KR880002130B1 - Ito/n-si solar cell and its manufacturing method using electric heater - Google Patents

Ito/n-si solar cell and its manufacturing method using electric heater Download PDF

Info

Publication number
KR880002130B1
KR880002130B1 KR1019860000668A KR860000668A KR880002130B1 KR 880002130 B1 KR880002130 B1 KR 880002130B1 KR 1019860000668 A KR1019860000668 A KR 1019860000668A KR 860000668 A KR860000668 A KR 860000668A KR 880002130 B1 KR880002130 B1 KR 880002130B1
Authority
KR
South Korea
Prior art keywords
ito
solar cell
manufacturing
ito film
wafer
Prior art date
Application number
KR1019860000668A
Other languages
Korean (ko)
Other versions
KR870007573A (en
Inventor
최규만
Original Assignee
삼성전관 주식회사
정재은
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전관 주식회사, 정재은 filed Critical 삼성전관 주식회사
Priority to KR1019860000668A priority Critical patent/KR880002130B1/en
Publication of KR870007573A publication Critical patent/KR870007573A/en
Application granted granted Critical
Publication of KR880002130B1 publication Critical patent/KR880002130B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Abstract

The ITO/n-Si solar cell is made by following steps; (1) forming insulation layer (c) of n type Si wafer (b) by oxidizing at 500↿C for 5 min under atmosphere, (2) forming ITO membrane (d) on (c) by depositing ITO vapor at an incidence angle of 50↿, (3) heat-treating (d) at 300↿C for 30 min under atmosphere, and (4) depositing metal electrodes (a) and (e) in a thickness of 10000∦ on the upper (d) and lower surface (b) of the substrate.

Description

ITO/n-Si 태양 전지와 전자선 가열법을 이용한 그 제조 방법Manufacturing method using ITO / n-Si solar cell and electron beam heating method

제1도는 본 발명에서 사용되는 전자선 가열장치의 구조를 나타낸 도면.1 is a view showing the structure of the electron beam heating apparatus used in the present invention.

제2도는 ITO/n-Si 태양 전지의 제조 공정도.2 is a manufacturing process chart of ITO / n-Si solar cell.

제3a도는 본 발명에 따른 태양전지의 구조도.3a is a structural diagram of a solar cell according to the present invention;

제3b도는 종래의 태양전지 구조도.3b is a structure diagram of a conventional solar cell.

제4도는 산소분압에 따른 면저항값과 투과율의 변화를 나타내는 도표.4 is a chart showing changes in sheet resistance and transmittance according to oxygen partial pressure.

제5도는 ITO 증기류의 입사각에 따른 에너지 변환 효율의 특성도.5 is a characteristic diagram of the energy conversion efficiency according to the incident angle of the ITO vapor stream.

제6a도는 ITO막의 열처리온도에 따른 면저항값과 투과율의 변화를 나타내는 도표.FIG. 6A is a chart showing changes in sheet resistance and transmittance according to the heat treatment temperature of an ITO film. FIG.

제6b도는 ITO막의 열처리 시간에 따른 면저항값과 투과율의 변화를 나타내는 도표.6b is a chart showing changes in sheet resistance and transmittance according to the heat treatment time of the ITO film.

제7도는 본 발명에 의한 태양전지의 전류-전압 특성곡선을 나타내는 도표.7 is a table showing a current-voltage characteristic curve of a solar cell according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

a : 히터 b : 기판a: heater b: substrate

c : 셔터 d : 마그네트c: shutter d: magnet

e : 필라멘트 가, 마 : 금속전극e: filament A, e: metal electrode

나 : n-Si 기판 다 : 절연층B: n-Si substrate c: insulating layer

라 : ITOLA: ITO

본 발명은 태양의 광(光)에너지를 이용하는 태양전지에 관한 것으로써, 특히 전자선 가열방법을 이용하여 투명도와 전기 전도도가 높은 투명도전막(이하 ITO라 칭함)을 구비한 ITO/n-Si 태양전지의 제조방법과 그 태양전지의 구조에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell using solar energy, and in particular, an ITO / n-Si solar cell having a transparent conductive film (hereinafter referred to as ITO) having high transparency and electrical conductivity using an electron beam heating method. It relates to a method of manufacturing and the structure of the solar cell.

