JPH01175774A - Manufacture of solar cell with self-contained reverse current blocking diode - Google Patents

Manufacture of solar cell with self-contained reverse current blocking diode

Info

Publication number
JPH01175774A
JPH01175774A JP62334409A JP33440987A JPH01175774A JP H01175774 A JPH01175774 A JP H01175774A JP 62334409 A JP62334409 A JP 62334409A JP 33440987 A JP33440987 A JP 33440987A JP H01175774 A JPH01175774 A JP H01175774A
Authority
JP
Japan
Prior art keywords
film
solar cell
diode
sintered
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62334409A
Other languages
Japanese (ja)
Inventor
Naoki Suyama
陶山 直樹
Noriyuki Ueno
上野 則幸
Kuniyoshi Omura
尾村 邦嘉
Takeshi Hibino
武司 日比野
Hiroyuki Kitamura
北村 外幸
Mikio Murozono
幹夫 室園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62334409A priority Critical patent/JPH01175774A/en
Publication of JPH01175774A publication Critical patent/JPH01175774A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To enable a solar cell which is small, thin and inexpensive and has a high reliability to be produced, by a method wherein a reverse current blocking diode and a CdS/CdTe type thin film solar cell are formed on a common substrate simultaneously or successively, and so forth. CONSTITUTION:A sinter-type solar cell is produced which comprises a first film into which an n type semiconductor which is a cadmium sulfide or contains it is spread on a transparent substrate 1 and then sintered, and a second film 3 into which a p type semiconductor which is a cadmium telluride or contains it is spread on the part of the first film 2 other than the exposed part of the first film 2 and then sintered. Further, after conductive third films 5 and 4 are spread simultaneously on side exposed part of the first film 2 and the second film 3, respectively, sintering is performed, and thereby the electrode of the solar cell and a reverse current blocking diode are formed on the second and first films 3, 2, respectively. For example, said first film 2 and said third films 5, 4 forming the diode are formed by the film into which the paste, in which 50-1000ppm copper oxide is dispersed in carbon paste, is spread and thereafter sintered at 350-500 deg.C.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、蓄電池等の二次電池に充電を目的として太陽
電池が用いらnる場合の逆流防止ダイオード内蔵型太陽
電池の製造方法に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method for manufacturing a solar cell with a built-in backflow prevention diode when the solar cell is used for charging a secondary battery such as a storage battery. .

従来の技術 近年、太陽電池は、電子機器用電源として多く用いらn
ている。その中で電卓等の照明光源下のみで使用する場
合は、負荷と太陽電池とを直接接続すnばよいが、時計
等の光照射の有無に関係なく連続的に動作する電子機器
の電源として太陽電池を用いる場合は、二次電池や、高
容量コンデンサーと太陽電池とを組み合せて用いる必要
がある。
Background of the Invention In recent years, solar cells have been widely used as power sources for electronic devices.
ing. If the device is used only under a lighting source such as a calculator, it is sufficient to connect the load directly to the solar cell, but as a power source for an electronic device such as a watch that operates continuously regardless of the presence or absence of light irradiation. When using a solar cell, it is necessary to use a combination of a secondary battery or a high-capacity capacitor with the solar cell.

すなわち、光照射時に発生した電気を二次電池等に充電
し、光が仔在しないか、もしくは弱くて太陽電池で直接
機器を駆動できない時、充電さnた二次電池より機器に
電気を供給することが要求さ扛るからである。しかし、
この時、二次電池から太陽電池の順方向にも電流が流れ
て電流損失が生じる。そこで一般に、二次電池と太陽電
池の間に太陽電池への蓄電した電気の逆流を防止するダ
イオード(以下逆流防止ダイオードと呼ぶ)が、組みこ
ま扛て使用さnる。たとえば第2図に太陽電池を応用し
た水晶発振式電子ウォッチの回路図を示す。負荷となる
電子ウォッチ回路13にコイン形二次7I¥池11と太
陽電池8を並列に接続し、二次電池11と太陽電池89
間に逆流防止ダイオード1oを図に示す方向に整流性を
もたせ、保護抵抗9と直列状態で配線する。つ筐り、太
陽電池と逆流防止ダイオードは、別々の工程で製造さn
たものを電子機器の配線基板上に配線するわけである。
In other words, the electricity generated during light irradiation is charged to a secondary battery, etc., and when there is no light or the light is too weak to directly drive the equipment with solar cells, the charged secondary battery supplies electricity to the equipment. This is because it is required to do so. but,
At this time, current also flows in the forward direction from the secondary battery to the solar cell, causing current loss. Therefore, a diode (hereinafter referred to as a backflow prevention diode) that prevents the backflow of stored electricity to the solar cell is generally installed between the secondary battery and the solar cell. For example, FIG. 2 shows a circuit diagram of a crystal oscillation electronic watch that uses solar cells. A coin type secondary 7I battery 11 and a solar cell 8 are connected in parallel to an electronic watch circuit 13 serving as a load.
In between, a backflow prevention diode 1o is provided with rectifying properties in the direction shown in the figure, and is wired in series with the protective resistor 9. The solar cell and backflow prevention diode are manufactured in separate processes.
This means that the components are wired onto the wiring board of the electronic device.

