JPH0730134A - Manufacture of solar cell - Google Patents

Manufacture of solar cell

Info

Publication number
JPH0730134A
JPH0730134A JP5154707A JP15470793A JPH0730134A JP H0730134 A JPH0730134 A JP H0730134A JP 5154707 A JP5154707 A JP 5154707A JP 15470793 A JP15470793 A JP 15470793A JP H0730134 A JPH0730134 A JP H0730134A
Authority
JP
Japan
Prior art keywords
film
solar cell
window layer
cdte
cds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5154707A
Other languages
Japanese (ja)
Inventor
Tetsuya Niimoto
哲也 新本
Takashi Arita
孝 有田
Akira Hanabusa
彰 花房
Mikio Murozono
幹夫 室園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5154707A priority Critical patent/JPH0730134A/en
Publication of JPH0730134A publication Critical patent/JPH0730134A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To provide a solar cell whose contact width with a conductive materuial used for series connection to a window layer is reduced by reducing a contact resistance with the conductive material used for series connection to the window layer and whose photoelectric conversion efficiency is high by increasing an effective light-receiving area in the solar cell which has the window layer on a light-transmitting substrate and which has a CdTe film as an optical absorption layer. CONSTITUTION:A CdS film 2 as a window layer and a CdTe film 3 as an optical absorption layer are laminated sequentially, a C film 4 as an acceptor for the CdTe film 3 is formed, and a YAG laser treatment is executed to the pattern separation part of the CdTe film 3 from the C film 4. Them protruding parts outside the prescribed pattern of the CdTe film 3 and the C film 4 and impurities on the surface of the window layer are removed simultaneously. Thereby, the contact width of the CdS film 2 with an AgIn film 5 can be reduced to about 1/3 as compared with that in conventional cases, the effective light-receiving area of a solar cell can be increased, and the solar cell of high efficiency can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池の製造法に関
し、特に光吸収層としてテルル化カドミウム膜(以下C
dTe膜という)を用い、そのオーミック電極としてカ
ーボンペースト(以下Cペーストという)を塗布、乾
燥、焼結して得られるカーボン膜(以下C膜)を用いる
太陽電池の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solar cell, and more particularly to a cadmium telluride film (hereinafter referred to as C
The present invention relates to a method for manufacturing a solar cell using a dTe film) and a carbon film (hereinafter C film) obtained by applying, drying and sintering a carbon paste (hereinafter C paste) as an ohmic electrode.

【0002】[0002]

【従来の技術】近年、炭酸ガスによる地球温暖化、オゾ
ン層の破壊など、地球環境問題がクローズアップされる
中、新エネルギー開発、とりわけ太陽電池の実用化に対
する期待はますます大きくなってきている。しかしなが
ら、太陽電池の早期実用化のためにはまだまだ解決しな
ければならない課題が多々残っている。とくに太陽電池
の変換効率の向上と、低コスト化は避けては通れない重
要な課題である。
2. Description of the Related Art In recent years, as global environmental problems such as global warming due to carbon dioxide and destruction of the ozone layer have been highlighted, expectations for new energy development, especially for practical use of solar cells, have been increasing. . However, many problems still remain to be solved for the early commercialization of solar cells. In particular, improving the conversion efficiency of solar cells and reducing costs are important issues that cannot be avoided.

【0003】そのような中で、CdS/CdTe太陽電
池は、光吸収層として最適な禁制帯幅に近い1.4eV
のCdTeを用いており、また使用する材料も安価なこ
とから、低コスト高効率太陽電池の本命の1つとして大
いに期待されている。
Under such circumstances, the CdS / CdTe solar cell has 1.4eV, which is close to the optimum forbidden band width as a light absorption layer.
CdTe is used, and the material used is also inexpensive, so it is highly expected as one of the favorite of low-cost and high-efficiency solar cells.