부존자원이 고갈되어 감에 따라 태양에너지를 이용하여 여러방면에 이용되고 있는데 그 중의 하나가 태양전지이다.As the existing resources are depleted, solar energy is being used in various ways, one of which is solar cells.

일반적으로 사용되는 종래의 태양전지는 제3b도와 같이 Si에 As를 불순물로서 백만분의 1정도 혼입시켜 N형의 반도체(N)를 만들고, 이 단결정을 절단한 절편을 붕소 화합물의 증기중에서 고온 가열하여 붕소원자를 두께 0.0001 인치 정도로 부착시켜 P형 반도체(P)로 만든다.Conventionally used solar cells incorporate As as impurities in Si as an impurity in Si as shown in Fig. 3b to form N-type semiconductors (N), and the single-crystal cut pieces are heated at high temperature in the vapor of the boron compound. The boron atoms are attached to a thickness of about 0.0001 inches to form a P-type semiconductor (P).

생성된 PN접합의 경계부근에 정전계가 생기고, 태양광을 쬐면 그 광량자의 에너지를 흡수하여 생성된 자유전자는 P형 반도체측으로, 정공은 N형 반도체 측으로 이동하여 기전력이 생긴다. 이러한 구조의 태양 전지는 통상 맑은 날씨일 경우 11mW/cm2의 출력을 내며, 0.35V의 출력 전압, 10%의 효율을 보이고 있다.An electrostatic field is generated near the boundary of the generated PN junction, and when sunlight is applied, free electrons generated by absorbing the energy of the photon are moved to the P-type semiconductor side, and holes move to the N-type semiconductor side, thereby generating electromotive force. The solar cell of such a structure usually outputs 11mW / cm 2 in sunny weather, and has an output voltage of 0.35V and an efficiency of 10%.

그런데 종래의 태양전지는 제조공정이 복잡할 뿐만 아니라 태양에너지를 이용하는데 있어서 효율이 낮은 단점이 있었다.However, the conventional solar cell has a disadvantage of low efficiency in using solar energy as well as a complicated manufacturing process.

따라서 본 발명은 태양에너지를 효율적으로 이용할 수 있는, 즉 종래의 것에 비해 높은 효율과 기전력을 발생하는 ITO/n-Si 태양전지를 제공하는데 그 주목적이 있다.Accordingly, the present invention has an object of providing an ITO / n-Si solar cell which can utilize solar energy efficiently, that is, generate high efficiency and electromotive force compared with the conventional one.

본 발명의 다른 목적은 전자선 가열 장치를 이용하여 ITO/n-Si 태양 전지를 제조할 수 있는 방법을 제공하는데 있다.Another object of the present invention is to provide a method for manufacturing an ITO / n-Si solar cell using an electron beam heating apparatus.

이하 첨부된 도면에 의거하여 본 발명의 목적을 달성할 수 있는 실시예를 상세히 기술하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

제1도는 ITO/n-Si 태양 전지에서 사용되는 투명도전막을 형성하기 위한 전자선 가열장치의 구조를 나타내는 도면으로서, 히터(a), 셔터(c), 마그네트(d), 필라멘트(e)로 구성되어 있으며, 히터(a)와 셔터(c) 사이에 글라스기판(b)를 설치하도록 되어 있다.1 is a diagram showing the structure of an electron beam heating apparatus for forming a transparent conductive film used in ITO / n-Si solar cells, and is composed of a heater (a), a shutter (c), a magnet (d), and a filament (e). The glass substrate b is provided between the heater a and the shutter c.

제2도 및 제3도는 각각 본 발명에 따른 태양전지의 제조공정과 태양전지의 구조를 나타내고 있다.2 and 3 show the manufacturing process of the solar cell and the structure of the solar cell according to the present invention, respectively.

우선, 비저항이 3-5Ω cm인 n형 Si웨이퍼(기판) (나)을 세척하고, 이어서 대기중 500℃에서 5분간 열처리(산화)하여 SiO2의 절연층(다)을 형성한다.First, an n-type Si wafer (substrate) (b) having a resistivity of 3-5 kPa is washed, followed by heat treatment (oxidation) at 500 ° C. for 5 minutes in the air to form an insulating layer (Si) of SiO 2 .