近年特に、電子機器の消費電力が低下しているため、太
陽電池と二次電池とを組合せた電源を用いる電子機器が
増加している。したがって、−次電池を使用する場合不
要であった逆流防止ダイオードを配線基板上に実装する
必要がでてきた。
In recent years, especially as the power consumption of electronic devices has decreased, the number of electronic devices that use a power source that combines a solar cell and a secondary battery is increasing. Therefore, it has become necessary to mount a backflow prevention diode on the wiring board, which is unnecessary when using negative batteries.

発明が解決しようとする問題点 しかしながら上記のような構成では、ダイオードを実装
するための空間が必要となり、電子機器の小型薄膜化に
問題がめるばかりか、太陽電池とダイオードを別々に実
装するため、組立工数の増加にともなうコスト高になる
。また、実装時ダイオードと太陽電池との甑性を所定の
組み合せと反対につけるというトラブルも発生しやすい
。さらには、使用時一般に結一部分における劣化トラブ
ルが信頼性に大きな影響をあたえやすいという問題もあ
った。
Problems to be Solved by the Invention However, the above configuration requires a space for mounting the diode, which not only poses a problem in making electronic equipment smaller and thinner, but also because the solar cell and the diode are mounted separately. The cost increases due to the increase in assembly man-hours. Further, during mounting, problems tend to occur in which the resistance of the diode and solar cell is set to be opposite to the predetermined combination. Furthermore, there is also the problem that deterioration troubles in the binding portion during use tend to have a large effect on reliability.

本発明は上記問題点に鑑み、薄膜太陽電池を形成した基
板上に、薄膜太陽電池の形成と同時か。
In view of the above-mentioned problems, the present invention is designed to simultaneously form a thin film solar cell on a substrate on which a thin film solar cell is formed.

もしくは連続して一膜型逆流防止ダイオードを太陽電池
と直接結線して製造する高信頼性の逆流防止内蔵型太陽
電池の[遣方法を提供するものである。
Alternatively, the present invention provides a method for manufacturing a highly reliable solar cell with built-in backflow prevention, which is manufactured by directly connecting a single-film type backflow prevention diode to a solar cell.

問題点を解決するための手段 上記問題点を解決するために本発明の逆流防止内蔵型太
陽電池の製造方法は、共通な基板上に。
Means for Solving the Problems In order to solve the above problems, the present invention provides a method for manufacturing a solar cell with built-in backflow prevention on a common substrate.

逆流防止ダイオード及びCdS/CdTe形薄膜太陽電
池全薄膜太陽電池り同時か又は連続して形成するもので
あり、この際に薄膜型逆流防止ダイオードの構成材料の
少なくとも一つを、太陽電池の構成材料と共通して用い
たものである。
A backflow prevention diode and a CdS/CdTe type thin film solar cell are formed simultaneously or sequentially, and at this time, at least one of the constituent materials of the thin film type backflow prevention diode is replaced with the constituent material of the solar cell. It was used in common with

作用 本発明は上記の構成によって、p警手導体CdTeとオ
ーミックな接触の得らnる電極材料は、仕事関数が犬き
く、n型半導体CdSに対して整流性を示すという特徴
を利用して、CdTθ膜上への電極形成と同時に、負極
電極形成部分のCdS膜上にCdSをn型とする整流性
を示すダイオードを、太陽電池の形成と同様塗布焼結に
よって同時又は連続して形成することにより、小型で薄
く、しかも安価で、高い信頼性をもつ逆流防止内蔵型太
陽電池が製造できる。
Operation The present invention utilizes the above-mentioned structure, and utilizes the characteristics that the electrode material that can obtain ohmic contact with the p-type conductor CdTe has a high work function and exhibits rectifying properties with respect to the n-type semiconductor CdS. , At the same time as electrode formation on the CdTθ film, a rectifying diode with CdS as n-type is formed on the CdS film in the negative electrode formation portion simultaneously or successively by coating and sintering, similar to the formation of solar cells. As a result, it is possible to manufacture a solar cell with built-in backflow prevention that is small, thin, inexpensive, and highly reliable.

