JPS5922459B2 - power supply - Google Patents

power supply

Info

Publication number
JPS5922459B2
JPS5922459B2 JP2869077A JP2869077A JPS5922459B2 JP S5922459 B2 JPS5922459 B2 JP S5922459B2 JP 2869077 A JP2869077 A JP 2869077A JP 2869077 A JP2869077 A JP 2869077A JP S5922459 B2 JPS5922459 B2 JP S5922459B2
Authority
JP
Japan
Prior art keywords
solar cell
circuit
light
photoconductive
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2869077A
Other languages
Japanese (ja)
Other versions
JPS53114040A (en
Inventor
昇司 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2869077A priority Critical patent/JPS5922459B2/en
Publication of JPS53114040A publication Critical patent/JPS53114040A/en
Publication of JPS5922459B2 publication Critical patent/JPS5922459B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、太陽電池およびこの太陽電池により充電さ
れる二次電池を備えた電源装置、特に光エネルギが低照
度であつても太陽電池で変換される電気エネルギを二次
電池および電子装置等の駆動に適合するよう制御する電
源装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power supply device equipped with a solar cell and a secondary battery charged by the solar cell, and in particular to a power supply device that converts electrical energy into solar cells even when light energy is at low illuminance. The present invention relates to a power supply device that is controlled to be suitable for driving a secondary battery, an electronic device, etc.

卓上電子計算機、電子腕時計などの電子装置の駆動に適
用される電源装置の一つに、太陽電池と二次電池とを組
合わせたものがある。
One type of power supply device used to drive electronic devices such as desktop computers and electronic wristwatches is one that combines a solar cell and a secondary battery.

かかる電源装置の太陽電池は、充分に明るい場所にセッ
トされ、そして充分な光エネルギを受けているときは何
等の問題も生じないが、これに対し太陽電池が室内光の
ように比較的低照度の雰囲気中におかれている場合には
、太陽電池で変換される電気エネルギは小さく、このた
め、出力された電気エネルギの大部分は太陽電池の出力
を制御する制御回路で消費されてしまい、二次電池の充
電および電子装置の駆動に必要な電気エネルギは確保で
きな〈なつてしまう欠点があつた。そこで従来において
は、太陽電池の出力を充電電源とする二次電池に定電圧
ダイオードを並列に接続し、太陽電池の出力電圧が定電
圧ダイオードと抵抗とで設定された動作電圧を超えたと
き、定電圧ダイオードをブレークダウンさせ、充電電流
をバイパスすることで二次電池に過充電電流が流れるの
を防止する方式のものが提案されている。
The solar cells in such power supplies do not cause any problems when they are set in a sufficiently bright place and are receiving sufficient light energy; When the solar cell is placed in an atmosphere of The drawback was that the electrical energy necessary to charge secondary batteries and drive electronic devices could not be secured. Therefore, conventionally, a voltage regulator diode is connected in parallel to a secondary battery that uses the output of a solar cell as a charging power source, and when the output voltage of the solar cell exceeds the operating voltage set by the voltage regulator diode and resistor, A system has been proposed that prevents overcharging current from flowing to the secondary battery by breaking down a constant voltage diode and bypassing the charging current.