다음에, 제1도의 전자선 가열장치를 이용하여 상기한 SiO2의 절연층(다)위에 1000Å의 투명도전막, 즉 ITO막(라)를 증착하되, ITO증기류와 웨이퍼의 수선과의 각도(θ)를 약 50℃로 하고 10Å/sec의 증착률과 SnO2의 첨가율을 10mole %로 한다. ITO막 증착시 산소를 주입할 경우에는 막의 면저항 값은 감소하였으나 막의 경도 및 웨이퍼와의 접착력이 좋지 않았으므로 ITO막의 증착시 산소는 주입하지 않았다.Next, a 1000 Å transparent conductive film, i.e., an ITO film (D), is deposited on the above-described SiO 2 insulating layer (C) using the electron beam heating apparatus of FIG. 1, and the angle between the ITO vapor stream and the repair of the wafer ) Is about 50 ° C., and the deposition rate of 10 μs / sec and the addition rate of SnO 2 are 10 mole%. When oxygen was injected during the deposition of the ITO film, the sheet resistance of the film was decreased, but oxygen was not injected during the deposition of the ITO film because the film hardness and adhesion to the wafer were not good.

제4도는 ITO막 증착시 산소분압에 따른 투과율 값 (ㄱ)과 면저항 값(ㄴ)의 변화를 나타낸 것이며, 제5도는 입사각에 따른 에너지 변환 효율의 변화를 나타내는 도표이다.FIG. 4 is a graph showing changes in transmittance values (a) and sheet resistance values (b) according to oxygen partial pressure during deposition of an ITO film, and FIG. 5 is a chart showing a change in energy conversion efficiency according to an incident angle.

제4도에서 보는 바와 같이, 증착률이 10Å/sec, SnO2의 첨가율이 10mole %이고, 증착시 산소분압이 5×10-5torr이었을 때, 면저항 값은 가장 낮은 150Ω/ㅁ를 나타내었으며, 산소분압이 그이상 증가 되었을때 면저항값은 380Ω/ㅁ를 나타냈다.As shown in FIG. 4, when the deposition rate was 10 μs / sec, the addition rate of SnO 2 was 10 mole%, and the oxygen partial pressure during deposition was 5 × 10 −5 torr, the sheet resistance value was the lowest 150 μs / ㅁ, When the oxygen partial pressure increased further, the sheet resistance value was 380Ω / ㅁ.

그리고, 제5도에서 알 수 있듯이 ITO막 증착시 ITO 증기류와 웨이퍼의 수선과의 각도(이를 입사각 θ이라 칭함)가 θ°일때 에너지 변환효율은 0.5%를 나타내었으며, θ가 50°일 때 가장 높은 에너지 변환 효율인 13%를 나타냈다.As shown in FIG. 5, the energy conversion efficiency was 0.5% when the angle between the ITO vapor flow and the wafer repair (the incident angle θ) was θ ° during deposition of the ITO film, and when θ was 50 °. The highest energy conversion efficiency was 13%.

다음 제조 공정 단계로서, 상온에서 증착된 상기한 ITO막을 대기중 300℃에서 30분간 열처리한다.As a next manufacturing process step, the above-described ITO film deposited at room temperature is heat-treated at 300 ° C. for 30 minutes.

제6a도 및 제6b도는 각각 상온에서 제조된 ITO막의 열처리온도 및 열처리 시간에 따른 특성 변화를 나타내는 것으로서, 점선(ㄱ')(ㄴ")은 투과율의 변화율, 점선(ㄴ')(ㄴ")은 면저항값의 변화를 나타내고 있다.6a and 6b show the change of properties according to the heat treatment temperature and the heat treatment time of the ITO film prepared at room temperature, respectively. Indicates a change in sheet resistance value.

상온에서 제조된 ITO막은 거의 불투명한 검은 색깔을 나타냈으며, 약 2KΩ/ㄴ의 면저항값을 나타냈다.The ITO membrane prepared at room temperature showed almost opaque black color and exhibited a sheet resistance value of about 2 KΩ / b.

그러나 열처리를 함에 따라 점점 투영하여 졌으며, 약 300℃, 30분일 때 가장 적절한 면저항값과 광투과율을 나타낸 바, 이때의 면저항값은 330Ω/ㅁ, 광투과율은 파장 550nm에서 90%의 투과율을 나타냈다.However, as the heat treatment was gradually projected, the most appropriate sheet resistance value and light transmittance were shown at about 300 ° C. and 30 minutes.