実施例 以下本発明の一実施例の逆流防止ダイオード内蔵型太陽
電池の製造方法について、図面を参照しながら説明する
。第1図は1本発明の実施例における逆流防止ダイオー
ド内蔵型太陽電池の製造工程を示すものである。まず太
陽電池の構成材料であるCdS焼結膜およびCdTe焼
結膜の形成について説明する。粒径数ミクロンの高純度
CdS粉末に融剤としてCd C/ 2を10重量%、
プロピレングリ:’−ルを30〜4oM量チ加えてCd
Sペーストを作り、これをガラス基板1上に、第1図a
に示す所定のパターンで印刷した。こnを120’Cの
温度に保った乾燥機にて1時間乾燥後、アルミナ製の焼
成容器に入れベルト式焼成炉にて焼成温度ts90’C
で約1時間焼結した。このCdS焼結膜2上に、C(i
粉末とTe粉末にo、swt%のC(IC/2粉末とプ
ロピレングリコールを30〜40重量%加えた印刷ペー
ストを、第1図すに示すCdS焼結膜2上にその一部を
露出させた状態で所定の印刷パターンでスクリーン印刷
した。こnを100’Qで30分乾燥後、アルミナ製の
焼成容器に入れベルト式焼成炉にて焼成温度620’C
で1時間焼結しCdTe焼結膜3を形成した。この様に
して形成さ扛たCdS/CdTe太陽電池のCdTe焼
結膜3上及び、負電極となる露出したCdS焼結膜2上
に、第1図Cに示す所定のパターンでカーボンペースト
4.6を印刷した。なおり−ボンペースト中にはca’
ra′f:p型にするためのアクセプターとして酸化銅
を1100pp添加した。カーボン膜を塗布後、120
’Cで1時間乾燥し、ベルト焼成炉を用いて焼成温度4
00℃で1時間焼結した。次にCdS焼結膜上のカーボ
ン膜5上とC(ITθ焼結膜3上のカーボン膜4上にそ
扛ぞれムgペーストを、第1図dに示す所定のパターン
で塗布し、150’Cで30分間乾燥することによりム
g電極6を形成した。
EXAMPLE Hereinafter, a method for manufacturing a solar cell with a built-in backflow prevention diode according to an example of the present invention will be described with reference to the drawings. FIG. 1 shows the manufacturing process of a solar cell with a built-in backflow prevention diode in an embodiment of the present invention. First, the formation of a CdS sintered film and a CdTe sintered film, which are constituent materials of a solar cell, will be explained. Add 10% by weight of Cd C/2 as a flux to high-purity CdS powder with a particle size of several microns.
Propylene glycol: add 30-4oM amount of Cd
Make S paste and apply it on glass substrate 1 as shown in Figure 1a.
It was printed in the predetermined pattern shown below. After drying this in a dryer kept at a temperature of 120'C for 1 hour, it was placed in an alumina firing container and fired at a temperature of 90'C in a belt type firing furnace.
It was sintered for about 1 hour. On this CdS sintered film 2, C(i
A printing paste in which 30 to 40 wt% of C (IC/2 powder and propylene glycol) was added to the powder and Te powder was partially exposed on the CdS sintered film 2 shown in Fig. 1. After drying this at 100'Q for 30 minutes, it was placed in an alumina firing container and fired at a temperature of 620'C in a belt-type firing furnace.
The film was sintered for 1 hour to form a CdTe sintered film 3. Carbon paste 4.6 is applied in a predetermined pattern shown in FIG. Printed. Naori-Bon paste contains ca'
ra'f: 1100 pp of copper oxide was added as an acceptor to make it p-type. After applying carbon film, 120
'C for 1 hour and fired at a temperature of 4 using a belt firing furnace.
Sintering was carried out at 00°C for 1 hour. Next, paste was applied onto the carbon film 5 on the CdS sintered film and on the carbon film 4 on the C(ITθ sintered film 3) in a predetermined pattern shown in FIG. By drying for 30 minutes, a mug electrode 6 was formed.