【0004】CdS/CdTe太陽電池の製造法には、
種々の方法が知られているが、低コスト化が図れ、大面
積化と量産化が容易な方法として印刷・焼結法がある。
印刷・焼結法は使用する装置も安価であり、すでに同手
法で製造された太陽電池は電卓用として広く使用されて
いる。
The CdS / CdTe solar cell manufacturing method includes:
Various methods are known, but there is a printing / sintering method as a method that can reduce the cost, and can easily increase the area and mass production.
The printing / sintering method uses inexpensive equipment, and solar cells already manufactured by the same method are widely used for calculators.

【0005】そして、特開平2−177377号公報に
支持基板上にCdS焼結膜を形成し、その上にTeCl
4を融剤としてCdTe粉末に添加したCdTeペース
トをスクリーン印刷して乾燥後、不活性ガス雰囲気中で
焼成しCdTe焼結膜を形成し、次にCdTe焼結膜上
にカーボン膜を形成し、CdS焼結膜上およびカーボン
膜上に電極を形成する光起電力素子の製造方法が開示さ
れている。
A CdS sintered film is formed on a supporting substrate according to Japanese Patent Laid-Open No. 2-177377, and TeCl is formed thereon.
CdTe paste added to CdTe powder with 4 as a flux is screen-printed, dried, and fired in an inert gas atmosphere to form a CdTe sintered film, then a carbon film is formed on the CdTe sintered film, and CdS firing is performed. A method of manufacturing a photovoltaic element in which an electrode is formed on a conjunctiva and a carbon film is disclosed.

【0006】以下に従来の印刷・焼結法によるCdS/
CdTe太陽電池の製造法について説明する。
Below, CdS / by the conventional printing / sintering method is used.
A method for manufacturing a CdTe solar cell will be described.

【0007】太陽電池の構成はガラス/CdS膜/Cd
Te膜/カーボン電極膜/AgIn電極膜からなり、各
膜は以下の方法で形成される。
The structure of the solar cell is glass / CdS film / Cd
It consists of a Te film / carbon electrode film / AgIn electrode film, and each film is formed by the following method.

【0008】(1)CdS膜の形成 粒径2〜3μmの高純度(5N)CdS粉末に12重量
%のCdCl2粉と適当量のプロピレングリコールを加
え、混練することによりCdSペーストを作製する。次
にこのペーストをほうけい酸ガラス基板上に印刷する。
これを120℃で1時間乾燥後、アルミナ製焼成ケース
に入れ、小さな孔が多数あいている焼成用蓋をかぶせ
て、窒素雰囲気のベルト炉で690℃で90分間焼成す
る。
(1) Formation of CdS Film 12% by weight of CdCl 2 powder and an appropriate amount of propylene glycol are added to high-purity (5N) CdS powder having a particle diameter of 2 to 3 μm and kneaded to prepare a CdS paste. This paste is then printed on a borosilicate glass substrate.
This is dried at 120 ° C. for 1 hour, placed in an alumina firing case, covered with a firing lid having many small holes, and fired at 690 ° C. for 90 minutes in a nitrogen atmosphere belt furnace.

【0009】(2)CdTe膜の形成 Cd粉末(5N)とTe粉末(6N)を等モル量ずつ加
え、水とともにボールミルで1μm以下の粒径になるま
で粉砕する。乾燥後この微粉末に、適量のCdCl2
加え、プロピレングリコールを粘結剤として混練し、ペ
ーストを作製する。次にペーストをCdS膜上にスクリ
ーン印刷し、120℃で1時間乾燥後、CdS膜と同様
に所定容器を用いて600℃〜700℃で1時間焼成
し、CdTe膜を得る。
(2) Formation of CdTe Film Cd powder (5N) and Te powder (6N) are added in equimolar amounts and pulverized with water in a ball mill to a particle size of 1 μm or less. After drying, an appropriate amount of CdCl 2 is added to this fine powder, and propylene glycol is kneaded as a binder to prepare a paste. Next, the paste is screen-printed on the CdS film, dried at 120 ° C. for 1 hour, and then baked at 600 ° C. to 700 ° C. for 1 hour using a predetermined container in the same manner as the CdS film to obtain a CdTe film.

