JPS5918842Y2 - Solar cell output adjustment device - Google Patents

Solar cell output adjustment device

Info

Publication number
JPS5918842Y2
JPS5918842Y2 JP1723177U JP1723177U JPS5918842Y2 JP S5918842 Y2 JPS5918842 Y2 JP S5918842Y2 JP 1723177 U JP1723177 U JP 1723177U JP 1723177 U JP1723177 U JP 1723177U JP S5918842 Y2 JPS5918842 Y2 JP S5918842Y2
Authority
JP
Japan
Prior art keywords
solar cell
light
illuminance
cell
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1723177U
Other languages
Japanese (ja)
Other versions
JPS53113078U (en
Inventor
昇司 小池
Original Assignee
リコ−時計株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リコ−時計株式会社 filed Critical リコ−時計株式会社
Priority to JP1723177U priority Critical patent/JPS5918842Y2/en
Publication of JPS53113078U publication Critical patent/JPS53113078U/ja
Application granted granted Critical
Publication of JPS5918842Y2 publication Critical patent/JPS5918842Y2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【考案の詳細な説明】 本考案は太陽電池およびこれに充電される二次電池を有
する電源装置において、太陽電池の出力を一定に制御す
る太陽電池の出力調節装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar cell output adjustment device for controlling the output of the solar cell to a constant level in a power supply device having a solar cell and a secondary battery charged therein.

従来から電子腕時計などの電子装置に適用される電源装
置には、二次電池と太陽電池とを組合せたものが用いら
れ、そして太陽電池に光を照射することにより太陽電池
で変換された電気エネルギを二次電池の充電あるいは電
子装置などの負荷の駆動に供するようになっているが、
上記太陽電池に直射日光のような強い照度の光線が照射
された場合、その変換電気エネルギは二次電池の電圧を
大きくオーバーし、この状態の太陽電池からの電気エネ
ルギが長時間にわたり二次電池に供給されると、二次電
池は過充電状態となってしまい、この結果二次電池の性
能が損われるほか、過充電に伴う電池内部でのガス発生
によって二次電池が破裂されるなどのおそれがあった。
Conventionally, power supplies used in electronic devices such as electronic watches have used a combination of secondary batteries and solar cells, and by irradiating the solar cells with light, the electrical energy converted by the solar cells is generated. is now used to charge secondary batteries or drive loads such as electronic devices.
When the above solar cell is irradiated with strong light such as direct sunlight, the converted electrical energy greatly exceeds the voltage of the secondary battery, and the electrical energy from the solar cell in this state is transferred to the secondary battery for a long time. If the secondary battery is supplied to There was a risk.

そこで従来においては、太陽電池の出力を充電電源とす
る二次電池に定量電圧ダイオードを並列に接続し、太陽
電池の出力電圧が定電圧ダイオードと抵抗とで設定され
た動作電圧を起えたとき、定電圧ダイオードをブレーク
ダウンさせ、充電電流をバイパスすることで二次電池に
過充電電流が流れるのを防止する方式のものが提案され
ている。
Therefore, conventionally, a constant voltage diode is connected in parallel to a secondary battery that uses the output of the solar cell as a charging power source, and when the output voltage of the solar cell reaches the operating voltage set by the constant voltage diode and the resistor, A system has been proposed that prevents overcharging current from flowing to the secondary battery by breaking down a constant voltage diode and bypassing the charging current.

しかし、上記のような従来の回路方式では、二次電池へ
の過充電電流を防止するバイパス回路の動作電圧を設定
するのに、定電圧ダイオードと直列接続した抵抗が必要
になるため、回路部品数が増すとともに、その実装スペ
ースを増大させることになり、電子腕時計のようにスペ
ースに余裕のない機器への実装には、そのレイアウト等
に問題が生じ、時計等の小形、薄形化を阻害することに
なる。
However, in the conventional circuit system described above, a resistor connected in series with a voltage regulator diode is required to set the operating voltage of the bypass circuit that prevents overcharging current to the secondary battery. As the number of devices increases, the space required for their implementation also increases, which creates problems with the layout when mounting them on devices with limited space, such as electronic wristwatches, which hinders the miniaturization and thinning of watches, etc. I will do it.