상기한 과정에서 얻어진 시료의 상하면에 금속전극(가)(마)으로서 은(Ag)을 각각 10,000Å씩 증착하되, 전극(마)은 그리드(gird)상태로 만든다.On the upper and lower surfaces of the sample obtained in the above-described process, silver (Ag) is deposited by 10,000 각각 each as a metal electrode (e), but the electrode (e) is made into a grid (gird) state.

제7도에는 상기한 과정에 의해 제조된 1cm2의 면적을 가진 ITO/n-Si 태양전지의 AM1에서의 전류-전압 특성곡선이 도시되어 있는데, 여기서 광원은 500W의 텅스텐 할로겐 램프를 사용하였으며 충실도(FiLL Factor ; FF)와 에너지 변환 효율(Efficiency ; Eff)은 다음과 같은 식으로 얻을 수 있다.Figure 7 shows the current-voltage characteristic curve at AM1 of an ITO / n-Si solar cell with an area of 1 cm 2 produced by the above process, where a light source is a 500 W tungsten halogen lamp and (FiLL Factor; FF) and energy conversion efficiency (Efficiency; Eff) can be obtained as follows.

Figure kpo00001
Figure kpo00001

여기서 Im·Vm은 최대출력을 나타내는 양으로 제7도에서 점P에 대응하는 값이며, Pin은 입사광의 세기, A는 태양전지의 면적이다.Where Im · Vm is the amount representing the maximum output and is a value corresponding to point P in FIG.

제7도와 위의 식으로부터 얻어진 값은 다음의 표와 같다.7 and the values obtained from the above equation are shown in the following table.

[표][table]

Figure kpo00002
Figure kpo00002

상단의 ITO/n-Si*는 산화물층이 없는 태양전지의 특성값을 나타낸 것이다.ITO / n-Si * at the top shows the characteristic values of the solar cell without the oxide layer.

상기의 표에서 보는 바와 같이, 본 발명에 따라 제조된 ITO/n-Si 태양전지는 35mA/cm2의 단락전류, 0.44V의 개방전압, 0.84의 충실도, 13%의 효율을 나타내었다.As shown in the above table, the ITO / n-Si solar cell manufactured according to the present invention exhibited a short circuit current of 35 mA / cm 2 , an open voltage of 0.44 V, a fidelity of 0.84, and an efficiency of 13%.

이상의 설명에서 알 수 있듯이, 본 발명의 제조방법에 의하면 전자선 가열 장치를 이용한 ITO막의 형성시 용이하게 ITO증기류와 웨이퍼의 수선과의 각도(입사각)를 소정값, 특히 50°의 각도로 선정하여 높은 에너지 변환효율을 얻을 수 잇으며, ITO막의 열처리시의 시간과 온도를 적정히 선택함에 따라 최적의 면저항 값과 투과율을 가진 태양전지를 쉽게 제작할 수 있는 장점을 지니고 있다.As can be seen from the above description, according to the manufacturing method of the present invention, the angle (incidence angle) between the ITO vapor stream and the repair line of the wafer can be easily selected at a predetermined value, in particular, at an angle of 50 ° during formation of the ITO film using an electron beam heating apparatus. The high energy conversion efficiency can be obtained, and the solar cell having an optimal sheet resistance value and transmittance can be easily manufactured by appropriately selecting the time and temperature during the heat treatment of the ITO film.

Claims (2)