【0010】(3)カーボン電極膜 CdTeの電極には、CuOを微量に添加したCペース
トを用いる。このCペーストをCdTe膜上に印刷後、
120℃で1時間乾燥し、微量の酸素を含む窒素雰囲気
中で450℃で熱処理を行い形成する。微量のCuOは
CdTeとの接触面をp+−CdTe層とし、良好なオ
ーミック接触を可能にする。
(3) Carbon Electrode Film C paste containing a small amount of CuO is used for the electrode of CdTe. After printing this C paste on the CdTe film,
Drying is performed at 120 ° C. for 1 hour, and heat treatment is performed at 450 ° C. in a nitrogen atmosphere containing a slight amount of oxygen to form. A small amount of CuO makes the contact surface with CdTe a p + -CdTe layer, and enables good ohmic contact.

【0011】(4)AgIn電極膜 CdSの電極には、Inを添加したAgペーストを用い
る。CdS膜上にこのAgペーストを印刷後、200℃
で1時間乾燥し、良好なオーミック接触を可能にする。
(4) AgIn electrode film For the electrodes of CdS, Ag paste containing In is used. After printing this Ag paste on the CdS film,
Allows good ohmic contact after drying for 1 hour.

【0012】[0012]

【発明が解決しようとする課題】しかし、スクリーン印
刷法では、CdTeペーストおよびCペーストの印刷、
乾燥時に、ペースト中の微細な粒子が大きく移動するた
め所定のパターン外にはみ出す。1枚の基板に多数の太
陽電池素子を直列接続する集積型の太陽電池の有効面積
率を大きくしようとする場合、これが太陽電池素子間の
ショートや電流の漏れを引き起こす原因となり、90%
以上の有効発電面積率を達成することは困難である。ま
た太陽電池素子間を直列接続する場合、窓層とカーボン
層を導電材料で電気的に接続するが、CdTe焼成まで
の過程で窓層の表面に析出した不純物が、窓層と導電材
料とのオーミック接触の抵抗を高め、太陽電池の性能を
悪化させる原因となる。
However, in the screen printing method, printing of CdTe paste and C paste,
At the time of drying, fine particles in the paste largely move, so that the paste protrudes outside the predetermined pattern. When trying to increase the effective area ratio of an integrated solar cell in which a large number of solar cell elements are connected in series on one substrate, this causes short circuits between solar cell elements and leakage of current, and 90%
It is difficult to achieve the above effective power generation area ratio. Further, when the solar cell elements are connected in series, the window layer and the carbon layer are electrically connected by a conductive material. However, impurities deposited on the surface of the window layer during the process up to CdTe firing may cause a difference between the window layer and the conductive material. It increases the resistance of ohmic contact and causes deterioration of solar cell performance.

【0013】本発明は、このような従来の課題を解決す
るもので、従来プロセスの特徴を有効に活用し、太陽電
池素子間のショートや電流の漏れを防ぐとともに、窓層
と導電材料とのオーミック接触を良好にすることにより
太陽電池素子間の抵抗を低くし、高い有効発電面積率が
可能な太陽電池の製造法を提供することを目的とする。
The present invention solves such a conventional problem by effectively utilizing the characteristics of the conventional process to prevent short circuit between solar cell elements and leakage of current, and to prevent the shortage of the window layer and the conductive material. It is an object of the present invention to provide a method for manufacturing a solar cell capable of achieving a high effective power generation area ratio by lowering the resistance between solar cell elements by improving the ohmic contact.