また、定電圧ダイオードのブレークダウン時には、相当
のバイパス電流が流れるため、特に腕時計のように気密
で、かつ実装密度の高く、しかも熱影響を受は易い回路
素子がある場合には、定電圧ダイオードから発生する熱
を考慮しなければならず、これに伴い実装される定電圧
ダイオードの容量及び大きさく形状)が限定されるとと
もに、大きい電流をバイパスさせる回路には発熱の関係
から適用できない場合があった。
In addition, when a voltage regulator diode breaks down, a considerable amount of bypass current flows, so if there are circuit elements that are airtight, densely packed, and easily affected by heat, such as a wristwatch, the voltage regulator diode Therefore, the capacity, size, and shape of the voltage regulating diode to be mounted are limited, and it may not be applicable to circuits that bypass large currents due to heat generation. there were.

本考案は上記のかうな点に鑑みなされたもので、二次電
池等に電気エネルギを供給する太陽電池の出力側に光の
照度により導電率の変化するレギュレータ回路を接続し
、このレギュレータ回路に対する入射光量を絞り孔、フ
ィルタ等の光量設定手段により調整することによって太
陽電池からの電気エネルギを二次電池の充電あるいは負
荷の駆動に適した値に制御できるようにするとともに、
光量設定手段(光量調節手段)の腕時計等への実装をス
ペース的にもコスト的にも有利に実現できるようにした
太陽電池の出力調節装置を提供するにある。
The present invention was developed in view of the above points, and consists of connecting a regulator circuit whose conductivity changes depending on the illuminance of light to the output side of a solar cell that supplies electrical energy to a secondary battery, etc. By adjusting the amount of light using a light amount setting means such as an aperture hole or a filter, the electrical energy from the solar cell can be controlled to a value suitable for charging a secondary battery or driving a load, and
It is an object of the present invention to provide an output adjustment device for a solar cell, which allows a light amount setting means (light amount adjustment means) to be implemented in a wristwatch or the like in an advantageous manner in terms of space and cost.

以下、本考案の実施例を図面について説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図は本考案における電源装置の原理を示すブロック
図であって、太陽電池1の出力側には光の照度に応じて
導電率の変化するレギュレータ回路2が接続され、そし
てふのレギュレータ回路2の受光面には太陽電池1と同
一の光が照射されるようになっていると共に、太陽電池
1の発生電力が光の照度により変化したとき、この変化
に合わせてレギュレータ回路2の導電率を変化させ、同
時に太陽電池1からの出力の一部をレギュレータ回路2
に分流させて、太陽電池1に逆流防止回路3を介し接続
した二次電池4およびこの二次電池4の出力でも駆動さ
れる電子回路等の負荷5への電力がほぼ一定となるよう
に制御される。
FIG. 1 is a block diagram showing the principle of the power supply device according to the present invention, in which a regulator circuit 2 whose conductivity changes depending on the illuminance of light is connected to the output side of a solar cell 1, and a regulator circuit 2 whose conductivity changes according to the illuminance of light. The light-receiving surface of the regulator circuit 2 is designed to receive the same light as the solar cell 1, and when the power generated by the solar cell 1 changes depending on the illuminance of the light, the conductivity of the regulator circuit 2 changes according to this change. At the same time, a part of the output from the solar cell 1 is sent to the regulator circuit 2.
control so that the power to the secondary battery 4 connected to the solar cell 1 via the backflow prevention circuit 3 and the load 5 such as an electronic circuit driven by the output of the secondary battery 4 is almost constant. be done.

第7図は上記第1図に示すブロック図の具体的回路構成
例を示すもので、太陽電池1は二次電池5および負荷7
に要求される所定の電圧と電流容量が得られるように複
数個直並列に接続されており、レギュレータ回路2には
CdS光導電セルが使用され、この光導電セル2は電流
制限抵抗6を介して太陽電池1に並列に接続されている
FIG. 7 shows a specific example of the circuit configuration of the block diagram shown in FIG.
A plurality of CdS photoconductive cells are used in the regulator circuit 2, and the photoconductive cells 2 are connected in series and parallel to each other in order to obtain the predetermined voltage and current capacity required for the regulator circuit 2. and are connected in parallel to the solar cell 1.