上記構成において導体−半導体接触であるカーボン−C
dS膜、カーボン−CdTe膜接触が、オーミック性接
触を示すか、整流性を示すかは、カーボンの仕事関数と
半導体の仕事関数との差で決まる。カーボンの仕事関数
φm =5.Oe V、  C(Isの仕事関数φ14
 = 4.4315 V 、CdTaの仕事関数φB 
”’ 4.50 eVである。一般に、導体−n型半導
体間ではφm〉φSは整流性、φっくφ8はオーミック
特性を示す。また導体−p型半導体間では、逆の特性を
示す。したがってカーボン〜p型CdTe接触は、φ。
Carbon-C which is a conductor-semiconductor contact in the above structure
Whether the dS film or carbon-CdTe film contact exhibits ohmic contact or rectification is determined by the difference between the work function of carbon and the work function of the semiconductor. Carbon work function φm =5. Oe V, C(Is work function φ14
= 4.4315 V, work function φB of CdTa
"' 4.50 eV. Generally, between a conductor and an n-type semiconductor, φm>φS exhibits rectifying properties, and φkcφ8 exhibits ohmic characteristics. Furthermore, between a conductor and a p-type semiconductor, the opposite characteristics are exhibited. Therefore, the carbon to p-type CdTe contact is φ.

〉φSであることがらオーミック特性を、カーボン−n
型CdS接触はφm〉φSであることから整流性を示す
。すなわち、負極電極CdS上に整流性を示す逆流防止
ダイオードを接続したCdS /CdTe 太陽電池が
形成できるわけである。
〉Because it is φS, it has ohmic characteristics, and carbon-n
Since φm>φS, the type CdS contact exhibits rectifying properties. That is, a CdS/CdTe solar cell can be formed in which a backflow prevention diode exhibiting rectification is connected to the negative electrode CdS.

第3図にカーボンペースト中の酸化銅濃度を50ppm
 14  、 1 000ppm 1 5. 2000
1)1)m 16. 5000ppH117と変えた時
のcas7カーボンのダイオード特性を示す。カーボン
中の酸化銅濃度を増すことによってCdS膜中にCuの
拡散が起き、CdS膜抵抗の増加とともにダイオード特
性の立上りがゆるやかになるのがわかる。一方力−ボン
中の酸化銅濃度と焼成温度とはCdS / CdTe太
陽電池の特性に大きな影響を与えることは知られており
、最適条件は、太陽電池特性より、酸化銅50〜100
0ppH、焼成温度350’C〜500℃と決定した。
Figure 3 shows the copper oxide concentration in the carbon paste at 50 ppm.
14, 1000ppm 15. 2000
1)1)m 16. The diode characteristics of cas7 carbon are shown when the pH is changed to 5000pph117. It can be seen that by increasing the copper oxide concentration in carbon, Cu diffusion occurs in the CdS film, and as the CdS film resistance increases, the rise of the diode characteristics becomes gradual. On the other hand, it is known that the copper oxide concentration in the carbon and the firing temperature have a great influence on the characteristics of CdS/CdTe solar cells.
It was determined that the calcination temperature was 0 ppH and the calcination temperature was 350'C to 500C.

第3図より順方向電流が流れ始める電圧vFは、約0・
3vである。
From Figure 3, the voltage vF at which the forward current begins to flow is approximately 0.
It is 3v.

CdS/CdTe太陽電池の最大出力は、動作電圧0・
46vの時であることから、太陽電池から二次電池に充
電する時は、逆流防止ダイオードは特に影響をあたえな
いことがわかる。上記構成の太陽電池を最終A[電極で
6個直列接続することによって1・6vの端子電圧が二
次電池側からかかっても、太陽電池を通じて放電しない
ことがわかった。
The maximum output of a CdS/CdTe solar cell is at an operating voltage of 0.
Since the voltage is 46V, it can be seen that the backflow prevention diode does not have any particular effect when charging the secondary battery from the solar battery. It was found that by connecting six solar cells with the above configuration in series using the final A[electrode], even if a terminal voltage of 1.6 V was applied from the secondary battery side, no discharge would occur through the solar cells.