しかし、上記のような従来の回路方式では、二次電池へ
の過充電電流を防止するバイパス回路の動作電圧を設定
するのに、定電圧ダイオードと直列接続した抵抗が必要
になるため、回路部品数が増すとともに、その実装スペ
ースを増大させることになり、電子腕時計のようにスペ
ースに余裕のない機器への実装には、そのレイアウト等
に問題が生じ、時計等の小形、薄形化を阻害することに
なる。また、定電圧ダイオードのブレークダウン時には
、相当のバイパス電流が流れるため、特に腕時計のよう
に気密で、かつ実装密度の高く、しかも熱影響を受け易
い回路素子がある場合には、定電圧ダイオードから発生
する熱を考慮しなければならず、これに伴い実装される
定電圧ダイオードの容量及び大きさ(形状)が限定され
るとともに、大きい電流をバイパスさせる回路には発熱
の関係から適用できない場合がある。
However, in the conventional circuit system described above, a resistor connected in series with a voltage regulator diode is required to set the operating voltage of the bypass circuit that prevents overcharging current to the secondary battery. As the number of devices increases, the space required for their implementation also increases, which creates problems with the layout when mounting them on devices with limited space, such as electronic wristwatches, which hinders the miniaturization and thinning of watches, etc. I will do it. In addition, when a voltage regulator diode breaks down, a considerable amount of bypass current flows, so if there are circuit elements that are airtight, densely packed, and easily affected by heat, such as a wristwatch, the voltage regulator diode The generated heat must be taken into consideration, which limits the capacity and size (shape) of the voltage regulator diode to be mounted, and may not be applicable to circuits that bypass large currents due to heat generation. be.

さらにまた、定電圧ダイオードにおいては、一般にその
ツェナー電圧が低いものでは、ソフトな電流の立ち上り
で電流の大きい領域で定電圧特性を示すようになつてお
り、このため、比較的低電流で使用される腕時計や電卓
等の太陽電池式電源装置の定電圧化回路としては、定電
圧ダイオードが動作点に達するまでにソフトな立ち上り
を示す関係上不定であまり好ましくない。
Furthermore, in general, voltage regulator diodes with low Zener voltages exhibit constant voltage characteristics in the large current region with a soft current rise, and for this reason, they are used at relatively low currents. It is not very desirable as a voltage regulator circuit for a solar cell power supply device such as a wrist watch or a calculator, since the voltage is unstable because the voltage regulator diode exhibits a soft rise before reaching the operating point.

したがつて、低照度雰囲気に太陽電池がおかれた場合、
当然太陽電池から出力される電流値も低く、電流の大き
な領域で定電圧特性を示す定電圧ダイオードでは、二次
電池の充電及び負荷の駆動に必要な電気エネルギの安定
化は望めない。この発明は上記のような点に鑑みなされ
たもので、太陽電池の出力側に光の強度に応じて導電率
の変化する光導電回路と、この光導電回路を流れる電流
の増加に伴い抵抗値の減少する回路を設け、これにより
太陽電池から出力される電力のうち二次電池の充電およ
び電子装置等の負荷の駆動に要する電力を低照度におい
ても安定に確保できるとともに、実装時のコスト及びペ
ース的問題を解決し、併せて、低電流乃至高電流に関係
なく使用できるようにした電源装置を提供するにある。
Therefore, if a solar cell is placed in a low-light atmosphere,
Naturally, the current value output from the solar cell is also low, and a constant voltage diode that exhibits constant voltage characteristics in a large current region cannot be expected to stabilize the electrical energy necessary for charging the secondary battery and driving the load. This invention was made in view of the above points, and includes a photoconductive circuit whose conductivity changes depending on the intensity of light on the output side of a solar cell, and a resistance value that changes as the current flowing through this photoconductive circuit increases. By providing a circuit that reduces the amount of power output from the solar cells, it is possible to stably secure the power required for charging secondary batteries and driving loads such as electronic devices even in low illuminance, and it also reduces the cost and cost at the time of implementation. It is an object of the present invention to provide a power supply device which solves the pace problem and can be used regardless of whether the current is low or high.

