JPS6237552B2 - - Google Patents

Info

Publication number
JPS6237552B2
JPS6237552B2 JP53118669A JP11866978A JPS6237552B2 JP S6237552 B2 JPS6237552 B2 JP S6237552B2 JP 53118669 A JP53118669 A JP 53118669A JP 11866978 A JP11866978 A JP 11866978A JP S6237552 B2 JPS6237552 B2 JP S6237552B2
Authority
JP
Japan
Prior art keywords
solar cell
resin
cell element
embedded
conversion efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53118669A
Other languages
Japanese (ja)
Other versions
JPS5546510A (en
Inventor
Hitoshi Matsumoto
Nobuo Nakayama
Akihiko Nakano
Seiji Ikegami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP11866978A priority Critical patent/JPS5546510A/en
Publication of JPS5546510A publication Critical patent/JPS5546510A/en
Publication of JPS6237552B2 publication Critical patent/JPS6237552B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 本発明は樹脂埋込み型太陽電池の製造方法にか
かり、高効率で安定な太陽電池を製造することの
できる方法を提供しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a resin-embedded solar cell, and aims to provide a method that can manufacture a highly efficient and stable solar cell.

太陽電池は屋外で直射日光にさらして使用する
ものである。そのため、裸の状態で太陽電池を使
用すれば、太陽電池の表面に雨やほこりが付着
し、表面が汚染されて、性能がいちじるしく低下
してしまう。この特性の劣化を防ぐために、通
常、裸の太陽電池を樹脂中にモールドして使用し
ている。しかしながら、この裸の太陽電池を樹脂
中にモールドする際に、その光電変換効率の低下
することがしばしばある。この原因は明らかでな
いが、特に化合物半導体を用いた太陽電池におい
て、この特性の低下がいちぢるしい。
Solar cells are used outdoors and exposed to direct sunlight. Therefore, if a solar cell is used in a bare state, rain and dust will adhere to the surface of the solar cell, contaminating the surface and significantly reducing its performance. To prevent this deterioration of characteristics, bare solar cells are usually molded into resin. However, when this bare solar cell is molded into resin, its photoelectric conversion efficiency often decreases. Although the cause of this is not clear, the deterioration of this characteristic is particularly noticeable in solar cells using compound semiconductors.

本発明は、樹脂埋込みによつて性能が低下した
太陽電池を、不活性雰囲気中で熱処理すると、そ
の性能が向上することを見い出したことにもとづ
くものである。本発明の方法によれば、太陽電池
素子が樹脂に埋込まれているので、その表面の汚
染がなく、また、モールド後の熱処理によつて素
子の光電変換効率が高められるため、寿命特性が
よく、性能の高い太陽電池を実現することができ
る。
The present invention is based on the discovery that when a solar cell whose performance has been degraded due to resin embedding is heat treated in an inert atmosphere, its performance is improved. According to the method of the present invention, since the solar cell element is embedded in the resin, there is no contamination of its surface, and the photoelectric conversion efficiency of the element is increased by heat treatment after molding, so the lifetime characteristics are improved. It is possible to realize solar cells with high performance.

以下、本発明の方法について、実施例にもとづ
いて詳細に説明する。
Hereinafter, the method of the present invention will be explained in detail based on Examples.

実施例 1 硫化カドミウム粉末に融剤として塩化カドミウ
ムを7%加え、またバインダーとしてプロピレン
グリコールを20〜30%加えて、メノウ乳鉢で混合
し、硫化カドミウムペーストを作つた。これをガ
ラス基板上にスクリーン印刷法によつて印刷し
た。乾燥後、これを焼成容器に入れて、ベルト炉
で窒素中において630℃の温度1時間焼結した。
得られた硫化カドミウム焼結膜の一部分にニツケ
ル電極をメツキ法によつて形成して、酸化カドミ
ウム側の電極とした。次に、このニツケル電極部
分をマスクしてから、硫化カドミウム焼結膜を硫
酸銅溶液に浸し、銅板からなる陽極と硫化カドミ
ウム焼結膜(陰極)との間に、金属銅が析出しな
い程度の大きさの微弱電流を1時間流した。これ
により、硫化カドミウム焼結膜表面にp形の硫化
銅層が形成され、p−n接合が形成された。それ
からp形の硫化銅層の全面に銀電極塗料を塗布
し、硫化銅層側の電極とした。そして、窒素ガス
中において250℃の温度で30分間熱処理した後、
硫化カドミウム側および硫化銅側の電極にリード
線を接続して、太陽電池素子を完成した。この素
子は、ガラス基板側から太陽光を入射させる構成
であり、その変換効率は9%であつた。
Example 1 A cadmium sulfide paste was prepared by adding 7% of cadmium chloride as a flux and 20 to 30% of propylene glycol as a binder to cadmium sulfide powder and mixing them in an agate mortar. This was printed on a glass substrate by screen printing. After drying, it was placed in a sintering container and sintered in a belt furnace in nitrogen at 630° C. for 1 hour.
A nickel electrode was formed on a portion of the obtained sintered cadmium sulfide film by a plating method to form an electrode on the cadmium oxide side. Next, after masking this nickel electrode part, the cadmium sulfide sintered film is immersed in a copper sulfate solution to create a space between the copper plate anode and the cadmium sulfide sintered film (cathode) that is large enough to prevent metallic copper from precipitating. A weak current was applied for 1 hour. As a result, a p-type copper sulfide layer was formed on the surface of the cadmium sulfide sintered film, and a pn junction was formed. Then, a silver electrode paint was applied to the entire surface of the p-type copper sulfide layer to form an electrode on the copper sulfide layer side. Then, after heat treatment for 30 minutes at a temperature of 250°C in nitrogen gas,
Lead wires were connected to the electrodes on the cadmium sulfide side and the copper sulfide side to complete the solar cell element. This element was configured to allow sunlight to enter from the glass substrate side, and its conversion efficiency was 9%.