【0014】[0014]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の太陽電池の製造法の第1の手段は、透光性
基板上に直列接続を行うために所定のパターンに分離し
て形成した窓層の上に、吸収層として少なくともCdT
e膜を所定のパターンに分離して形成後、アクセプタ材
料およびオーミック電極としてカーボン膜(以下C膜と
いう)を所定のパターンに分離して形成し、C膜と窓層
を導電材料により直列接続を行い太陽電池を製造する方
法であって、C膜形成に際しC粉末と有機溶媒を主体と
するCペーストを塗布後、CdTe膜とC膜が所定のパ
ターン外に、はみ出た部分および窓層の表面に析出した
不純物をレーザー光を用いて除去した後、乾燥、焼成す
る方法である。
In order to achieve the above object, the first means of the method for manufacturing a solar cell according to the present invention separates into a predetermined pattern for making a serial connection on a transparent substrate. At least CdT as an absorption layer on the window layer formed by
After the e film is separated and formed into a predetermined pattern, a carbon film (hereinafter referred to as a C film) as an acceptor material and an ohmic electrode is separated and formed into a predetermined pattern, and the C film and the window layer are connected in series by a conductive material. A method of manufacturing a solar cell, which comprises applying a C powder mainly composed of a C powder and an organic solvent to form a C film, and then exposing the CdTe film and the C film outside a predetermined pattern and the surface of the window layer. This is a method in which the impurities precipitated in the above are removed by using a laser beam, followed by drying and firing.

【0015】また第2の手段は、Cペーストを塗布乾燥
後に前記と同様にレーザー処理した後焼結を行い、所定
のパターン外に、はみ出た部分および窓層の表面に析出
した不純物をレーザー光を用いて除去した後、焼成する
方法である。
The second means is to apply the C paste after coating and drying, perform laser treatment in the same manner as above, and then sinter, so that impurities protruding on the portion outside the predetermined pattern and on the surface of the window layer are irradiated with laser light. Is used to remove and then fire.

【0016】[0016]

【作用】上記の方法によれば、太陽電池窓層のコンタク
ト面をレーザー処理することにより、CdTeペースト
およびCペーストが印刷、乾燥時に所定のパターン外に
はみ出し、太陽電池素子間のショートや電流の漏れを引
き起こすことを防ぎ、高い有効発電面積率を達成するこ
とを可能とし、さらに、窓層上のCd,Te,CdCl
2などを除去し、かつ窓層としてCdSなどの多結晶半
導体を用いる場合、その結晶間の境界を改質し、窓層の
膜質自体を改善できる結果、太陽電池素子のコンタクト
抵抗の主要因である窓層とその電極膜であるAgIn膜
の接触幅を大幅に短縮でき、高効率な太陽電池の製造を
可能とするものである。
According to the above method, the contact surface of the solar cell window layer is subjected to laser treatment, so that the CdTe paste and the C paste protrude outside the predetermined pattern at the time of printing and drying, resulting in short circuit between solar cell elements and generation of current. It is possible to prevent leakage and to achieve a high effective power generation area ratio. Furthermore, Cd, Te, CdCl on the window layer
When 2 is removed and a polycrystalline semiconductor such as CdS is used for the window layer, the boundaries between the crystals can be modified to improve the film quality itself of the window layer. As a result, it is a main factor of the contact resistance of the solar cell element. The contact width between a certain window layer and the AgIn film that is the electrode film thereof can be greatly reduced, and a highly efficient solar cell can be manufactured.

【0017】[0017]

【実施例】以下、本発明の実施例の太陽電池の製造法に
ついて図面を参照して説明する。
The method for manufacturing a solar cell according to an embodiment of the present invention will be described below with reference to the drawings.

【0018】図1に示すように、ガラス基板1、もしく
は透明電極を表面に形成したガラス基板(図示していな
い)上に窓層としてCdS膜2を形成し、前述した従来
の技術と全く同様の方法で順次CdTe膜3、およびC
膜、さらに、AgIn膜を形成する。基板サイズとして
通常35cm×35cm以上のガラスを用いており、C
dS膜2の面抵抗が20〜100Ω/cm2であり、単
セルのCdS膜2の幅を5mm以下にしないと効率が大
幅に低下するために直列接続する必要があり、また通常
太陽電池はバッテリーを充電するシステムが多く、その
ためにも直列接続する必要がある。図2にCdS膜2の
幅と効率に関しての相関を示す。
As shown in FIG. 1, a CdS film 2 is formed as a window layer on a glass substrate 1 or a glass substrate (not shown) having a transparent electrode formed on the surface thereof, which is exactly the same as the conventional technique described above. The CdTe film 3 and the C
A film and further an AgIn film are formed. Normally, glass with a size of 35 cm x 35 cm or more is used as the substrate size, and C
Since the sheet resistance of the dS film 2 is 20 to 100 Ω / cm 2 , and the width of the CdS film 2 of a single cell is not less than 5 mm, the efficiency is significantly reduced, and therefore it is necessary to connect in series. There are many systems that charge the battery, and for that reason it is necessary to connect in series. FIG. 2 shows the correlation between the width of the CdS film 2 and the efficiency.