以上のように本実施例によnば、塗布焼結方式で形成す
るGas/ CdTe太陽電池のCdTe膜の電極であ
るカーボン膜をCds上に塗布焼結で同時に形成するこ
とによって、太陽電池に接続した薄膜型の逆流防止ダイ
オードを内蔵した太陽電池を特別な工程を経ることなし
に形成することができる。
As described above, according to this embodiment, a carbon film, which is an electrode of a CdTe film of a Gas/CdTe solar cell formed by a coating sintering method, is simultaneously formed on Cds by coating and sintering, thereby forming a solar cell. A solar cell with a built-in connected thin film anti-backflow diode can be formed without any special process.

次に本発明の第2の実施例について説明する。Next, a second embodiment of the present invention will be described.

第1の実施例と同様にCds+ CdTe焼結膜を形成
した後、第」の実施例と異なり、カーボン11分をCd
Ta焼結膜上のみに形成した。次に、露出した(ds焼
結膜上のみに、第1図Cと同様なパターンで、粒径1〜
3μmのNi !!たはN1含有化合物を2ON量斧含
む樹脂と溶剤からなる導電性ペースト全印刷し、150
°Cで30分間乾燥した。次に、カーボン膜上及びNi
v上にムgペーストを印刷し、150’Cで30分間乾
燥することにより電極を形成した。N1の仕事関数φH
=5・2eVであり、n型CdSとは整流性を示す。上
記構成で形成したCdS/Niダイオードは、順方向電
流が流n始める電圧vrは約0,35 Vであった。
After forming a Cds+CdTe sintered film in the same manner as in the first example, unlike the first example, carbon 11 was replaced with Cds+CdTe.
It was formed only on the Ta sintered film. Next, only on the exposed (ds sintered film) was a pattern similar to that shown in Fig.
3μm Ni! ! A conductive paste consisting of a resin and a solvent containing 2ON of an N1-containing compound was completely printed, and 150
Dry at °C for 30 minutes. Next, on the carbon film and on the Ni
Electrodes were formed by printing mug paste on the v and drying it at 150'C for 30 minutes. Work function φH of N1
=5.2 eV, and exhibits rectifying properties compared to n-type CdS. In the CdS/Ni diode formed with the above configuration, the voltage vr at which forward current begins to flow was approximately 0.35 V.

以上のように、塗布・焼結型CdS/ CdTa太陽電
池のp型CdTe p上に電極を形成した後、引続いて
別の工程でNiおよびNi化合物膜をn型CdS焼結膜
上に印刷焼成することにより、Ca’re電極材料とは
異なった材料及び処理条件で逆流防止ダイオードを太陽
電池と直列接続状態で製造することができる。
As described above, after forming an electrode on the p-type CdTe p of the coated and sintered CdS/CdTa solar cell, Ni and Ni compound films are printed and fired on the n-type CdS sintered film in a separate process. By doing so, it is possible to manufacture a backflow prevention diode in series connection with a solar cell using a material and processing conditions different from the Ca're electrode material.

また、第2の実施例でCdTθ膜上に形成する電極材料
に銅ペーストを用いる場合、その焼成温度がN1膜の焼
成温度150°Cより低い150’Cであるため、Ca
S [上のNi [を先に印刷焼成しても所定の性能が
侍らnた。
In addition, when copper paste is used as the electrode material formed on the CdTθ film in the second embodiment, the firing temperature is 150'C, which is lower than the firing temperature of the N1 film, which is 150'C.
Even if the above Ni was printed and fired first, the desired performance was not achieved.