以下、この発明の実施例を図面について説明する。第1
図はこの発明にかかる電源装置のプロツク図を示すもの
であつて、太陽電池1の出力側には、その変換電力を制
御するレギユレータ回路2が接続されている。このレギ
ユレータ回路2は、上記太陽電池1の出力端に接続され
た光の強度に応じて導電率の変化する光導電回路3と、
この光導電回路3の入力側に直列に接続された、光導電
回路3に流れる電流の増加に伴い抵抗値の減少する回路
4とから構成され、さらに上記光導電回路3は上記太陽
電池1と同一の光強度雰囲気中におかれている。そして
、太陽電池1の変換電力が光の強度により変化したとき
、この変化に合わせて光導電回路3の導電率を照射光強
度により変化させ、同時に太陽電池1からの電力の一部
をレギユレータ2に分流させて、上記太陽電池に逆流防
止回路6を介し接続した二次電池5およびこの二次電池
5でも駆動される電子回路等の負荷7に常に一定の電力
が供給できるようになつている。第2図は上記プロツク
図に基づくこの発明電源装置の具体的回路例を示すもの
で、太陽電池1は二次電池5および負荷7に要求される
所定の電圧と電流容量が得られるように複数個直並列に
接続されており、また、光導電回路3にはCdS光導電
セルなどの光導電素子が適用され、さらに電流の増加に
応じて抵抗値が減少する回路4は順方向に介挿されたダ
イオードから形成されている。このようにした光導電素
子3とダイオード4との直列回路の両端は、太陽電池1
に直射日光などの強い光が照射されたとき大電流が流れ
るのを防止するための電流制限用抵抗8を介して上記太
陽電池1の両端に並列に接続され、さらに上記光導電素
子3とダイオード4との直列回路の両端には逆流防止回
路6を形成するダイオードを介して二次電池5および負
荷7が並列に接続されている。上記構成の回路において
、太陽電池1に光を照射し、その強度LをL。,L,2
L,3L・・・と増大したときの太陽電池1の電圧一電
流特性を示すと第3図のようになる。第3図において、
LOは太陽電池1が二次電池5および負荷7に要求され
る所定の電圧を発生し得ない程度に低い光の強度であり
、Lは太陽電池1が要求される所定の電圧を発生する光
の強度を示している。太陽電池1が1L以上の光照射に
より活性化されているときは、光の照度Lに対する太陽
電池1の発生電流(L)は照度Lに比例するので、I(
L)=KLとなる(k:比例定数)。
Embodiments of the present invention will be described below with reference to the drawings. 1st
The figure shows a block diagram of a power supply device according to the present invention, in which a regulator circuit 2 for controlling the converted power of the solar cell 1 is connected to the output side of the solar cell 1. The regulator circuit 2 includes a photoconductive circuit 3 connected to the output end of the solar cell 1 and whose conductivity changes depending on the intensity of light;
The photoconductive circuit 3 includes a circuit 4 connected in series to the input side of the photoconductive circuit 3, whose resistance value decreases as the current flowing through the photoconductive circuit 3 increases, and the photoconductive circuit 3 further includes the solar cell 1 and a circuit 4 whose resistance value decreases as the current flowing through the photoconductive circuit 3 increases. placed in an atmosphere with the same light intensity. When the converted power of the solar cell 1 changes depending on the intensity of light, the conductivity of the photoconductive circuit 3 is changed depending on the intensity of the irradiated light in accordance with this change, and at the same time, a part of the power from the solar cell 1 is transferred to the regulator 2. By dividing the current into the secondary battery 5 connected to the solar cell through a backflow prevention circuit 6, and a load 7 such as an electronic circuit driven by the secondary battery 5, a constant amount of power can always be supplied. . FIG. 2 shows a specific circuit example of the power supply device of the present invention based on the above-mentioned block diagram. In addition, a photoconductive element such as a CdS photoconductive cell is applied to the photoconductive circuit 3, and a circuit 4 whose resistance value decreases as the current increases is inserted in the forward direction. It is formed from a diode. Both ends of the series circuit of the photoconductive element 3 and the diode 4 are connected to the solar cell 1.
It is connected in parallel to both ends of the solar cell 1 via a current limiting resistor 8 to prevent a large current from flowing when the cell is irradiated with strong light such as direct sunlight, and is further connected to the photoconductive element 3 and the diode. A secondary battery 5 and a load 7 are connected in parallel to both ends of the series circuit with 4 via a diode forming a backflow prevention circuit 6. In the circuit with the above configuration, the solar cell 1 is irradiated with light, and the intensity L thereof is L. ,L,2
FIG. 3 shows the voltage-current characteristics of the solar cell 1 when the voltage increases as L, 3L, . . . . In Figure 3,
LO is the intensity of light so low that the solar cell 1 cannot generate the predetermined voltage required for the secondary battery 5 and the load 7, and L is the intensity of light at which the solar cell 1 generates the predetermined voltage required. It shows the strength of When the solar cell 1 is activated by light irradiation of 1 L or more, the current (L) generated by the solar cell 1 with respect to the illuminance L of the light is proportional to the illuminance L, so I(
L)=KL (k: constant of proportionality).