【0019】CdTe膜3およびC膜4の形成法として
スクリーン印刷法が用いられているが、その印刷、乾燥
時にCdTeペーストおよびCペーストが50〜100
μm程度所定のパターン外に、はみ出し、図3に示した
ようにCdSコンタクト面6上に薄くCdTe膜のはみ
出た部分7およびC膜のはみ出た部分8が形成されて、
C膜のはみ出た部分8がCdSコンタクト面6に接触し
た場合、電流の漏れを引き起こし、CdSコンタクト面
6の両端のCdTe膜のはみ出た部分7またはC膜のは
み出た部分8が接触した場合、素子間のショートとな
る。またCdSコンタクト面6上にCdTe膜3の焼成
時にもCd,Te,CdCl2もしくはCdTeの不純
物の再デポジット層9が生じ、きれいなCdSコンタク
ト面6が得られず、CdS膜2とその電極膜であるAg
In膜5の接触幅10を0.3mm以上設けないと良好
なコンタクトが得られない。
A screen printing method is used as a method of forming the CdTe film 3 and the C film 4, and the CdTe paste and the C paste are 50 to 100 when the printing and drying are performed.
About 3 μm outside the predetermined pattern, and a thin protruding portion 7 of the CdTe film and a protruding portion 8 of the C film are formed on the CdS contact surface 6 as shown in FIG.
When the protruding portion 8 of the C film contacts the CdS contact surface 6, current leakage is caused, and when the protruding portion 7 of the CdTe film or the protruding portion 8 of the C film on both ends of the CdS contact surface 6 contacts, It becomes a short circuit between the elements. Further, even when the CdTe film 3 is baked on the CdS contact surface 6, a redeposited layer 9 of impurities of Cd, Te, CdCl 2 or CdTe is generated, and a clean CdS contact surface 6 cannot be obtained, so that the CdS film 2 and its electrode film are not formed. A certain Ag
Good contact cannot be obtained unless the contact width 10 of the In film 5 is 0.3 mm or more.

【0020】上記の改善のため、図4に示すようにC膜
4を塗布後、または塗布、乾燥後CdSコンタクト面6
にQスイッチ出力モードでYAGレーザー処理を施し、
図3に示すCdSコンタクト面6上の所定のパターン外
にはみ出したCdTe膜のはみ出た部分7とC膜のはみ
出た部分8およびCdTe膜3の焼成時にCdSコンタ
クト面6上に析出した不純物の再デポジット層9を除去
する。つぎに周知の方法でAgIn膜5を形成する。C
dSコンタクト面6にYAGレーザー処理を施すことに
より図5に示すようにCdSコンタクト幅を0.3mm
より0.1mmまで減少させても、従来のように抵抗が
大幅に増加し、FFが大幅に減少することはなく、0.
1mmのコンタクト幅で従来の0.3mmとほぼ同等の
低抵抗なコンタクト抵抗を得ることができる。つまりコ
ンタクト幅の減少により、太陽電池の光を電気に変える
部分が増加し、かつセル接続部分が減少するため、有効
な受光面積を増加させることができ、その結果、光電変
換効率を改善することが可能となる。
In order to improve the above, as shown in FIG. 4, after the C film 4 is applied, or after the application and drying, the CdS contact surface 6 is formed.
YAG laser processing in Q switch output mode,
The protruding portion 7 of the CdTe film protruding outside the predetermined pattern on the CdS contact surface 6 shown in FIG. 3 and the protruding portion 8 of the C film and the impurities deposited on the CdS contact surface 6 during the firing of the CdTe film 3 are regenerated. The deposit layer 9 is removed. Next, the AgIn film 5 is formed by a known method. C
By subjecting the dS contact surface 6 to YAG laser treatment, the CdS contact width becomes 0.3 mm as shown in FIG.
Even if the thickness is reduced to 0.1 mm, the resistance is not significantly increased and the FF is not significantly decreased as in the conventional case.
With a contact width of 1 mm, it is possible to obtain a contact resistance as low as that of the conventional 0.3 mm. In other words, due to the reduction of the contact width, the portion of the solar cell that converts light into electricity increases and the cell connection portion decreases, so that the effective light receiving area can be increased, and as a result, the photoelectric conversion efficiency can be improved. Is possible.