また、逆流防止回路3にはダイオードが使用され、この
ダイオード3は、上記光導電セル2と抵抗6と接続点と
二次電池5の正極間に接続され、二次電池5の負極は1
陽電池1の負極に接続されている。
Further, a diode is used in the backflow prevention circuit 3, and this diode 3 is connected between the photoconductive cell 2, the connection point of the resistor 6, and the positive electrode of the secondary battery 5.
It is connected to the negative electrode of the positive battery 1.

また、上記光導電セル2には光透過窓からなる光量節手
段7が対向設置されている。
Further, a light amount controlling means 7 consisting of a light transmitting window is installed opposite to the photoconductive cell 2.

上記構成の回路において、太陽電池1に光を照射し、そ
の照度りを2倍、3倍、・・・・・・と増したときに太
陽電池の電圧−電流特性は第2図に示すようになってい
る。
In the circuit with the above configuration, when the solar cell 1 is irradiated with light and the illuminance is increased by 2 times, 3 times, etc., the voltage-current characteristics of the solar cell are as shown in Figure 2. It has become.

また、太陽電池1が十分に活性されているときは、光の
照度りに対する太陽電池1の発生電流I(L)は照度り
に比例するので、■(L)=KLとなる(K:比例定数
)。
In addition, when the solar cell 1 is sufficiently activated, the current I(L) generated by the solar cell 1 with respect to the illuminance of light is proportional to the illuminance, so ■(L) = KL (K: proportional constant).

太陽電池1に並例に負荷、即ち照度りに応じ抵抗値が変
化する光導電セル(照度りの増加に応じて抵抗値が減少
する特性を有する)2を接続したとき、光導電セル2の
両端に現われる電位差■(L)は、■(Lノーi(L〕
・R(L) となる(R(L〕 :照度に依存する光
導電セル2の抵抗値、j (L) :照度に依存して光
導素子2に流れる電流)。
When the solar cell 1 is connected to a photoconductive cell 2 whose resistance value changes depending on the load, that is, the illuminance (having the characteristic that the resistance value decreases as the illuminance increases), the photoconductive cell 2 The potential difference ■ (L) appearing at both ends is ■ (L no i (L)
- R(L) (R(L): resistance value of the photoconductive cell 2 depending on illuminance; j (L): current flowing through the photoconductive element 2 depending on illuminance).

今、太陽電池1に照射される光の照度りを第3図のり、
2L、 3L、・・・・・・のように変化させた
とき、光導電セル2の両端の電位差■(L)を第3図の
破線10に示す如く一定値Eに保つためには、照度りに
依存する光導電セル2の抵抗値R(L)は、R(Lノー
E/i (L〕を満足させる必要がある。
Now, the illuminance of the light irradiating the solar cell 1 is shown in Figure 3.
2L, 3L, etc., in order to keep the potential difference (L) between both ends of the photoconductive cell 2 at a constant value E as shown by the broken line 10 in FIG. The resistance value R(L) of the photoconductive cell 2, which depends on the resistance, must satisfy R(L no E/i (L)).

換言すれば、照度りが増大するにしたがい光導電セル2
の抵抗値R(L)を■(L)が一定となるように減少さ
せれば、光導電セル2の両端の電位差を照度りの大小に
関係なく一定に保つことができる。
In other words, as the illuminance increases, the photoconductive cell 2
By decreasing the resistance value R(L) so that (L) remains constant, the potential difference between both ends of the photoconductive cell 2 can be kept constant regardless of the intensity of illumination.

即ち、光導電セル2の導電率が光の強度に応じて変化す
るのを利用して、太陽電池1が発生する電力のうち、電
子装置(負荷)5を駆動するに要する電気エネルギ及び
二次電池を適度に充電するに要する電気エネルギを除く
余分な電気エネルギを光導電セル2において消費するこ
とになるがらである。
That is, by utilizing the fact that the conductivity of the photoconductive cell 2 changes depending on the intensity of light, out of the power generated by the solar cell 1, the electrical energy and secondary energy required to drive the electronic device (load) 5 are reduced. However, extra electrical energy is consumed in the photoconductive cell 2 other than the electrical energy required to adequately charge the battery.

