JPWO2006049003A1 - Method for manufacturing thin film photoelectric conversion device - Google Patents

Method for manufacturing thin film photoelectric conversion device Download PDF

Info

Publication number
JPWO2006049003A1
JPWO2006049003A1 JP2006542938A JP2006542938A JPWO2006049003A1 JP WO2006049003 A1 JPWO2006049003 A1 JP WO2006049003A1 JP 2006542938 A JP2006542938 A JP 2006542938A JP 2006542938 A JP2006542938 A JP 2006542938A JP WO2006049003 A1 JPWO2006049003 A1 JP WO2006049003A1
Authority
JP
Japan
Prior art keywords
photoelectric conversion
transparent conductive
layer
thin film
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006542938A
Other languages
Japanese (ja)
Inventor
澤田 徹
徹 澤田
山本 憲治
憲治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of JPWO2006049003A1 publication Critical patent/JPWO2006049003A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

耐熱性の低い酸化亜鉛から成る透明導電膜を用いた場合にもその抵抗率を増大させることなく、高効率な薄膜光電変換装置を安価に製造できる製造方法を提供すること。本発明の薄膜光電変換装置の製造方法は、透光性基板の一方の主面上に順に、酸化亜鉛を主成分とする透明導電膜、少なくとも第一光電変換ユニットを含む1ユニット以上の光電変換ユニット、及び裏面電極層を備えてなる薄膜光電変換装置の製造方法であって、前記透明導電膜上には、直接、前記第一光電変換ユニットが形成されてなり、かつ、前記第一光電変換ユニットを構成する前記一導電型半導体層はシリコン系であり、前記シリコン系一導電型半導体層を170℃以下の温度に保持された前記透明導電膜上に形成する工程、及び前記裏面電極層形成後に170℃以上の大気圧下で加熱する工程を含むことを特徴とする薄膜光電変換装置の製造方法である。To provide a production method capable of producing a highly efficient thin film photoelectric conversion device at low cost without increasing the resistivity even when a transparent conductive film made of zinc oxide having low heat resistance is used. The manufacturing method of the thin film photoelectric conversion device of the present invention includes one or more units of photoelectric conversion including a transparent conductive film containing zinc oxide as a main component and at least a first photoelectric conversion unit in order on one main surface of a translucent substrate. A method of manufacturing a thin film photoelectric conversion device comprising a unit and a back electrode layer, wherein the first photoelectric conversion unit is formed directly on the transparent conductive film, and the first photoelectric conversion is performed The one-conductivity-type semiconductor layer constituting the unit is silicon-based, and the silicon-based one-conductivity-type semiconductor layer is formed on the transparent conductive film maintained at a temperature of 170 ° C. or less, and the back electrode layer formation It is a manufacturing method of the thin film photoelectric conversion apparatus characterized by including the process heated later under atmospheric pressure of 170 degreeC or more.

Description

本発明は酸化亜鉛を主成分とする透明導電膜上に直接シリコン系一導電型半導体層を形成してなる薄膜光電変換装置の製造方法に関する。   The present invention relates to a method for manufacturing a thin film photoelectric conversion device in which a silicon-based single-conductivity type semiconductor layer is directly formed on a transparent conductive film containing zinc oxide as a main component.

近年では薄膜太陽電池に代表される薄膜光電変換装置も多様化し、従来の非晶質薄膜光電変換装置に加えて結晶質薄膜光電変換装置も開発され、これらを積層したハイブリッド薄膜光電変換装置も実用化されている。このような薄膜光電変換装置は、一般に、透光性基板上に順に積層された透明導電膜、1以上の光電変換ユニット、および裏面電極層を含んでいる。   In recent years, thin film photoelectric conversion devices represented by thin film solar cells have also diversified, and crystalline thin film photoelectric conversion devices have been developed in addition to conventional amorphous thin film photoelectric conversion devices. It has become. Such a thin film photoelectric conversion device generally includes a transparent conductive film, one or more photoelectric conversion units, and a back electrode layer that are sequentially stacked on a light-transmitting substrate.

そして、1つの光電変換ユニットは一導電型半導体層と他導電型半導体層でサンドイッチされた光電変換層を含んでいる。一導導電型半導体層としてはシリコン系一導電型半導体層が用いられることが多い。光電変換層は通常i型層として形成される。ここで、例えば、一導電型半導体層とはp型層であり、この場合には他導電型半導体層とはn型層であり、この逆の場合もある。   One photoelectric conversion unit includes a photoelectric conversion layer sandwiched between one conductivity type semiconductor layer and another conductivity type semiconductor layer. As the one-conductivity-type semiconductor layer, a silicon-based one-conductivity-type semiconductor layer is often used. The photoelectric conversion layer is usually formed as an i-type layer. Here, for example, the one-conductivity-type semiconductor layer is a p-type layer, and in this case, the other-conductivity-type semiconductor layer is an n-type layer, and vice versa.