発明の効果 以上のように本発明は、塗布焼結型Can /CdTe
薄膜太陽電池を形成する基板上に、薄膜太陽電池と同時
かもしくは連続して薄膜型逆流防止ダイオードを塗布焼
成によって太陽電池と結線して製造する方法であり、小
型で薄く、安価で、かつ結線ミスのない高信頼性の逆流
防止内蔵型太陽電池を提供することができる。
Effects of the Invention As described above, the present invention provides a coated sintered Can/CdTe
This is a manufacturing method in which a thin-film backflow prevention diode is coated on a substrate on which a thin-film solar cell is formed, either simultaneously or in succession with the thin-film solar cell, and then connected to the solar cell by baking. It is possible to provide error-free and highly reliable solar cells with built-in backflow prevention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例における逆流防止ダイオ
ード内蔵型太陽電池の製造工程図、第2図は太陽電池を
応用した水晶発掘式電子ウォッチの回路図、第3図は本
発明の第1の実施例におけるカーボン膜中のCuO濃度
を変えた時の逆流防止ダイオードの特性を示す図である
。 1・・・・・・ガラス基板、2・・・・・・Cds焼結
膜、3・・・・・・cd’re焼結膜、4・・・・・・
カーボン膜(CdTθ膜上)、5・・・・・・カーボン
膜(Cds膜上)、6・・・・・・ムg電極、8・・・
・・・太陽電池、9・・・・・・抵抗、10・・・・・
・逆流防止ダイオード、11・・・・・・酸化銀電池、
12・・・・・・光、13・・・・・・電子ウォッチ回
路、14・・・・・・Cu濃度50ppm 、 15−
・−・Cu g度10ooppm116・旧・・aug
度200oppm、 17−−−−−−Cu濃度50o
Oppm 。 代理人の氏名 弁理士 中 岸 敏 男 ほか1名1−
・ガラス基板 6・・−Act歇 第2図 第3図
Fig. 1 is a manufacturing process diagram of a solar cell with a built-in backflow prevention diode according to the first embodiment of the present invention, Fig. 2 is a circuit diagram of a crystal excavation type electronic watch using a solar cell, and Fig. 3 is a manufacturing process diagram of a solar cell with a built-in backflow prevention diode according to the first embodiment of the present invention. FIG. 3 is a diagram showing the characteristics of the backflow prevention diode when the CuO concentration in the carbon film is changed in the first example. 1... Glass substrate, 2... Cds sintered film, 3... cd're sintered film, 4...
Carbon film (on CdTθ film), 5... Carbon film (on Cds film), 6... Mug electrode, 8...
...Solar cell, 9...Resistance, 10...
・Backflow prevention diode, 11...Silver oxide battery,
12... Light, 13... Electronic watch circuit, 14... Cu concentration 50 ppm, 15-
・-・Cu g degree 10ooppm116・old・・aug
degree 200oppm, 17---Cu concentration 50o
Oppm. Name of agent: Patent attorney Toshio Nakagishi and 1 other person1-
・Glass substrate 6...-Act switch Fig. 2 Fig. 3

Claims (4)

【特許請求の範囲】[Claims] (1)透明基板上に硫化カドミウムもしくはそれを含む
n型半導体を塗布焼結した第1の膜と、この第1の膜の
一部を露出させ、その他の膜上にテルル化カドミウムも
しくはそれを含むp型半導体を塗布焼結した第2の膜と
よりなる焼結型太陽電池を形成し、前記露出させた第1
の膜上及び第2の膜上に同時に導電性のある第3の膜を
塗布した後焼成することによって、第2の膜上に太陽電
池の電極を、第1の膜上に逆流防止ダイオードを形成す
ることを特徴とする逆流防止ダイオード内蔵型太陽電池
の製造方法。
(1) A first film made by coating and sintering cadmium sulfide or an n-type semiconductor containing it on a transparent substrate, exposing a part of this first film, and coating cadmium telluride or it on other films. A sintered solar cell is formed with a second film coated and sintered with a p-type semiconductor containing a p-type semiconductor, and the exposed first film is
By coating a conductive third film on the second film and the second film at the same time and baking it, a solar cell electrode can be formed on the second film and a backflow prevention diode can be formed on the first film. 1. A method for manufacturing a solar cell with a built-in anti-backflow diode, characterized in that:
(2)第1の膜とダイオードを形成する第3の膜がカー
ボンペースト中に酸化銅を50〜1000ppm分散さ
せたペーストを塗布後350〜500℃で焼成したもの
である特許請求の範囲第1項記載の逆流防止ダイオード
内蔵型太陽電池の製造方法。
(2) The first film and the third film forming the diode are formed by applying a paste containing 50 to 1000 ppm of copper oxide dispersed in carbon paste and then baking it at 350 to 500°C. A method for manufacturing a solar cell with a built-in backflow prevention diode as described in .
(3)透明基板上に硫化カドミウムもしくはそれを含む
n型半導体を塗布焼結した第1の膜と、この第1の膜の
一部を露出させその他の膜上にテルル化カドミウムもし
くはそれを含むp型半導体を塗布焼結した第2の膜とよ
りなる焼結型太陽電池を形成し、前記第2の膜上に第2
の膜とオーミック接触の得られる電極を形成する以前も
しくは以後に、前記露出させた第1の膜上に第1の膜と
ダイオードを形成する導電性の第3の膜を塗布焼成する
ことを特徴とする逆流防止ダイオード内蔵型太陽電池の
製造方法。
(3) A first film made by coating and sintering cadmium sulfide or an n-type semiconductor containing it on a transparent substrate, and exposing a part of this first film and disposing cadmium telluride or an n-type semiconductor containing it on other films. A sintered solar cell is formed with a second film coated with a p-type semiconductor and sintered, and a second film is formed on the second film.
A conductive third film that forms a diode with the first film is applied and fired on the exposed first film before or after forming an electrode that can make ohmic contact with the film. A method for manufacturing a solar cell with a built-in anti-backflow diode.
(4)第1の膜とダイオードを形成する第3の膜が、N
iまたはNiを含む化合物、樹脂および溶剤からなるペ
ーストを塗布焼成したものである特許請求の範囲第1項
記載の逆流防止ダイオード内蔵型太陽電池の製造方法。
(4) The third film forming the diode with the first film is N
2. The method for manufacturing a solar cell with a built-in backflow prevention diode according to claim 1, wherein a paste made of a compound containing i or Ni, a resin, and a solvent is applied and fired.
JP62334409A 1987-12-29 1987-12-29 Manufacture of solar cell with self-contained reverse current blocking diode Pending JPH01175774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62334409A JPH01175774A (en) 1987-12-29 1987-12-29 Manufacture of solar cell with self-contained reverse current blocking diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62334409A JPH01175774A (en) 1987-12-29 1987-12-29 Manufacture of solar cell with self-contained reverse current blocking diode