また、■(L)を二次電池4の電圧を等しく一定に保つ
とき、二次電池への充電電流はゼロであり、そして照度
りが変化したとき、V(L)を二次電池の電圧に等しく
保つための抵抗値R(L)の照度りに対する変化は第3
図の曲線11のようになる。
Also, when (L) is kept equal and constant the voltage of the secondary battery 4, the charging current to the secondary battery is zero, and when the illuminance changes, V(L) is the voltage of the secondary battery. The change in resistance value R(L) with respect to illuminance to maintain it equal to
It becomes like curve 11 in the figure.

ここで、照度りに依存する抵抗値R(L)が特性曲線1
1より僅かに大きい直線12で示す照度−抵抗特性にし
た場合1、即ち光導電セル2の照度に対する導電率を止
かに低くした場合(第2図に示す電圧Eより高い点に取
ったときと同等)には、光導電セル(レギュレータ回路
)2の両端における電位差は二次電池4の端子電圧より
大きくなり、そしてこれに伴う二次電池4への充電電流
も光導電セル両端の電圧が一定であるため、照度の大小
に関係なく小さい一定値に保たれることになる。
Here, the resistance value R(L) depending on the illuminance is the characteristic curve 1
When the illuminance-resistance characteristic shown by the straight line 12 is slightly larger than 1, 1, that is, when the conductivity of the photoconductive cell 2 with respect to the illuminance is made very low (when taken at a point higher than the voltage E shown in Fig. 2). ), the potential difference across the photoconductive cell (regulator circuit) 2 becomes larger than the terminal voltage of the secondary battery 4, and the accompanying charging current to the secondary battery 4 also increases as the voltage across the photoconductive cell increases. Since it is constant, it is kept at a small constant value regardless of the magnitude of illuminance.

しかして、本考案におけるレギュレータ回路2にはCd
S光導電セルが用いられるが、このCdS光導電セルを
太陽電池1と同一の照度雰囲気中においた場合、その照
度−抵抗特性は第3図の直線13に示す如く照度りに略
反比例したものとなり、しかもCdS光導電セルの抵抗
値の製造誤差は±50%となるため、このCdS光導電
セルを太陽電池1と同−の照度雰囲気中に存在させたの
みでは、その照度−抵抗特性13を本考案装置に要求さ
れる特性12には一致させ得ない。
However, in the regulator circuit 2 of the present invention, Cd
A CdS photoconductive cell is used, but when this CdS photoconductive cell is placed in the same illuminance atmosphere as the solar cell 1, its illuminance-resistance characteristic is approximately inversely proportional to the illuminance, as shown by the straight line 13 in Figure 3. Moreover, since the manufacturing error in the resistance value of the CdS photoconductive cell is ±50%, if this CdS photoconductive cell is simply placed in an atmosphere with the same illuminance as the solar cell 1, its illuminance-resistance characteristic 13 cannot match the characteristic 12 required for the device of the present invention.

したがって、本考案係おいてCdS光導電セル2に照度
される光量を減じることにより、太陽電池1に入射する
光の照度とCdS光導電セル2に入射する光の照度間に
相対的な差をもたせ、そして、CdS光導電セル2の照
度−抵抗特性13を特性12に一致させた。
Therefore, in accordance with the present invention, by reducing the amount of light illuminated on the CdS photoconductive cell 2, the relative difference between the illuminance of the light incident on the solar cell 1 and the illuminance of the light incident on the CdS photoconductive cell 2 is reduced. Then, the illuminance-resistance characteristic 13 of the CdS photoconductive cell 2 was made to match the characteristic 12.

第4図、第5図は上記太陽電池1、CdS光導電セル2
および二次電池4からなる電源装置を内蔵した針表示式
電子時計において、太陽電池1およびCdS光導電セル
2に相対的な照度差を生じさせる本考案光量調節手段の
一例を示すもので、ケース20内に装着したムーブメン
ト21には水晶振動子、CMO5ICアッセンブリおよ
び針(長、短、秒針)22の駆動機構、二次電池等が組
込まれており、さらに上記ムーブメント21の針22側
には文字板23が取付けられていると共に、この文字板
23の直下に位置するムーブメント21に太陽電池1お
よびCdS光導電セル2を取付け、かつこの太陽電池1
およびCdS光導電セル2の各受光面へ対向する文字板
23には各別の透孔24.25を穿設する。
Figures 4 and 5 show the solar cell 1 and the CdS photoconductive cell 2.
This shows an example of the light amount adjusting means of the present invention for creating a relative illuminance difference between the solar cell 1 and the CdS photoconductive cell 2 in a hand display type electronic watch having a built-in power supply device consisting of a secondary battery 4 and a case. The movement 21 installed inside the movement 20 has a crystal oscillator, a CMO5IC assembly, a drive mechanism for the hands (long, short, and second hands) 22, a secondary battery, etc., and the movement 21 has characters on the side of the hands 22. A plate 23 is attached, and a solar cell 1 and a CdS photoconductive cell 2 are attached to the movement 21 located directly below this dial plate 23, and this solar cell 1
Separate through holes 24 and 25 are formed in the dial 23 facing each light receiving surface of the CdS photoconductive cell 2.