太陽電池1に並列に負荷、即ち照度Lに応じ抵抗値が変
化する光導電素子(照度Lの増加に応じて抵抗値が減少
する特性を有する)2を接続したとき、光導電素子2の
両端に現われる電位差V(L)は、V(L)=i(L)
・R(L)となる(R(L):照度に依存する光導電素
子2の抵抗値、i(L):照度に依存して光導電素子2
に流れる電流)。
When a load, that is, a photoconductive element 2 whose resistance value changes depending on the illuminance L (having a characteristic that the resistance value decreases as the illuminance L increases) is connected to the solar cell 1 in parallel, both ends of the photoconductive element 2 The potential difference V(L) appearing in is V(L)=i(L)
・R(L) (R(L): resistance value of photoconductive element 2 depending on illuminance, i(L): resistance value of photoconductive element 2 depending on illuminance)
(current flowing through).

今、太陽電池1に照射される光の照度Lを第3図のL,
2L,3L,・・・のように変化させたとき、第2図の
接続点Aの電位E(電位Eは第2図の接続点Bの電位を
二次電池5の電位に等しく保つときの電位)を第3図の
破線10上の電圧V(L)=E(一定)に保つためには
、各照度L,2L,3L,・・・に対応して光導電素子
(レギユレータ)2の抵抗R(L)を1R(L)=E/
!(L戸R(2L)=E/21(L)ツR(3L)=E
/31(L),・・・と満足できれば良い。
Now, the illuminance L of the light irradiated to the solar cell 1 is L in Fig. 3,
2L, 3L, ..., the potential E at the connection point A in FIG. 2 (the potential E is the potential E when the potential at the connection point B in FIG. In order to keep the voltage (potential) at the voltage V(L) = E (constant) on the broken line 10 in FIG. 3, the photoconductive element (regulator) 2 should be The resistance R(L) is 1R(L)=E/
! (L door R(2L)=E/21(L)tsuR(3L)=E
/31(L), . . . as long as it is satisfied.

即ち照度Lが増加するにしたがい光導電素子2の抵抗値
R(L)を(L)が一定となるように減少させれば、光
の照度が変化しても光導電素子2の両端の電位差を一定
に保つことができる。即ち、光導電素子2の導電率が光
の強度に応じて変化するのを利用して、太陽電池1が発
生する電力のうち、電子装置(負荷)5を駆動するに要
する電気エネルギ及び二次電池を適度に充電するに要す
る電気エネルギを除く余分な電気エネルギと光導電素子
2において消費することになるからである。
In other words, if the resistance value R(L) of the photoconductive element 2 is decreased so that (L) remains constant as the illuminance L increases, the potential difference between both ends of the photoconductive element 2 will be maintained even if the illuminance of light changes. can be kept constant. That is, by utilizing the fact that the electrical conductivity of the photoconductive element 2 changes depending on the intensity of light, the electrical energy and secondary energy required to drive the electronic device (load) 5 out of the power generated by the solar cell 1 are This is because the photoconductive element 2 consumes excess electrical energy other than the electrical energy required to properly charge the battery.