Publications (1)

Publication Number Publication Date
JPH01175774A true JPH01175774A (en) 1989-07-12

Family

ID=18277049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62334409A Pending JPH01175774A (en) 1987-12-29 1987-12-29 Manufacture of solar cell with self-contained reverse current blocking diode

Country Status (1)

Country Link
JP (1) JPH01175774A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995002899A1 (en) * 1993-07-14 1995-01-26 University Of South Florida Ohmic contact for p-type semiconductor and method for making same
GB2450324A (en) * 2007-06-19 2008-12-24 Jeffrey Boardman Semiconducting transition metal oxide photovoltaic devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995002899A1 (en) * 1993-07-14 1995-01-26 University Of South Florida Ohmic contact for p-type semiconductor and method for making same
GB2450324A (en) * 2007-06-19 2008-12-24 Jeffrey Boardman Semiconducting transition metal oxide photovoltaic devices
GB2450324B (en) * 2007-06-19 2011-12-07 Jeffery Boardman A method of producing daylight reactive transition metal oxide photovoltaic diodes

Similar Documents

Publication Publication Date Title
US8228023B2 (en) Charging systems and methods for thin-film lithium-ion battery
KR0143915B1 (en) Stable ohmic contacts to thin films of p-type tellurium-containing ñœ-ñá semiconductors
US6690041B2 (en) Monolithically integrated diodes in thin-film photovoltaic devices
US8212138B2 (en) Reverse bias protected solar array with integrated bypass battery
US4916035A (en) Photoelectrochemical cells having functions as a solar cell and a secondary cell
US10573465B2 (en) Solid dielectric for rechargeable energy storage capacitor
JPS6457762A (en) Photoelectric converting device
JPH10341032A (en) Production of solar cell module
JPS55127083A (en) Semiconductor element
JPH01175774A (en) Manufacture of solar cell with self-contained reverse current blocking diode
EP0108492A2 (en) Composite photocell
JPS6292380A (en) Solar cell with unified accumulating function
JPS55117287A (en) Photovoltaic element and fabricating the same
JP2713419B2 (en) Photo secondary battery
JPH0730134A (en) Manufacture of solar cell
JP4066733B2 (en) Battery control device
JPS6398971A (en) Solid state thin film secondary battery
JP2506829B2 (en) Photovoltaic secondary battery
JPH07118333B2 (en) Solar battery
US20190355856A1 (en) Tunable earth abundant, non-toxic photovoltaic devices for low light and variable light level power applications
JPH07118332B2 (en) Solar battery
JPS6237552B2 (en)
JPS5918842Y2 (en) Solar cell output adjustment device
JPH01181478A (en) Manufacture of built-in secondary battery type solar cell
JPS5818970A (en) Solar battery