上述のようにして得られた太陽電池素子をエポ
キシ樹脂に理込み、空気中において90℃の温度で
30分間加熱して、硬化させた。この処理により変
換効率は8.5%に低下した。次に、この樹脂埋込
みして作つた太陽電池を窒素中において220℃の
温度で30分間熱処理した。この熱処理により、太
陽電池の変換効率は9.5%に向上した。なお、樹
脂埋込みしてから空気中で同様な熱処理をしたと
ころ、被覆樹脂が黄褐色に変色してしまい、その
光透過率が悪くなつて、太陽電池の変換効率が低
下してしまつた。又、窒素中での熱処理温度は
180℃〜280℃が有効であり、この範囲以外では変
換効率の向上は小さい。
The solar cell element obtained as described above was placed in epoxy resin and heated in air at a temperature of 90°C.
It was heated for 30 minutes to cure. This treatment reduced the conversion efficiency to 8.5%. Next, the resin-embedded solar cell was heat-treated in nitrogen at a temperature of 220°C for 30 minutes. This heat treatment improved the conversion efficiency of the solar cells to 9.5%. In addition, when similar heat treatment was performed in the air after embedding the resin, the coating resin turned yellowish brown, its light transmittance deteriorated, and the conversion efficiency of the solar cell decreased. Also, the heat treatment temperature in nitrogen is
A temperature of 180°C to 280°C is effective, and the improvement in conversion efficiency is small outside this range.

実施例 2 実施例1と同様にして硫化カドミウム焼結膜を
作り、さらにその上にスクリーン印刷法および焼
結法によりp形テルルカドミウム焼結膜を形成し
た。硫化カドミウム焼結膜の一部分およびテルル
化カドミウム焼結膜全面にそれぞれインジウム−
ガリウム電極および銅電極をつけ、リード線を接
続してから、窒素中において250℃の温度で30分
間熱処理した。このようにして得た裸の太陽電池
素子の変換効率は8%であつた。次に、この太陽
電池素子をエポキシ樹脂に埋込み、空気中におい
て90℃の温度で30分間加熱して、樹脂を硬化させ
た。この処理により太陽電池の交換効率は7%に
低下した。それから、この太陽電池を窒素雰囲気
中において300℃の温度で15分間熱処理した。こ
の熱処理によつて樹脂は少し変形するが色は殆ん
で変化せず、熱処理後の変換効率は9.3%であ
り、効率のよい太陽電池を得ることができた。窒
素中での熱処理温度は250℃〜320℃が有効であ
り、この範囲以外では変換効率の向上は小さい。
Example 2 A sintered cadmium sulfide film was produced in the same manner as in Example 1, and a p-type sintered tellurium cadmium film was further formed thereon by screen printing and sintering. Indium-
After attaching gallium electrodes and copper electrodes and connecting lead wires, heat treatment was performed in nitrogen at a temperature of 250° C. for 30 minutes. The conversion efficiency of the bare solar cell element thus obtained was 8%. Next, this solar cell element was embedded in epoxy resin and heated in air at a temperature of 90°C for 30 minutes to harden the resin. This treatment reduced the solar cell replacement efficiency to 7%. This solar cell was then heat treated at a temperature of 300° C. for 15 minutes in a nitrogen atmosphere. Although the resin was slightly deformed by this heat treatment, the color hardly changed, and the conversion efficiency after heat treatment was 9.3%, making it possible to obtain a highly efficient solar cell. An effective heat treatment temperature in nitrogen is 250°C to 320°C, and the improvement in conversion efficiency is small outside this range.

なお、樹脂埋込後の如処理により太陽電池の効
率が裸の太陽電池の効率よりも予想外の大きくな
る原因は明らかでないが、樹脂埋込後の不活性雰
囲気中での熱処理のため酸素が完全に遮断される
こと、表面の汚染がないこと、樹脂と太陽電池表
面とのなじみが良くなること等が原因しているも
のと考えられる。
Although it is not clear why the efficiency of the solar cell is unexpectedly higher than that of a bare solar cell due to the treatment after resin embedding, oxygen This is thought to be due to complete shielding, no surface contamination, and improved compatibility between the resin and the solar cell surface.