第4図の曲線11は、第2図に示す接続点AとBを同電
位に保ち、二次電池5への充電電流が雰となるようにし
たときの光の強度Lに対する抵抗値R(L)の変化を示
すもので、この特性曲線11に基づく二次電池5への充
電電流はゼロであるが、レギユレータ回路2の光強度一
抵抗特性を第4図の曲線12のように、曲線11より僅
かに高い抵抗値を有する特性にすれば、光の強度に関係
なく、第2図における接続点Aの電位は接続点Bの電位
よりも僅かに上昇し、二次電池5および負荷7に太陽電
池1の電力が供給されることになる。
A curve 11 in FIG. 4 shows the resistance value R ( Although the charging current to the secondary battery 5 based on this characteristic curve 11 is zero, the light intensity-resistance characteristic of the regulator circuit 2 is shown as a curve 12 in FIG. If the characteristic has a resistance value slightly higher than 11, the potential at the connection point A in FIG. The power from the solar cell 1 will be supplied to the solar cell 1.

また、第4図において、低照度L。の領域では太陽電池
1が所定の電圧を発生し得なくなるが、特性曲線11に
おける部分11aのようにレギユレータ回路2の抵抗値
を急上昇させれば、レギユレータ回路2の両端における
電位差は、一定値Eに保持される。さらにまた、高照度
領域において、第4図の曲線11に示す抵抗値R(L)
が部分11bのようにほぼ安定化するのは、電流制限用
抵抗8を設けたためである。また、第2図の回路におい
て、光の強度が充分に大きい場合には、レギユレータ回
路2を流れる電流は比較的大きい。
In addition, in FIG. 4, low illuminance L. In the region of , the solar cell 1 cannot generate a predetermined voltage, but if the resistance value of the regulator circuit 2 is suddenly increased as shown in the part 11a of the characteristic curve 11, the potential difference between both ends of the regulator circuit 2 becomes a constant value E. is maintained. Furthermore, in the high illuminance area, the resistance value R(L) shown in curve 11 of FIG.
The reason why is almost stabilized as in the portion 11b is because the current limiting resistor 8 is provided. Furthermore, in the circuit of FIG. 2, when the intensity of light is sufficiently large, the current flowing through the regulator circuit 2 is relatively large.

このため、レギユレータ回路2におけるダイオード4は
充分にバイアスされた状態となり、ダイオード4による
電圧降下は光導電素子3による電圧降下に比して無視で
きる。したがつて、レギユレータ回路2の両端の電位差
は、ほぼ光導電素子3の両端の電位差に等しい。上記光
導電回路3にCdS光導電セルを用いた場合、その光強
度一抵抗特性は第5図aの直線13に示す如く、光の強
度Lにほぼ反比例したものとなり、そして、低照度領域
ではレギユレータ回路2を流れる電流が小さいため、ダ
イオード4による電圧降下は存在し、この電圧降下によ
り生じる抵抗値成分がCdS光導電セル3の抵抗値に相
加されて、レギユレータ回路2の抵抗値を第5図aの部
分13aのように増大させることになる。部分13aを
含む特性曲線13は、第2図における接続点A1すなわ
ち接続点Bの電位を一定に保持するために必要なレギユ
レータ回路2に要求される光強度一抵抗特性であり、そ
して、CdS光導電セル3を太陽電池1と同一の光強度
雰囲気中に存在させたときの特性を示している。また、
CdS光導電セル3に照射される光の強度を太陽電池1
に照射される光の強度に比較して相対的に弱くすれば、
特性曲線13を特性曲線11に近接、または重ね合わせ
ることが可能になる。CdS光導電セル3への光の強度
を弱める手段には、CdS光導電セルに入射される光量
を調節するフイルタ、絞りなどが用いられる。
Therefore, the diode 4 in the regulator circuit 2 is sufficiently biased, and the voltage drop caused by the diode 4 is negligible compared to the voltage drop caused by the photoconductive element 3. Therefore, the potential difference across the regulator circuit 2 is approximately equal to the potential difference across the photoconductive element 3. When a CdS photoconductive cell is used in the photoconductive circuit 3, its light intensity-resistance characteristic is approximately inversely proportional to the light intensity L, as shown by the straight line 13 in FIG. Since the current flowing through the regulator circuit 2 is small, there is a voltage drop due to the diode 4, and the resistance value component caused by this voltage drop is added to the resistance value of the CdS photoconductive cell 3, making the resistance value of the regulator circuit 2 the first. It will be increased as shown in part 13a in Figure 5a. The characteristic curve 13 including the portion 13a is the light intensity-resistance characteristic required of the regulator circuit 2 necessary to keep the potential of the connection point A1, that is, the connection point B constant in FIG. It shows the characteristics when the conductive cell 3 is present in the same light intensity atmosphere as the solar cell 1. Also,
The intensity of the light irradiated to the CdS photoconductive cell 3 is determined by the solar cell 1
If the intensity of the light is made relatively weak compared to the intensity of the light irradiated on the
It becomes possible to bring the characteristic curve 13 close to or to overlap the characteristic curve 11. As a means for weakening the intensity of light to the CdS photoconductive cell 3, a filter, an aperture, or the like is used to adjust the amount of light incident on the CdS photoconductive cell.