【0021】[0021]

【発明の効果】以上の説明で明らかなように、本発明の
太陽電池の製造法によれば、窓層としてCdS膜、光吸
収層としてCdTe膜を形成し、CdTe膜のアクセプ
タとしてC膜を形成する太陽電池において、C膜を形成
後にCdSコンタクト面にQスイッチ出力モードでYA
Gレーザー処理を施すことにより、CdTeペーストお
よびCペーストが印刷、乾燥時に所定のパターン外には
み出した部分を除去することにより太陽電池素子間のシ
ョートや電流の漏れを引き起こすことを防ぎ、高い有効
発電面積率を達成することを可能とし、さらにCdSコ
ンタクト面上のCd,Te,CdCl2などの不純物を
除去し、かつ窓層としてCdSなどの多結晶半導体を用
いる場合、その結晶間の境界を改質し、窓層の膜質自体
を改善できる結果、太陽電池素子のコンタクト抵抗の主
要因である窓層とその電極膜であるAgIn膜の接触幅
を大幅に短縮でき、高効率な太陽電池作製を可能とする
ものである。
As is apparent from the above description, according to the method for manufacturing a solar cell of the present invention, a CdS film is formed as a window layer, a CdTe film is formed as a light absorption layer, and a C film is formed as an acceptor of the CdTe film. In the solar cell to be formed, after forming the C film, YA is applied to the CdS contact surface in the Q switch output mode.
By applying the G laser treatment, the CdTe paste and the C paste are prevented from causing a short circuit between solar cell elements and a leakage of current by removing a portion protruding out of a predetermined pattern at the time of printing and drying. When the area ratio can be achieved, impurities such as Cd, Te and CdCl 2 on the CdS contact surface are removed and a polycrystalline semiconductor such as CdS is used as the window layer, the boundary between the crystals is modified. As a result, the window layer film quality itself can be improved, and as a result, the contact width between the window layer and the electrode film AgIn film, which is the main factor of the contact resistance of the solar cell element, can be significantly reduced, and a highly efficient solar cell can be manufactured. It is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の太陽電池の製造法における
CdS膜/CdTe膜/C膜/AgIn膜形成後の太陽
電池セルの断面図
FIG. 1 is a cross-sectional view of a solar cell after formation of a CdS film / CdTe film / C film / AgIn film in a method for manufacturing a solar cell according to an embodiment of the present invention.

【図2】本発明の一実施例の太陽電池の製造法における
CdS膜幅に対する太陽電池の光電変換効率の相関を示
すグラフ
FIG. 2 is a graph showing a correlation between the CdS film width and the photoelectric conversion efficiency of the solar cell in the method for manufacturing the solar cell according to the embodiment of the present invention.

【図3】本発明の一実施例の太陽電池の製造法における
CdS膜/CdTe膜/C膜/AgIn膜形成後のYA
Gレーザー処理前の太陽電池セルのCdSコンタクト面
の太陽電池セルの断面図
FIG. 3 is a diagram illustrating a YA after forming a CdS film / CdTe film / C film / AgIn film in a method for manufacturing a solar cell according to an embodiment of the present invention.
Sectional view of the solar cell on the CdS contact surface of the solar cell before G laser processing

【図4】本発明の一実施例の太陽電池の製造法における
太陽電池セルのCdSコンタクト面のレーザー処理後の
太陽電池セルの断面図
FIG. 4 is a cross-sectional view of a solar cell after laser treatment of the CdS contact surface of the solar cell in the method for manufacturing a solar cell according to an embodiment of the present invention.