そして、CdS光導電セル2の受光面に対する光量が太
陽電池の受光面に対する光量よりも小となるように透孔
25の開口面積を制限し、これにより太陽電池1とCd
S光導電セル2間に照度差をもたせてCdS光導電セル
2の照度−抵抗特性が第3図の特性12に一致するよう
に光量調節するものである。
Then, the opening area of the through hole 25 is limited so that the amount of light to the light-receiving surface of the CdS photoconductive cell 2 is smaller than the amount of light to the light-receiving surface of the solar cell.
The amount of light is adjusted by providing a difference in illumination between the S photoconductive cells 2 so that the illuminance-resistance characteristic of the CdS photoconductive cell 2 matches the characteristic 12 in FIG. 3.

なお、27は文字板23および針22を覆うようケース
20に取付けたカバーガラスである。
Note that 27 is a cover glass attached to the case 20 so as to cover the dial 23 and the hands 22.

よって、カバーガラス27を透過した光が文字板23に
照射されれば、この文字板23の透孔24を通過した光
は太陽電池1を照射して、その照度に応じた出力を発生
すると同時に、透孔25で光量調節されたCdS光導電
セル2は太陽電池1からの出力を、二次電池4の充電お
よび負荷5の駆動に適した低率の一定値に自動制御する
ことになる。
Therefore, when the light that has passed through the cover glass 27 is irradiated onto the dial 23, the light that has passed through the through hole 24 of the dial 23 will irradiate the solar cell 1 and generate an output according to the illuminance. The CdS photoconductive cell 2 whose light amount is adjusted by the through hole 25 automatically controls the output from the solar cell 1 to a constant value at a low rate suitable for charging the secondary battery 4 and driving the load 5.

第6図はディジタル表示式電子時計において、太陽電池
1とCdS光導電セル2間に相対的照度差を生じさせる
本考案光量調節手段の他の実施例を示すもので、太陽電
池1、CdS光導電セル2および液晶表示機構30をカ
バーガラス31側に配設したモジュール(CMO8IC
アッセンブリ、水晶振動子、ムーブメント等を含む)3
2がケース33内に装着され、さら係カバーガラス31
の内面に塗膜層34を形成することによって上記太陽電
池1およびCdS光導電セル2の受光面と対向する部分
に光透過窓35.36を、また上記液晶表示機構30の
表示面に対向する部分には表示窓37をそれぞれ設ける
FIG. 6 shows another embodiment of the light amount adjusting means of the present invention for creating a relative illuminance difference between the solar cell 1 and the CdS photoconductive cell 2 in a digital display type electronic watch. A module (CMO8IC) in which a conductive cell 2 and a liquid crystal display mechanism 30 are arranged on the cover glass 31 side
(including assembly, crystal oscillator, movement, etc.)3
2 is installed in the case 33, and the cover glass 31
By forming a coating layer 34 on the inner surface of the solar cell 1 and the CdS photoconductive cell 2, a light transmitting window 35, 36 is formed in a portion facing the light receiving surface of the solar cell 1 and the CdS photoconductive cell 2, and a light transmitting window 35, 36 is formed on the inner surface of the CdS photoconductive cell 2. A display window 37 is provided in each portion.

そして、CdS光導電セル2の受光面に対する光量が、
太陽電池のそれよりも小となるように光透過窓36の開
口面積を制限してCdS光導電セル2の照度−抵抗特性
を第3図の特性12に一致するように光量調節する。
Then, the amount of light to the light receiving surface of the CdS photoconductive cell 2 is
The light amount is adjusted so that the illuminance-resistance characteristic of the CdS photoconductive cell 2 matches the characteristic 12 in FIG. 3 by limiting the opening area of the light transmission window 36 so that it is smaller than that of the solar cell.