以上説明したように、本発明の方法によれば、
太陽電池素子を樹脂に埋込んでから、不活性な雰
囲気中で熱処理を施しているので、樹脂埋込前と
同等かそれよりもよい効率の太陽電池を得ること
ができる。
As explained above, according to the method of the present invention,
Since the solar cell element is embedded in the resin and then heat treated in an inert atmosphere, it is possible to obtain a solar cell with efficiency equal to or better than that before embedding in the resin.

Claims (1)

【特許請求の範囲】 1 CdS焼結膜とCu2S膜とを積層してなる太陽
電池素子をエポキシ樹脂に埋込んだ後窒素雰囲気
中で180℃〜280℃で熱処理することを特徴とする
樹脂埋込み型太陽電池素子の製造方法。 2 CdS焼結膜とCdTe焼結膜とを積層してなる
太陽電池素子をエポキシ樹脂に埋込んだ後窒素雰
囲気中で250℃〜320℃で熱処理することを特徴と
する樹脂埋込み型太陽電池素子の製造方法。
[Claims] 1. A resin characterized in that a solar cell element formed by laminating a CdS sintered film and a Cu 2 S film is embedded in an epoxy resin and then heat-treated at 180°C to 280°C in a nitrogen atmosphere. A method for manufacturing an embedded solar cell element. 2 Manufacturing a resin-embedded solar cell element characterized by embedding a solar cell element formed by laminating a CdS sintered film and a CdTe sintered film in an epoxy resin and then heat-treating it at 250°C to 320°C in a nitrogen atmosphere. Method.
JP11866978A 1978-09-28 1978-09-28 Method of manufacturing solar battery embedded in resin Granted JPS5546510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11866978A JPS5546510A (en) 1978-09-28 1978-09-28 Method of manufacturing solar battery embedded in resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11866978A JPS5546510A (en) 1978-09-28 1978-09-28 Method of manufacturing solar battery embedded in resin

Publications (2)

Publication Number Publication Date
JPS5546510A JPS5546510A (en) 1980-04-01
JPS6237552B2 true JPS6237552B2 (en) 1987-08-13

Family

ID=14742275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11866978A Granted JPS5546510A (en) 1978-09-28 1978-09-28 Method of manufacturing solar battery embedded in resin

Country Status (1)

Country Link
JP (1) JPS5546510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2860200B2 (en) * 1991-02-01 1999-02-24 フランツ・プレーゼル・バーンボーマシーネン・インダストリーゲゼルシャフト・ミット・ベシュレンクテル・ハフツンク Rail maintenance machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393165A (en) * 1986-10-08 1988-04-23 Matsushita Electric Ind Co Ltd Manufacture of resin-coated photovoltaic element
JPS6393164A (en) * 1986-10-08 1988-04-23 Matsushita Electric Ind Co Ltd Manufacture of photovoltaic element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169994A (en) * 1974-11-08 1976-06-17 Western Electric Co
JPS5237785A (en) * 1975-09-20 1977-03-23 Agency Of Ind Science & Technol Process for production of photovoltaic elements

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169994A (en) * 1974-11-08 1976-06-17 Western Electric Co
JPS5237785A (en) * 1975-09-20 1977-03-23 Agency Of Ind Science & Technol Process for production of photovoltaic elements

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2860200B2 (en) * 1991-02-01 1999-02-24 フランツ・プレーゼル・バーンボーマシーネン・インダストリーゲゼルシャフト・ミット・ベシュレンクテル・ハフツンク Rail maintenance machine

Also Published As

Publication number Publication date
JPS5546510A (en) 1980-04-01

Similar Documents

Publication Publication Date Title
JPH07501184A (en) Improved solar cell and its manufacturing method
JPS59175165A (en) Thin film hetero junction photovoltaic cell and method of producing same
US5411601A (en) Substrate for solar cell and solar cell employing the substrate
US3568306A (en) Method of making photovoltaic device by electroplating
JPS6237552B2 (en)
EP2515346A1 (en) Process for producing semiconductor layer, process for producing photoelectric converter, and solution for forming semiconductor layer
JP2005167158A (en) Solar battery cell and solar battery module
JPH0892506A (en) Electrically conductive paste, method of electrode formation and solar cell
JPS6311791B2 (en)
JPS63213974A (en) Manufacture of photovoltaic device
KR20090090843A (en) Pb-free glass frit powder for silicon solar cell, method of preparing the same, metal paste composition comprising the same and silicon solar cell prepared by using the same
JPS55102279A (en) Method of fabricating photovoltaic element
JPS55117287A (en) Photovoltaic element and fabricating the same
JPS5577179A (en) Solar cell and prepartion thereof
JPH09213978A (en) Semiconductor of chalcopyrite structure and photovolatic device therewith
JPH0730134A (en) Manufacture of solar cell
KR101509757B1 (en) Method of fabricating solar cell and solar cell
JPH053753B2 (en)
JP3069158B2 (en) Solar cell and method of manufacturing the same
JP3077574B2 (en) Photoelectric conversion element
JPS5818970A (en) Solar battery
JPH0212973A (en) Manufacture of photovoltaic element
JPH01181476A (en) Manufacture of electric collector assembly of cdte solar battery
JPS622711B2 (en)
JPH01168071A (en) Manufacture of photovoltaic device