【図5】本発明の一実施例の太陽電池の製造法における
CdS膜とAgIn膜の接触幅に対する有効面積率およ
び変換効率の相関を示すグラフ
FIG. 5 is a graph showing the correlation between the effective area ratio and the conversion efficiency with respect to the contact width between the CdS film and the AgIn film in the method for manufacturing a solar cell according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 CdS膜(窓層) 3 CdTe膜 4 C膜 5 AgIn膜 6 CdSコンタクト面 7 CdTe膜のはみ出た部分 8 C膜のはみ出た部分 9 再デポジット層 10 CdS膜とAgIn膜の接触幅 1 glass substrate 2 CdS film (window layer) 3 CdTe film 4 C film 5 AgIn film 6 CdS contact surface 7 protruding part of CdTe film 8 protruding part of C film 9 redeposition layer 10 contact width of CdS film and AgIn film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 室園 幹夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mikio Murozono 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 透光性基板上に直列接続を行うために所
定のパターンに分離して形成した窓層の上に、吸収層と
して少なくともテルル化カドミウム膜を所定のパターン
に分離して形成後、アクセプタ材料およびオーミック電
極としてカーボン膜を所定のパターンに分離して形成
し、前記カーボン膜と窓層を導電材料により直列接続を
行う太陽電池の製造法であって、前記カーボン膜の形成
に際しカーボン粉末と有機溶媒を主体とするカーボンペ
ーストを塗布後、前記テルル化カドミウム膜とカーボン
膜が所定のパターン外に、はみ出た部分および前記窓層
の表面に析出した不純物をレーザー光を用いて除去した
後、乾燥、焼成する太陽電池の製造法。
1. After forming at least a cadmium telluride film as an absorption layer in a predetermined pattern on a window layer formed in a predetermined pattern to form a serial connection on a transparent substrate. A method of manufacturing a solar cell in which a carbon film is formed as an acceptor material and an ohmic electrode in a predetermined pattern separately, and the carbon film and the window layer are connected in series by a conductive material. After applying a carbon paste mainly composed of a powder and an organic solvent, the cadmium telluride film and the carbon film were removed from the predetermined pattern by using laser light to remove the protruding portion and impurities deposited on the surface of the window layer. A method for manufacturing a solar cell, which is followed by drying and firing.
【請求項2】 透光性基板上に直列接続を行うために所
定のパターンに分離して形成した窓層の上に、吸収層と
して少なくともテルル化カドミウム膜を所定のパターン
に分離して形成後、アクセプタ材料およびオーミック電
極としてカーボン膜を所定のパターンに分離して形成
し、前記カーボン膜と窓層を導電材料により直列接続を
行う太陽電池の製造法であって、前記カーボン膜の形成
に際しカーボン粉末と有機溶媒を主体とするカーボンペ
ーストを塗布、乾燥後、前記テルル化カドミウム膜とカ
ーボン膜が所定のパターン外に、はみ出た部分および前
記窓層の表面に析出した不純物をレーザー光を用いて除
去した後、焼成する太陽電池の製造法。
2. After forming at least a cadmium telluride film as an absorption layer in a predetermined pattern on a window layer formed in a predetermined pattern to form a serial connection on a transparent substrate. A method of manufacturing a solar cell in which a carbon film is formed as an acceptor material and an ohmic electrode in a predetermined pattern separately, and the carbon film and the window layer are connected in series by a conductive material. A powder and a carbon paste mainly composed of an organic solvent are applied, and after drying, the cadmium telluride film and the carbon film are out of a predetermined pattern, and the impurities deposited on the protruding portion and the surface of the window layer are irradiated with laser light. A method for manufacturing a solar cell, which is fired after being removed.
【請求項3】 窓層が硫化カドミウム膜のみからなる請
求項1または2記載の太陽電池の製造法。
3. The method for producing a solar cell according to claim 1, wherein the window layer is composed of a cadmium sulfide film only.
【請求項4】 窓層が透明導電膜と硫化カドミウム膜の
2層からなる請求項1または2記載の太陽電池の製造
法。
4. The method for producing a solar cell according to claim 1, wherein the window layer comprises two layers of a transparent conductive film and a cadmium sulfide film.
JP5154707A 1993-06-25 1993-06-25 Manufacture of solar cell Pending JPH0730134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5154707A JPH0730134A (en) 1993-06-25 1993-06-25 Manufacture of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5154707A JPH0730134A (en) 1993-06-25 1993-06-25 Manufacture of solar cell

