(但し
、0.1≦y≦0.4)からなる容量正極、(Ti_x
’Zr_1_−_x’)S_2−y’(但し、0.5≦
x<0.8、y≧0.1)からなる光正極、正極集電体
を基本構成要素とすることを特徴とする光電池。
(1) Negative electrode current collector, reversible copper negative electrode, Cu^+ ion conductive solid electrolyte, capacitive positive electrode consisting of Cu_xMO_6S_8_-_y (however, 0.1≦y≦0.4), (Ti_x
'Zr_1_-_x') S_2-y' (However, 0.5≦
A photovoltaic cell characterized in that its basic components include a photocathode and a cathode current collector, each of which has the following properties: x<0.8, y≧0.1.
(2)可逆性銅負極としてCu^+イオン導電性固体電
解質と電解銅粉とCu^2Sとの混合成型物、容量正極
として前記Cu^+イオン導電性固体電解質とCu_x
Mo_6S_8_−_yとの混合成型物、光正極として
前記Cu^+イオン導電性固体電解質と(Ti_x’Z
r_1_−_x’)S_2_−_y’との混合成型物を
用い、負極集電体として銅、光正極集電体として黒鉛を
用いることを特徴とする特許請求の範囲第1項記載の光
電池。
(2) A mixed molded product of Cu^+ ion-conductive solid electrolyte, electrolytic copper powder, and Cu^2S as a reversible copper negative electrode, and the Cu^+ ion-conductive solid electrolyte and Cu_x as a capacitive positive electrode.
A mixed molded product with Mo_6S_8_-_y, the Cu^+ ion conductive solid electrolyte and (Ti_x'Z
2. The photovoltaic cell according to claim 1, characterized in that a molded mixture of the negative electrode current collector and the photopositive electrode current collector is made of copper and graphite is used as the photopositive electrode current collector.
(3)負極集電体として銅膜、負極として銅粉とCu_
2Sとの混合膜、電解質としてCu^+イオン導電性固
体電解質膜、容量正極としてCu_xMo_6S_8_
−_yの膜、光正極として(Ti_x’Zr_1_−_
x’)S_2_−_y’の膜、正極集電体として光電極
の周辺部に設けられた黒鉛膜を順次積層してなる特許請
求の範囲第1項記載の光電池。
(3) Copper film as negative electrode current collector, copper powder and Cu_ as negative electrode
Mixed membrane with 2S, Cu^+ ion conductive solid electrolyte membrane as electrolyte, Cu_xMo_6S_8_ as capacitive positive electrode
−_y film, as a photopositive electrode (Ti_x'Zr_1_-_
2. The photovoltaic cell according to claim 1, wherein a film of x')S_2_-_y' and a graphite film provided at the periphery of the photoelectrode as a positive electrode current collector are sequentially laminated.
(4)光正極の厚みを、入射した光が全部この層で吸収
されて容量正極に達しない程度(1μ<δ)とすること
を特徴とする特許請求の範囲第1項乃至第3項のいずれ
かに記載の光電池。
(4) The thickness of the photopositive electrode is set to such a level that all incident light is absorbed by this layer and does not reach the capacitive positive electrode (1 μ < δ). The photovoltaic cell according to any one of the above.
JP62283551A 1987-08-06 1987-11-10 Photocell Pending JPH01124975A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62283551A JPH01124975A (en) 1987-11-10 1987-11-10 Photocell
US07/232,637 US4916035A (en) 1987-08-06 1988-08-08 Photoelectrochemical cells having functions as a solar cell and a secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62283551A JPH01124975A (en) 1987-11-10 1987-11-10 Photocell

Publications (1)

Publication Number Publication Date
JPH01124975A true JPH01124975A (en) 1989-05-17

Family

ID=17666989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62283551A Pending JPH01124975A (en) 1987-08-06 1987-11-10 Photocell

Country Status (1)

Country Link
JP (1) JPH01124975A (en)

Similar Documents

Publication Publication Date Title
US4916035A (en) Photoelectrochemical cells having functions as a solar cell and a secondary cell
JP4437890B2 (en) Solar cell composite thin film solid lithium ion secondary battery
JP7154847B2 (en) Method for manufacturing all-solid-state battery
JPS61283173A (en) Power source element
EP3118966B1 (en) Charging circuit and module using same
US4235955A (en) Solid state photoelectrochemical cell
US4119768A (en) Photovoltaic battery
JPH0652891A (en) Lithium secondary battery
JPH10208782A (en) Light storage battery
JPH01124975A (en) Photocell
Hada et al. Energy conversion and storage in solid-state photogalvanic cells.
JPS6240436B2 (en)
JPS6188468A (en) Battery
RU2794514C1 (en) Radioisotope solid-state self-charging capacitor
JPS59111280A (en) Secondary photocell
JPH07245125A (en) Secondary battery capable of generating power
JPS6012677A (en) Solid electrolyte secondary battery
JPS62108471A (en) Photoelectric secondary cell
JP2511905B2 (en) Optical secondary battery
JP2506829B2 (en) Photovoltaic secondary battery
JPS6351064A (en) Solid electrolyte secondary battery and production method
JPH01124973A (en) Photocell
JPS634556A (en) Photo-secondary battery
JPS61271758A (en) Total solid photo secondary battery
Ohta et al. All Solid-State Photoelectrochemical Cell with RbAg4 I 5 as the Electrolyte