このように光量調節手段によりCdS光導電セル3への
光量を制限しでレギユレータ回路2の光強度一抵抗特性
13を、第4図の場合と同様二次電池の充電および負荷
の駆動に必要な電力を取出し得る特性14に一致させれ
ば、二次電池5および負荷7に太陽電池1の電力を供給
できるのである。第5図bはこのときの二次電池5側に
流れる充電電流の特性図を示すもので、曲線15はCd
S光導電セル3のみを用いた場合の充電電流を、また、
曲線16はCdS光導電セル3とダイオード4を直列接
続した本発明のレギユレータ回路2を用いた場合の充電
電流の対光強度特性である。この特性曲線16から明ら
かなように電流の増大に伴つて抵抗値が減少するダイオ
ードをレギユレータ回路2に設けることで低照度におい
ても太陽電池1の電気エネルギを有効に負荷、二次電池
に供給し得るのである。また、直射日光のような高照度
領域においては、第5図aの特性14が特性12の部分
12bより低くなり、このため太陽電池1からの電気エ
ネルギは、その大部分がレギユレータ回路により消費さ
れ、二次電池5側には充電電流はほとんど流れないこと
になる。
In this way, by limiting the amount of light to the CdS photoconductive cell 3 using the light amount adjustment means, the light intensity-resistance characteristic 13 of the regulator circuit 2 can be adjusted to the level required for charging the secondary battery and driving the load, as in the case of FIG. If the characteristic 14 is matched to the ability to extract electric power, the electric power of the solar cell 1 can be supplied to the secondary battery 5 and the load 7. FIG. 5b shows a characteristic diagram of the charging current flowing to the secondary battery 5 side at this time, and the curve 15 is Cd
The charging current when using only the S photoconductive cell 3 is also
A curve 16 shows the light intensity characteristic of the charging current when using the regulator circuit 2 of the present invention in which the CdS photoconductive cell 3 and the diode 4 are connected in series. As is clear from this characteristic curve 16, by providing the regulator circuit 2 with a diode whose resistance value decreases as the current increases, the electrical energy of the solar cell 1 can be effectively supplied to the load and the secondary battery even in low illuminance. You get it. Furthermore, in a high illuminance area such as direct sunlight, the characteristic 14 in FIG. , almost no charging current flows to the secondary battery 5 side.

さらにまた、二次電池5の過充電により、その電位が上
昇して接続点Bの電位が上昇すれば、レギユレータ回路
2の抵抗値が減少したのと同等となり、太陽電池1から
二次電池5側への電気エネルギの供給は抑制される。な
お、第5図aにおける特性12と特性14との相対的な
関係を変えることにより二次電池側への充電電流の値を
任意に設定し得る。
Furthermore, if the potential of the secondary battery 5 increases due to overcharging, and the potential of the connection point B increases, this will be equivalent to a decrease in the resistance value of the regulator circuit 2, and the voltage from the solar battery 1 to the secondary battery 5 will increase. The supply of electrical energy to the side is suppressed. Note that by changing the relative relationship between characteristics 12 and 14 in FIG. 5a, the value of the charging current to the secondary battery side can be arbitrarily set.