n형 Si기판(나)의 하면에 금속전극(가)이 증착되어 있으며, 상기한 기판(나)의 상면에는 SiO2의 절연층(다) 및 ITO막(라)이 적층구조로 증착되어 있고, ITO막(라)의 상면에 그리드 형태의 금속전극(마)이 증착되어 구성된 것을 특징으로 하는 ITO/n-Si 태양전지.A metal electrode (A) is deposited on the bottom surface of the n-type Si substrate (B), and an insulating layer (C) and an ITO film (D) of SiO 2 are deposited on the top surface of the substrate (B). ITO / n-Si solar cell, characterized in that the grid-shaped metal electrode (e) is deposited on the upper surface of the ITO film (D). 세척된 n형 Si 웨이퍼(나)를 대기중 500℃에서 5분간 산화하여 SiO2의 절연층(다)을 형성하는 단계와, ITO 증기류와 웨이퍼의 수선과의 각도(θ)를 약 50°로 하여 상기 절연층(다)위에 1000Å의 ITO막(라)을 형성하는 단계와, 상기한 ITO막(라)을 대기중 300℃에서 30분간 열처리하는 단계와, 상기한 공정에서 얻어진 시료의 상하면에 금속 전극(가)(마)을 각각 10,000Å씩 증착하는 단계로 이루어짐을 특징으로 하는 전자선 가열법을 이용한 ITO/n-Si 태양전지의 제조방법.Oxidizing the washed n-type Si wafer (b) at 500 ° C. for 5 minutes to form an insulating layer (Si) of SiO 2 , and reducing the angle (θ) between the ITO vapor flow and the repair of the wafer by about 50 °. Forming an ITO film (d) of 1000 에 on the insulating layer (C), heat-treating the ITO film (d) for 30 minutes at 300 ° C in the air, and the upper and lower surfaces of the sample obtained in the above process. Method of manufacturing an ITO / n-Si solar cell using an electron beam heating method characterized in that the step of depositing a metal electrode (a) (e) to each 10,000Å.
KR1019860000668A 1986-01-31 1986-01-31 Ito/n-si solar cell and its manufacturing method using electric heater KR880002130B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019860000668A KR880002130B1 (en) 1986-01-31 1986-01-31 Ito/n-si solar cell and its manufacturing method using electric heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019860000668A KR880002130B1 (en) 1986-01-31 1986-01-31 Ito/n-si solar cell and its manufacturing method using electric heater

Publications (2)

Publication Number Publication Date
KR870007573A KR870007573A (en) 1987-08-20
KR880002130B1 true KR880002130B1 (en) 1988-10-15

Family

ID=19248259

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019860000668A KR880002130B1 (en) 1986-01-31 1986-01-31 Ito/n-si solar cell and its manufacturing method using electric heater

Country Status (1)

Country Link
KR (1) KR880002130B1 (en)

Also Published As

Publication number Publication date
KR870007573A (en) 1987-08-20

Similar Documents

Publication Publication Date Title
US4163677A (en) Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier
KR100997669B1 (en) Silicon solar cell using screen printing and Manufacturing method of thereof
US4200473A (en) Amorphous silicon Schottky barrier solar cells incorporating a thin insulating layer and a thin doped layer
US4239553A (en) Thin film photovoltaic cells having increased durability and operating life and method for making same
US20110139231A1 (en) Back junction solar cell with selective front surface field
WO2007055484A1 (en) Solar cell of high efficiency and process for preparation of the same
JPH0563953B2 (en)
JPH08500210A (en) Photovoltaic cell and manufacturing method thereof
US4398054A (en) Compensated amorphous silicon solar cell incorporating an insulating layer
KR20090078275A (en) Solar cell having uneven insulating layer and method for manufacturing the same
JP2001257371A (en) Method for manufacturing solar cell, solar cell and condensing type solar cell module
KR880002130B1 (en) Ito/n-si solar cell and its manufacturing method using electric heater
JP2680579B2 (en) Photovoltaic device
KR101223021B1 (en) Method of preparing solar cell and solar cell
KR20190079622A (en) Method for manufacturing high photoelectric conversion efficiency solar cell and high photoelectric conversion efficiency solar cell
JPS58215083A (en) Hetero-junction photoelectric element and device therefor
JP3253449B2 (en) Method for manufacturing photovoltaic device
JPWO2006049003A1 (en) Method for manufacturing thin film photoelectric conversion device
KR102563642B1 (en) High-efficiency back-electrode solar cell and its manufacturing method
JP2744680B2 (en) Manufacturing method of thin film solar cell
KR20080105268A (en) Method of forming passivation layer of solar cell, method of preparing solar cell and solar cell
CN205428970U (en) Heterojunction solar cell having amorphous silicon layer
KR101151413B1 (en) Solar cell having multimple anti-reflection film and manufacturing method thereof
CN106910793A (en) Heterojunction solar cell
KR950001619B1 (en) Single crystal silicon sollar cell

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19910909

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee