JPS6311791B2 - - Google Patents

Info

Publication number
JPS6311791B2
JPS6311791B2 JP57231682A JP23168282A JPS6311791B2 JP S6311791 B2 JPS6311791 B2 JP S6311791B2 JP 57231682 A JP57231682 A JP 57231682A JP 23168282 A JP23168282 A JP 23168282A JP S6311791 B2 JPS6311791 B2 JP S6311791B2
Authority
JP
Japan
Prior art keywords
light
electrode
receiving surface
solar cell
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57231682A
Other languages
Japanese (ja)
Other versions
JPS59117276A (en
Inventor
Toshihiro Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57231682A priority Critical patent/JPS59117276A/en
Publication of JPS59117276A publication Critical patent/JPS59117276A/en
Publication of JPS6311791B2 publication Critical patent/JPS6311791B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、太陽電池を製造する方法に関し、
特にその電圧・電流特性を向上させた太陽電池の
製造方法に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a solar cell,
In particular, the present invention relates to a method of manufacturing a solar cell with improved voltage and current characteristics.

〔従来技術〕[Prior art]

従来の太陽電池の製造方法としてシリコン単結
晶太陽電池の場合を例にとつて説明すると、従来
では、半導体基板としてのp形単結晶シリコン基
板の表面にn形不純物を浅く拡散してn形拡散層
を形成して受光面とし、この受光面側にグリツド
電極をAg(銀)ペーストをスクリーン印刷して形
成させる。ついで、前記シリコン基板の底面には
その全面に主電極としてAg―Al(銀・アルミニ
ウム)ペーストを同様にスクリーン印刷した後、
外部端子の半田付けを容易にするため、さらに前
記Ag―Alペースト上にAgペーストを外部端子の
半田付け部にスクリーン印刷する。しかる後、こ
れらペーストを含むシリコン基板を大気中、600
〜700℃の温度で焼成することにより、それぞれ
の電極を形成する方法がとられている。なお、前
記受光面には、一般に電極形成後に光反射防止膜
が形成されている。
Taking the case of a silicon single crystal solar cell as an example of a conventional solar cell manufacturing method, conventional methods involve shallowly diffusing n-type impurities into the surface of a p-type single-crystal silicon substrate as a semiconductor substrate to achieve n-type diffusion. A layer is formed to form a light-receiving surface, and a grid electrode is formed on this light-receiving surface by screen printing Ag (silver) paste. Next, Ag-Al (silver/aluminum) paste was similarly screen printed on the entire bottom surface of the silicon substrate as the main electrode, and then
In order to facilitate soldering of the external terminals, Ag paste is further screen printed on the Ag--Al paste onto the soldered portions of the external terminals. After that, the silicon substrate containing these pastes was exposed to air for 600 min.
A method is used in which each electrode is formed by firing at a temperature of ~700°C. Note that an antireflection film is generally formed on the light-receiving surface after forming the electrodes.

しかしながら、このようにして製造された従来
の太陽電池では、各電極を大気中で焼成して形成
しているために、グリツド電極とn形拡散層との
オーミツク性が著しく低下し、その結果、電圧・
電流特性や光変換効率が悪くなるという欠点があ
つた。
However, in conventional solar cells manufactured in this way, each electrode is formed by firing in the atmosphere, so the ohmic properties between the grid electrode and the n-type diffusion layer are significantly reduced, and as a result, Voltage·
The disadvantage was that current characteristics and light conversion efficiency deteriorated.

〔発明の概要〕[Summary of the invention]

この発明は以上の点に鑑みてなされたもので、
その目的は、半導体基板上にpn接合を形成する
導電層とグリツド電極とのオーミツク性を良好に
して、電圧・電流特性および光変換効率を大幅に
向上させた太陽電池の製造方法を提供することに
ある。
This invention was made in view of the above points,
The purpose is to provide a method for manufacturing solar cells that improves the ohmic properties between the conductive layer that forms a pn junction on a semiconductor substrate and the grid electrode, and significantly improves voltage/current characteristics and light conversion efficiency. It is in.

このような目的を達成するために、この発明は
半導体基板上に該基板とは異なる導電層を浅く形
成して受光面の近くにpn接合を形成し、前記導
電層の受光面側にビスマス(Bi)を含有する銀
ペーストを、前記半導体基板の受光面と反対側の
面に導体ペーストを用いて大気中で焼成してそれ
ぞれグリツド電極および主電極を形成した後、こ
れら電極を水素雰囲気もしくは窒素と水素の混合
ガス雰囲気中で加熱して還元することを特徴とす
るものである。
In order to achieve such an object, the present invention shallowly forms a conductive layer different from the substrate on a semiconductor substrate to form a pn junction near the light-receiving surface, and bismuth ( A conductive paste containing Bi) is baked in the atmosphere on the surface opposite to the light-receiving surface of the semiconductor substrate to form a grid electrode and a main electrode, respectively. It is characterized by heating and reducing in a mixed gas atmosphere of hydrogen and hydrogen.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の実施例を図に基いて詳細に説
明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図はこの発明に係る製造方法の一実施例を
説明するための太陽電池の構造を示す要部断面図
であり、シリコン単結晶太陽電池に適用した場合
を示す。第1図において、1はp形単結晶シリコ
ン基板、2はこの基板1の一方の主面上にn形不
純物を浅く拡散して形成されたn形拡散層であつ
て、受光面を形成している。また3はこの受光面
よりマイナス電位を取り出すグリツド電極、4は
前記シリコン基板1の他方の主面上に設けられて
プラス電位を取り出す主電極としての裏面電極、
5は同じくプラス電位を取り出すための外部端子
半田付け用電極である。なお、6は受光面側に施
された光反射防止膜である。
FIG. 1 is a sectional view of a main part showing the structure of a solar cell for explaining one embodiment of the manufacturing method according to the present invention, and shows a case where the method is applied to a silicon single crystal solar cell. In FIG. 1, 1 is a p-type single crystal silicon substrate, and 2 is an n-type diffusion layer formed by shallowly diffusing n-type impurities on one main surface of this substrate 1, which forms a light-receiving surface. ing. Further, 3 is a grid electrode for extracting a negative potential from this light-receiving surface; 4 is a back electrode as a main electrode provided on the other main surface of the silicon substrate 1 for extracting a positive potential;
Reference numeral 5 designates an external terminal soldering electrode for extracting a positive potential. Note that 6 is an anti-reflection film provided on the light-receiving surface side.

ここで、かかる構成の太陽電池を製造する場合
について具体的に説明する。まず、500μm程度の
厚さのp形単結晶シリコン基板1の表面に0.3〜
0.5μm程度のn形拡散層2を形成して受光面と
し、この受光面側に300μm程度の幅のグリツド電
極3を3〜5mm間隔のもとに、Agペースト(エ
ンゲルハート製、A4162)をスクリーン印刷して
形成させる。ついで前記シリコン基板1の裏面の
全面に裏面電極4としてAg―Alペーストを同様
にスクリーン印刷する。しかる後、外部端子の半
田付けを容易にするため、さらにAg―Alペース
ト上にAgペーストを外部端子半田付け用電極5
としてスクリーン印刷する。次いで、このように
印刷されたAg,Ag―Alペーストを含む基板を大
気中、600〜700℃の温度で5〜15分程度焼成し、
これによつてグリツド電極3、裏面電極4および
電極5を形成して太陽電池素子を形成する。しか
る後、各電極が形成された太陽電池素子を、水素
雰囲気もしくは窒素と水素の混合ガス雰囲気中に
て350〜500℃の温度で5分程度加熱(シンター)
し、この熱処理後、受光面にTiO2,Ta2O5など
を被着して光反射防止膜6を形成することによ
り、図示する構造のシリコン単結晶太陽電池を作
成した。
Here, a case in which a solar cell having such a configuration is manufactured will be specifically described. First, 0.3~
An n-type diffusion layer 2 of about 0.5 μm is formed as a light-receiving surface, and on this light-receiving surface side, grid electrodes 3 of about 300 μm wide are placed at intervals of 3 to 5 mm, and Ag paste (manufactured by Engelhardt, A4162) is applied. Form by screen printing. Then, Ag--Al paste is similarly screen printed on the entire back surface of the silicon substrate 1 as a back electrode 4. After that, in order to facilitate soldering of external terminals, Ag paste was further applied on the Ag-Al paste to form external terminal soldering electrodes 5.
Screen print as . Next, the substrate containing the Ag, Ag-Al paste printed in this way is fired in the air at a temperature of 600 to 700°C for about 5 to 15 minutes.
As a result, grid electrode 3, back surface electrode 4, and electrode 5 are formed to form a solar cell element. After that, the solar cell element with each electrode formed thereon is heated (sintered) at a temperature of 350 to 500°C for about 5 minutes in a hydrogen atmosphere or a mixed gas atmosphere of nitrogen and hydrogen.
After this heat treatment, TiO 2 , Ta 2 O 5 or the like was deposited on the light-receiving surface to form an anti-reflection film 6, thereby producing a silicon single crystal solar cell having the structure shown in the figure.

第2図はこのようにして製造された本発明の太
陽電池と従来例との電圧・電流特性を示し、受光
面にAMI相当の光照射時および光照射しない暗
時の電圧・電流特性をそれぞれ示している。ここ
で、横軸は電圧(V)が、縦軸は電流(I)がそ
れぞれとつてあり、(Voc)は開放電圧を、(Ioc)
は短絡電流を示している。すなわち、曲線10
a,10bは従来例における暗時、光照射時での
電圧・電流特性、曲線11a,11bは本発明の
一実施例における暗時、光照射時での電圧・電流
特性である。
Figure 2 shows the voltage and current characteristics of the solar cell of the present invention manufactured in this way and the conventional example, and shows the voltage and current characteristics when the light receiving surface is irradiated with light equivalent to AMI and in the dark when no light is irradiated. It shows. Here, the horizontal axis is the voltage (V), the vertical axis is the current (I), (Voc) is the open circuit voltage, and (Ioc)
indicates the short circuit current. That is, curve 10
Curves a and 10b are voltage and current characteristics in the dark and during light irradiation in the conventional example, and curves 11a and 11b are voltage and current characteristics in the dark and during light irradiation in an embodiment of the present invention.

この第2図から明らかなように、グリツド電
極、主電極にそれぞれAg,Ag―Alペーストを用
い大気中で焼成して各電極を形成した従来の太陽
電池ではその電圧・電流特性10a,10bがな
だらかな曲線を有していた。これに対して、上記
実施例の如く、同様のAg,Ag―Alペーストを用
いて大気中で焼成して各グリツド電極、主電極を
形成した後、これら電極をさらに水素雰囲気もし
くは窒素と水素の混合ガス雰囲気中で350〜500℃
の温度で焼成することによつて、上記n形拡散層
2とグリツド電極3との界面が還元されそのオー
ミツク性が著しく良好となり、シヤープな電圧・
電流特性11aおよび11bが得られた。その結
果、従来のものに比べて電圧・電流特性および光
変換効率を大幅に改善することができた。
As is clear from Fig. 2, the voltage and current characteristics 10a and 10b of the conventional solar cell, in which the grid electrode and the main electrode are made of Ag and Ag-Al pastes, respectively, and each electrode is formed by firing in the atmosphere, are It had a gentle curve. On the other hand, as in the above example, after each grid electrode and the main electrode are formed by firing in the air using the same Ag, Ag-Al paste, these electrodes are further heated in a hydrogen atmosphere or in a nitrogen and hydrogen atmosphere. 350~500℃ in mixed gas atmosphere
By firing at a temperature of
Current characteristics 11a and 11b were obtained. As a result, we were able to significantly improve voltage/current characteristics and light conversion efficiency compared to conventional products.

なお、上述した実施例では各グリツド電極、外
部端子半田付け用電極の材料を、エンゲルハード
製A4162としたが、昭栄化学製Agペースト
H4155,H516でもよい。本発明者の実験結果で
は、エンゲルハード製A4162を使用した場合、外
部電極端子の半田付け工程で接着強度が余り強く
ない傾向を示し、他方照栄化学製H4155,H5168
の両者とも接着強度は水素還元雰囲気中で加熱し
ても接着強度の低下はほとんどみられなかつた。
そのため、各メーカのAgペーストの分析からBi
(ビスマス)の含有が接着強度に影響を与えてい
ることを見出し、この結果からBiのAgペースト
中への含有量(wt%)を0.5〜10%にすることに
よつて、上記実施例の効果に加えてさらに良好な
接着強度が得られた。また、シリコン基板の受光
面と反対側に形成される主電極の材料は、Ag―
Alペーストに限らずそれ以外の導体ペーストを
用いることもできる。
In the above-mentioned example, the material of each grid electrode and external terminal soldering electrode was Engelhard's A4162, but Shoei Kagaku's Ag paste was used.
H4155 or H516 may also be used. The inventor's experimental results show that when A4162 manufactured by Engelhard is used, the adhesive strength tends to be not very strong in the soldering process of external electrode terminals, while H4155 and H5162 manufactured by Teruei Chemical Co., Ltd.
In both cases, there was almost no decrease in adhesive strength even when heated in a hydrogen reducing atmosphere.
Therefore, from the analysis of each manufacturer's Ag paste, Bi
It was found that the content of (bismuth) affected the adhesive strength, and based on this result, by adjusting the content (wt%) of Bi in the Ag paste to 0.5 to 10%, the above example In addition to this effect, even better adhesive strength was obtained. In addition, the material of the main electrode formed on the side opposite to the light-receiving surface of the silicon substrate is Ag-
Not only Al paste but also other conductor pastes can be used.

さらに、上記実施例ではシリコン単結晶太陽電
池について示したが、シリコン多結晶太陽電池、
アモルフアス太陽電池、GaAs太陽電池などの他
の太陽電池に適用しても同様の効果が得られる。
Furthermore, although silicon single crystal solar cells were shown in the above embodiments, silicon polycrystalline solar cells,
Similar effects can be obtained when applied to other solar cells such as amorphous solar cells and GaAs solar cells.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、この発明の方法によれ
ば、pn接合を有する半導体基板の受光面にBcを
含有するAgペーストを、その受光面と反対側の
面に導体ペーストをそれぞれ用いて大気中で焼成
してグリツド電極および主電極を形成した後、さ
らにこれら電極を水素雰囲気または窒素と水素の
混合ガス雰囲気中で加熱処理することにより、前
記半導体基板上のpn接合を形成する拡散層とAg
ペーストとの界面が還元されてそのオーミツク性
が良好となり、したがつて、電圧・電流特性、光
変換効率を向上し得るとともに、併せて製造歩留
りの向上ならびに原価低減化をはかるなどの効果
がある。
As detailed above, according to the method of the present invention, an Ag paste containing Bc is applied to the light-receiving surface of a semiconductor substrate having a p-n junction, and a conductive paste is used to the surface opposite to the light-receiving surface. After firing to form a grid electrode and a main electrode, these electrodes are further heat-treated in a hydrogen atmosphere or a mixed gas atmosphere of nitrogen and hydrogen to form a diffusion layer forming a pn junction on the semiconductor substrate and Ag.
The interface with the paste is reduced and its ohmic properties are improved, which improves voltage/current characteristics and light conversion efficiency, and also has the effect of improving manufacturing yield and reducing costs. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る製造方法の一実施例を
説明するための太陽電池の構造を示す要部断面
図、第2図は上記実施例により得られた太陽電池
と従来例とを比較して示す電圧・電流特性図であ
る。 1……p形単結晶シリコン基板、2……n形拡
散層、3……グリツド電極、4……裏面電極(主
電極)、5……外部端子半田付け用電極、6……
光反射防止膜。
FIG. 1 is a cross-sectional view of a main part showing the structure of a solar cell for explaining one embodiment of the manufacturing method according to the present invention, and FIG. 2 is a comparison between the solar cell obtained by the above embodiment and a conventional example. It is a voltage/current characteristic diagram shown in FIG. DESCRIPTION OF SYMBOLS 1...P-type single crystal silicon substrate, 2...N-type diffusion layer, 3...Grid electrode, 4...Back surface electrode (main electrode), 5...External terminal soldering electrode, 6...
Anti-reflection film.

Claims (1)

【特許請求の範囲】 1 半導体基板上に該基板とは異なる導電層を浅
く形成して受光面の近くにpn接合を形成する工
程と、前記導電層の受光面側にビスマスを含有す
る銀ペーストを、前記半導体基板の受光面と反対
側の面に導体ペーストを用いて大気中で焼成して
それぞれグリツド電極および主電極を形成する工
程と、この工程後、前記グリツド電極および主電
極を水素雰囲気もしくは窒素と水素の混合ガス雰
囲気中で加熱して還元する工程とを備えたことを
特徴とする太陽電池の製造方法。 2 グリツド電極として含有量0.5〜10のビスマ
スを含有した銀ペーストを用いることを特徴とす
る特許請求の範囲第1項記載の太陽電池の製造方
法。
[Claims] 1. A step of shallowly forming a conductive layer different from the substrate on a semiconductor substrate to form a pn junction near the light-receiving surface, and a silver paste containing bismuth on the light-receiving surface side of the conductive layer. A conductive paste is used on the surface opposite to the light-receiving surface of the semiconductor substrate and baked in the atmosphere to form a grid electrode and a main electrode, respectively. After this step, the grid electrode and main electrode are placed in a hydrogen atmosphere. Alternatively, a method for manufacturing a solar cell characterized by comprising a step of heating and reducing in a mixed gas atmosphere of nitrogen and hydrogen. 2. The method for manufacturing a solar cell according to claim 1, characterized in that a silver paste containing 0.5 to 10 bismuth is used as the grid electrode.
JP57231682A 1982-12-24 1982-12-24 Manufacture of solar battery Granted JPS59117276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57231682A JPS59117276A (en) 1982-12-24 1982-12-24 Manufacture of solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57231682A JPS59117276A (en) 1982-12-24 1982-12-24 Manufacture of solar battery