以上のようにこの発明の電源装置によれば、太陽電池の
出力側に光の強度に応じて導電率の変化する光導電回路
と、この光導電回路に流れる電流の増加に伴い抵抗値の
減少する回路を設けかので、太陽電池に対する光の強度
が低照度であつても、太陽電池からの電気エネルギを必
要かつ十分な出力レベルに維持でき、有効な二次電池の
充電あるいは負荷の駆動が可能になり、さらに室内光の
ような低照度の雰囲気中に電子装置を含む電源装置がお
かれていても、太陽電池からのエネルギを利用てきるた
め、二次電池のエネルギ消費が少なく、し部がつて電子
時計などにおいての半永久的電源として極めて実現性の
高いものとなる。
As described above, according to the power supply device of the present invention, a photoconductive circuit whose conductivity changes depending on the intensity of light is provided on the output side of the solar cell, and a resistance value decreases as the current flowing through this photoconductive circuit increases. Even if the intensity of light to the solar cells is low, the electrical energy from the solar cells can be maintained at the necessary and sufficient output level, making it possible to effectively charge the secondary battery or drive the load. Furthermore, even if the power supply unit containing electronic equipment is placed in a low-light environment such as indoor light, the energy from the solar cell can be used, reducing the energy consumption of the secondary battery. This makes it extremely viable as a semi-permanent power source for electronic watches and the like.

また、太陽電池の出力を一定に制御する回路に光導電素
子を用いているため、光導電素子に入射される光量と太
陽電池に入射される光量との関係を調整するのみで一定
の電圧が得られるほか、太陽電池の出力される電流が低
電流乃至高電流であつてもこれに関係なく利用できる。
In addition, since a photoconductive element is used in the circuit that controls the output of the solar cell at a constant level, a constant voltage can be achieved simply by adjusting the relationship between the amount of light incident on the photoconductive element and the amount of light incident on the solar cell. In addition, it can be used regardless of whether the current output from the solar cell is low or high.