この実施例においても太陽電池1が2次電池4等に供給
する電気量を入射光の照度に無関係に低率の一定値に制
御できる。
Also in this embodiment, the amount of electricity supplied by the solar cell 1 to the secondary battery 4 etc. can be controlled to a constant value at a low rate, regardless of the illuminance of the incident light.

なお、上記各実施例では、CdS光導電セル2への光量
設定を透孔25あるいは光透過窓36の開口面積により
行うようにしているが、本考案はこれらに限定されるも
のではなく、例えばCdS光導電セル2の受光面に光の
透過を制限するフィルタを取付けることによっても上記
実施例と同様に行うことができる。
Note that in each of the above embodiments, the amount of light to the CdS photoconductive cell 2 is set by the opening area of the through hole 25 or the light transmission window 36, but the present invention is not limited to these; for example, The same method as in the above embodiment can also be achieved by attaching a filter to the light-receiving surface of the CdS photoconductive cell 2 to limit transmission of light.

また、本考案は電子時計に限らず、太陽電池と二次電池
を電源とする電子卓上計算機などにも適用し得ることは
勿論である。
Furthermore, the present invention is of course applicable not only to electronic watches but also to electronic desktop calculators that use solar cells and secondary batteries as power sources.

以上のように本考案装置によれば、太陽電池の出力側に
接続されたレギュレータ回路への入射光量を絞り透孔、
フィルタ等の光量設定手段により調節することによって
レギュレータ回路の照度抵抗特性を変化し得るようにし
たので、太陽電池から二次電池の充電等に供給される電
気エネルギを最適値に制御でき、このため、二次電池が
過充電されたり、あるいは負荷が過電圧状態になるなど
のおそれがなくなり、かつ、二次電池の過充電に伴う性
能低下、破損を防止できるほか、二次電池の寿命が向上
し、電池交換不要の電子時計等の実現に寄与できる。
As described above, according to the device of the present invention, the amount of light incident on the regulator circuit connected to the output side of the solar cell is reduced.
Since the illuminance resistance characteristics of the regulator circuit can be changed by adjusting it with a light amount setting means such as a filter, the electrical energy supplied from the solar cell for charging the secondary battery etc. can be controlled to the optimum value. , there is no risk of the secondary battery being overcharged or the load becoming overvoltage, and it is possible to prevent performance degradation and damage due to overcharging of the secondary battery, and to improve the life of the secondary battery. This can contribute to the realization of electronic watches that do not require battery replacement.

また、この考案においては、太陽電池の出力を二次電池
の充電及び負荷の駆動に適した値に制御するためのレギ
ュレータ回路への入射光量の調節手段に、レギュレータ
回路の光導電セルに対向して設けた透孔を利用するため
、光量調節手段の腕時計等への実装が容易となり、しか
も従来の定電圧ダイオードを用いた方式に比してスペー
ス的にもコスト的にも有利となるほか、実装に際しての
熱的配慮も何んら考える必要がなく、腕時計に適用した
場合、その小形、薄形化が容易になる効果がある。
In addition, in this invention, the means for adjusting the amount of light incident on the regulator circuit for controlling the output of the solar cell to a value suitable for charging the secondary battery and driving the load is provided with a device facing the photoconductive cell of the regulator circuit. By using the through-hole provided in the device, it is easy to install the light amount adjustment means in wristwatches, etc., and it is more advantageous in terms of space and cost than the conventional method using constant voltage diodes. There is no need to consider any thermal considerations during implementation, and when applied to a wristwatch, it has the effect of easily making it smaller and thinner.