Publications (2)

Publication Number Publication Date
JPS59117276A JPS59117276A (en) 1984-07-06
JPS6311791B2 true JPS6311791B2 (en) 1988-03-16

Family

ID=16927335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57231682A Granted JPS59117276A (en) 1982-12-24 1982-12-24 Manufacture of solar battery

Country Status (1)

Country Link
JP (1) JPS59117276A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118362A (en) * 1990-09-24 1992-06-02 Mobil Solar Energy Corporation Electrical contacts and methods of manufacturing same
JP2008204967A (en) * 2005-05-31 2008-09-04 Naoetsu Electronics Co Ltd Solar cell element and method for fabricating the same
JP5376752B2 (en) * 2006-04-21 2013-12-25 信越半導体株式会社 Solar cell manufacturing method and solar cell
US8940572B2 (en) 2009-04-21 2015-01-27 Tetrasun, Inc. Method for forming structures in a solar cell
JP2020520114A (en) * 2017-05-10 2020-07-02 日立化成株式会社 Multi-layer metal film stack for roofing silicon solar array
CN109888029B (en) * 2019-03-22 2022-04-12 韩华新能源(启东)有限公司 Sintering method for improving aluminum cavity of PERC battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52129293A (en) * 1976-04-23 1977-10-29 Agency Of Ind Science & Technol Electrode of semiconductror device and its formation
JPS54158187A (en) * 1978-06-02 1979-12-13 Matsushita Electric Ind Co Ltd Electrode material for semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52129293A (en) * 1976-04-23 1977-10-29 Agency Of Ind Science & Technol Electrode of semiconductror device and its formation
JPS54158187A (en) * 1978-06-02 1979-12-13 Matsushita Electric Ind Co Ltd Electrode material for semiconductor device

Also Published As

Publication number Publication date
JPS59117276A (en) 1984-07-06

Similar Documents

Publication Publication Date Title
US5928438A (en) Structure and fabrication process for self-aligned locally deep-diffused emitter (SALDE) solar cell
JP5626361B2 (en) SOLAR CELL, SOLAR CELL MODULE, AND SOLAR CELL MANUFACTURING METHOD
JPH09172196A (en) Structure of aluminum alloy junction self-alignment rear surface electrode type silicon solar cell and its manufacture
JPS6249676A (en) Solar battery
JP5186192B2 (en) Solar cell module
JP4373774B2 (en) Method for manufacturing solar cell element
TWI725035B (en) Electric conductive paste, solar cell and method for manufacturing solar cell
JPH05110122A (en) Photoelectric conversion device and its manufacture
JPH02177569A (en) Manufacture of solar cell
WO2011024587A1 (en) Electrically conductive paste, electrode for semiconductor device, semiconductor device, and process for production of semiconductor device
US5411601A (en) Substrate for solar cell and solar cell employing the substrate
JPS6311791B2 (en)
CN102468369B (en) Method for forming metal electrode on surface of solar cell
JP2999867B2 (en) Solar cell and method of manufacturing the same
JPS63119274A (en) Solar cell element
JPH06252428A (en) Manufacture of photoelectric conversion element
JP2004235272A (en) Solar cell element and its fabricating process
CN110800114B (en) High-efficiency back electrode type solar cell and manufacturing method thereof
KR940007590B1 (en) Manufacturing method of silicon solar cell
JPS628039B2 (en)
JP2003282898A (en) Solar battery element and forming method thereof
JPH0521821A (en) Photoelectric converter
KR880002130B1 (en) Ito/n-si solar cell and its manufacturing method using electric heater
JPH03259572A (en) Formation of electrode of solar cell
KR940001292B1 (en) Solar cell manufacturing method