また、光導電素子は太陽電池と同一材料で製造できるた
め、そのコスト面で有利になるとともに、電源装置の出
力電圧を制御する場合にも特性上有利となる。さらに、
電源装置の出力電圧の調節は太陽電池及び光導電素子へ
の入射光を調節すれば良いので、実装時のコスト及びス
ペースの問題も解決できる利点がある。さらにレギユレ
ータを構成する順方向のダイオード及び光導電素子には
順方向に電圧が印加され、従来の定電圧ダイオードのよ
うに逆方向に電圧を加えることによる暗電流が流れない
ため、レギユレータ素子の加熱が抑制され、従来の問題
を解決できる。
Furthermore, since the photoconductive element can be manufactured from the same material as the solar cell, it is advantageous in terms of cost and also in terms of characteristics when controlling the output voltage of the power supply device. moreover,
Since the output voltage of the power supply device can be adjusted by adjusting the light incident on the solar cell and the photoconductive element, there is an advantage that problems of cost and space during mounting can be solved. Furthermore, voltage is applied in the forward direction to the forward direction diode and photoconductive element that make up the regulator, and dark current does not flow due to the application of voltage in the reverse direction as in conventional constant voltage diodes, so the regulator element is heated. is suppressed, and the conventional problem can be solved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明にかかる電源装置のプロツク図、第2
図はこの発明装置の具体例を示す回路図、第3図は太陽
電池の電圧一電流特性図、第4図はレギユレータ回路の
光強度一抵抗特性図、第5図aはCdS光導電セルを含
むレギユレータ回路の光強度一抵抗特性図、第5図bは
二次電池側に流れる電流特性図である。 1・・・・・・太陽電池、2・・・・・・レギユレータ
回路、3・・・・・・光導電回路(CdS光導電光子)
、4・・・・・・抵抗値の減少する回路(ダイオτド)
、5・・・・・・二次電池、6・・・・・・逆流防止回
路、7・・・・・・負荷。
Fig. 1 is a block diagram of a power supply device according to the present invention;
The figure is a circuit diagram showing a specific example of the device of this invention, Figure 3 is a voltage-current characteristic diagram of a solar cell, Figure 4 is a light intensity-resistance characteristic diagram of a regulator circuit, and Figure 5a is a CdS photoconductive cell. FIG. 5b is a light intensity-resistance characteristic diagram of the regulator circuit included, and FIG. 5b is a current characteristic diagram flowing to the secondary battery side. 1...Solar cell, 2...Regulator circuit, 3...Photoconductive circuit (CdS photoconductive photon)
, 4...Circuit where resistance value decreases (diode τ)
, 5... Secondary battery, 6... Backflow prevention circuit, 7... Load.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも二次電池に電気エネルギを供給する太陽
電池と、この太陽電池に並列に接続され、かつ光の強度
に応じて導電率を変化させることで上記太陽電池の出力
を二次電池の充電等に適合するレベルに制御する光導電
素子と、この光導電素子に順方向に直列に接続され、か
つ上記光導電素子に流れる電流の増大に応じて抵抗値が
減少する性質を有するダイオードとからなる電源装置。
1 A solar cell that supplies electrical energy to at least a secondary battery, and a solar cell that is connected in parallel to this solar cell and that changes the conductivity according to the intensity of light to use the output of the solar cell to charge the secondary battery, etc. A photoconductive element controlled to a level suitable for the photoconductive element, and a diode connected in series in the forward direction to the photoconductive element and having a property that its resistance value decreases as the current flowing through the photoconductive element increases. power supply.
JP2869077A 1977-03-17 1977-03-17 power supply Expired JPS5922459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2869077A JPS5922459B2 (en) 1977-03-17 1977-03-17 power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2869077A JPS5922459B2 (en) 1977-03-17 1977-03-17 power supply

Publications (2)

Publication Number Publication Date
JPS53114040A JPS53114040A (en) 1978-10-05
JPS5922459B2 true JPS5922459B2 (en) 1984-05-26

Family

ID=12255470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2869077A Expired JPS5922459B2 (en) 1977-03-17 1977-03-17 power supply

Country Status (1)

Country Link
JP (1) JPS5922459B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2488515B (en) 2011-02-11 2015-05-20 Teraview Ltd A test system

Also Published As

Publication number Publication date
JPS53114040A (en) 1978-10-05

Similar Documents

Publication Publication Date Title
US3896368A (en) Voltage regulating device
US4291266A (en) Device for charging an accumulator from an electrical energy source more particularly for an electronic watch
US4661758A (en) Solar power supply and battery charging circuit
US3979656A (en) Battery charging circuit
EP0178757A2 (en) Solar array regulator
US4165477A (en) Instrument intended to be carried at the wrist
US4243928A (en) Voltage regulator for variant light intensity photovoltaic recharging of secondary batteries
US4785226A (en) Powder supply device with solar cell
US20130033108A1 (en) Power supply control system and semiconductor integrated circuit
GB2082854A (en) Charge control circuit
JP2009153306A (en) Photovoltaic power generating system
EP0237308B1 (en) Capacitor charging circuit
US3731474A (en) Charging circuit for wrist watch having solar battery
US7999504B2 (en) Electrical power supply system for a satellite
JPS5922459B2 (en) power supply
JP7052326B2 (en) Power supply and communication equipment
JP2611724B2 (en) Solar cell power supply
JPS5918842Y2 (en) Solar cell output adjustment device
JPS5922458B2 (en) power supply
JPH08123562A (en) Solar battery applying equipment
WO2021186904A1 (en) Power supply device
JPH01318519A (en) Method of supplying power for controlling solar photovoltaic power generation system
JPS5918841Y2 (en) Power supply device with solar battery
JPS61294769A (en) Stand-alone power source unit
JPH07170675A (en) Power supply circuit of camera using solar cell