Publications (1)

Publication Number Publication Date
JPH0730134A true JPH0730134A (en) 1995-01-31

Family

ID=15590202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5154707A Pending JPH0730134A (en) 1993-06-25 1993-06-25 Manufacture of solar cell

Country Status (1)

Country Link
JP (1) JPH0730134A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7488788B2 (en) 2003-05-13 2009-02-10 Asahi Glass Company, Limited Electrolyte polymer for polymer electrolyte fuel cells, process for its production and membrane-electrode assembly
US7671493B2 (en) 2007-03-09 2010-03-02 Sony Corporation Vibration assembly, input device using the vibration assembly, and electronic equipment using the input device
US7838167B2 (en) 2004-08-18 2010-11-23 Asahi Glass Company, Limited Electrolyte polymer for fuel cells, process for its production, electrolyte membrane and membrane/electrode assembly
US8876350B2 (en) 2009-05-20 2014-11-04 Sharp Kabushiki Kaisha Light source device and display device provided with same
WO2019003265A1 (en) 2017-06-26 2019-01-03 三井・デュポンフロロケミカル株式会社 Fluororesin molded body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7488788B2 (en) 2003-05-13 2009-02-10 Asahi Glass Company, Limited Electrolyte polymer for polymer electrolyte fuel cells, process for its production and membrane-electrode assembly
US7838167B2 (en) 2004-08-18 2010-11-23 Asahi Glass Company, Limited Electrolyte polymer for fuel cells, process for its production, electrolyte membrane and membrane/electrode assembly
US7671493B2 (en) 2007-03-09 2010-03-02 Sony Corporation Vibration assembly, input device using the vibration assembly, and electronic equipment using the input device
US8876350B2 (en) 2009-05-20 2014-11-04 Sharp Kabushiki Kaisha Light source device and display device provided with same
WO2019003265A1 (en) 2017-06-26 2019-01-03 三井・デュポンフロロケミカル株式会社 Fluororesin molded body

Similar Documents

Publication Publication Date Title
US5181968A (en) Photovoltaic device having an improved collector grid
JP5048901B2 (en) Diode structures especially for thin film photovoltaic cells
US4783421A (en) Method for manufacturing electrical contacts for a thin-film semiconductor device
WO1993023880A1 (en) Monolithic, parallel connected photovoltaic array and method for its manufacture
US20110048531A1 (en) Solar cell and fabricating method thereof
WO2007043219A1 (en) Solar battery and its fabrication method
US5411601A (en) Substrate for solar cell and solar cell employing the substrate
JPH0730134A (en) Manufacture of solar cell
KR101909821B1 (en) Method for fabricating electrode of solar cell
JPH0456172A (en) Method for forming thin cuinse2 film
JPH05343719A (en) Manufacture of solar cell
JPH0685297A (en) Manufacture of solar cell
JPH0338069A (en) Thin film solar cell
JP2532727B2 (en) Solar cell manufacturing method
JPH07147422A (en) Cadmium telluride solar cell
JPH0521826A (en) Solar battery and manufacture thereof
JP2003298091A (en) Solar cell and its fabricating method
EP0962990A2 (en) Method of fabricating a solar cell
JPH06342926A (en) Solar cell
JP2002009307A (en) Method for manufacturing solar battery
JP2692217B2 (en) Method for manufacturing photovoltaic element
JP3473255B2 (en) Manufacturing method of thin film solar cell
JP3069159B2 (en) Solar cell and method of manufacturing the same
JPH05347425A (en) Manufacture of cds/cdte solar cell
JPH05291599A (en) Manufacture of solar cell