特に光導電セルに対する光量調整のための光透過窓は文
字板あるいは塗膜層に形成した場合には、その光量調節
手段の時計への実施が容易で、時計への設置スペースも
ほとんど不要となる。
In particular, when a light transmission window for adjusting the amount of light to the photoconductive cell is formed on the dial or coating layer, it is easy to implement the light amount adjustment means in the watch, and almost no space is required for installation in the watch. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案における電源装置の原理を示すブロック
図、第2図は太陽電池の電圧−電流特性図、第3図は同
じくこの考案における光導電素子の照度−抵抗特性性図
、第4図はこの考案装置を適用した針表示式電子時計の
平面図、第5図はその縦断面図、第6図はこの考案装置
の他の適用例を示すディジタル表示式電子時計の一部の
断面図、第7図は第2図のブロック図の具体的回路構成
図である。 1・・・太陽電池、2・・・レギュレータ回路(CdS
光導電セル)、4・・・二次電池、5・・・負荷、23
・・・文字板、25・・・透孔、27・・・カバーガラ
ス、36・・・光透過窓。
Fig. 1 is a block diagram showing the principle of the power supply device in this invention, Fig. 2 is a voltage-current characteristic diagram of a solar cell, Fig. 3 is an illuminance-resistance characteristic diagram of a photoconductive element in this invention, and Fig. 4 The figure is a plan view of a hand display type electronic timepiece to which this invented device is applied, FIG. 7 are specific circuit configuration diagrams of the block diagram in FIG. 2. 1...Solar cell, 2...Regulator circuit (CdS
photoconductive cell), 4... secondary battery, 5... load, 23
...Dial board, 25...Through hole, 27...Cover glass, 36...Light transmission window.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 少なくとも二次電池に電気エネルギを供給すた太陽電池
と、この太陽電池に並列に接続され、かつ光の照度に応
じて導電率を変化させることで上記太陽電池の出力を一
定に制御する光導電セルからレギュレータ回路と、この
レギュレータ回路の受光部に対向して形成された光量制
限用の光透過窓とを備え、この光透過窓によれレギュレ
ータ回路を構成する光導電セルの照度−抵抗特性を二次
電池の充電等に適したものにするようにしたことを特徴
とする太陽電池の出力調節装置。
A solar cell that supplies electrical energy to at least a secondary battery, and a photoconductive conductor that is connected in parallel to the solar cell and controls the output of the solar cell to a constant level by changing the conductivity according to the illuminance of the light. The cell is equipped with a regulator circuit and a light transmitting window for limiting the amount of light formed opposite to the light receiving part of the regulator circuit. 1. A solar cell output adjustment device, characterized in that it is suitable for charging secondary batteries, etc.
JP1723177U 1977-02-17 1977-02-17 Solar cell output adjustment device Expired JPS5918842Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1723177U JPS5918842Y2 (en) 1977-02-17 1977-02-17 Solar cell output adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1723177U JPS5918842Y2 (en) 1977-02-17 1977-02-17 Solar cell output adjustment device

Publications (2)

Publication Number Publication Date
JPS53113078U JPS53113078U (en) 1978-09-08
JPS5918842Y2 true JPS5918842Y2 (en) 1984-05-31

Family

ID=28842228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1723177U Expired JPS5918842Y2 (en) 1977-02-17 1977-02-17 Solar cell output adjustment device

Country Status (1)

Country Link
JP (1) JPS5918842Y2 (en)

Also Published As

Publication number Publication date
JPS53113078U (en) 1978-09-08

Similar Documents

Publication Publication Date Title
US4122396A (en) Stable solar power source for portable electrical devices
US3979656A (en) Battery charging circuit
US4243928A (en) Voltage regulator for variant light intensity photovoltaic recharging of secondary batteries
US4264962A (en) Small-sized electronic calculator
US6586906B1 (en) Solar rechargeable battery
US3896368A (en) Voltage regulating device
US3921049A (en) Charging circuit for battery-operated devices powered by solar cells
EP0749168B1 (en) Solar cell system
US4667142A (en) Three-way power source circuit
US4165477A (en) Instrument intended to be carried at the wrist
US3509712A (en) Photoelectric conversion system in a horological device
US4164698A (en) Battery charging circuit
JPS5918842Y2 (en) Solar cell output adjustment device
GB1339637A (en) Watches and other time-pieces
JP3043213B2 (en) Equipment applied to solar cells
JPH0715890A (en) Solar battery power supply device
JPH1039056A (en) Electronic apparatus with solar cell and control method therefor
JPS5922459B2 (en) power supply
JP2697472B2 (en) Solar power unit
JPS5922458B2 (en) power supply
JPH08123562A (en) Solar battery applying equipment
JPS61233818A (en) Solar battery type electronic calculator
JPS5918841Y2 (en) Power supply device with solar battery
JPS61294769A (en) Stand-alone power source unit
JPS6032832B2 (en) electronic clock