光電変換層は真性半導体層(i型層)に限らず、ドープされた不純物(ドーパント)によって吸収される光の損失が問題にならない範囲で微量にp型またはn型にドープされた層であってもよい。光電変換層は光吸収のためには厚い方が好ましいが、必要以上に厚くすればその製膜のためのコストと時間が増大することになる。   The photoelectric conversion layer is not limited to an intrinsic semiconductor layer (i-type layer), but is a layer doped in a small amount of p-type or n-type within a range where loss of light absorbed by a doped impurity (dopant) does not become a problem. May be. The photoelectric conversion layer is preferably thicker for light absorption, but if it is thicker than necessary, the cost and time for film formation will increase.

他方、p型やn型の導電型半導体層は光電変換ユニット内に内部電界を生じさせる役目を果たし、この内部電界の大きさによって薄膜光電変換装置の重要な特性の1つである開放電圧(Voc)の値が左右される。しかし、これらの導電型半導体層は光電変換に直接寄与しない不活性な層であり、導電型半導体層にドープされた不純物によって吸収される光は発電に寄与しない損失となる。したがって、p型とn型の導電型半導体層は、十分な内部電界を生じさせ得る範囲内であれば、できるだけ小さな厚さにとどめておくことが好ましい。導電型半導体層の厚さは一般的には20nm程度以下である。   On the other hand, the p-type or n-type conductive semiconductor layer plays a role of generating an internal electric field in the photoelectric conversion unit, and an open-circuit voltage (one of important characteristics of the thin film photoelectric conversion device depending on the magnitude of the internal electric field). The value of Voc) is influenced. However, these conductive semiconductor layers are inactive layers that do not directly contribute to photoelectric conversion, and light absorbed by impurities doped in the conductive semiconductor layer is a loss that does not contribute to power generation. Therefore, it is preferable that the p-type and n-type conductive semiconductor layers have a thickness as small as possible as long as a sufficient internal electric field can be generated. The thickness of the conductive semiconductor layer is generally about 20 nm or less.

ここで、光電変換ユニットまたは薄膜光電変換装置は、それに含まれるp型とn型の導電型半導体層が非晶質か結晶質かにかかわらず、その主要部を占める光電変換層が非晶質のものは非晶質ユニットまたは非晶質薄膜光電変換装置と称され、光電変換層が結晶質のものは結晶質ユニットまたは結晶質薄膜光電変換装置と称される。   Here, the photoelectric conversion unit or the thin film photoelectric conversion device has an amorphous photoelectric conversion layer that occupies the main part regardless of whether the p-type and n-type conductive semiconductor layers included therein are amorphous or crystalline. Is called an amorphous unit or an amorphous thin film photoelectric conversion device, and one having a crystalline photoelectric conversion layer is called a crystalline unit or a crystalline thin film photoelectric conversion device.

薄膜光電変換装置の変換効率を向上させる方法として、2以上の光電変換ユニットを積層してタンデム型にする方法がある。この方法においては、薄膜光電変換装置の光入射側に大きなバンドギャップを有する光電変換層を含む前方ユニットを配置し、その後方に順に小さなバンドギャップを有する光電変換層を含む後方ユニットを配置することにより、入射光の広い波長範囲にわたって光電変換を可能にし、これによって光電変換装置全体としての変換効率の向上が図られる。このようなタンデム型光電変換装置の中でも、特に非晶質光電変換ユニットと結晶質光電変換ユニットを積層したものはハイブリッド薄膜光電変換装置と称される。   As a method for improving the conversion efficiency of the thin film photoelectric conversion device, there is a method of stacking two or more photoelectric conversion units into a tandem type. In this method, a front unit including a photoelectric conversion layer having a large band gap is disposed on the light incident side of the thin film photoelectric conversion device, and a rear unit including a photoelectric conversion layer having a small band gap is sequentially disposed behind the front unit. Thus, photoelectric conversion can be performed over a wide wavelength range of incident light, thereby improving the conversion efficiency of the entire photoelectric conversion device. Among such tandem photoelectric conversion devices, those in which an amorphous photoelectric conversion unit and a crystalline photoelectric conversion unit are stacked are referred to as hybrid thin film photoelectric conversion devices.

例えば、i型非晶質シリコンを光電変換層とする非晶質シリコン光電変換ユニットが光電変換し得る光の波長は長波長側において800nm程度までであるが、i型結晶質シリコンを光電変換層とする結晶質シリコン光電変換ユニットはそれより長い約1150nm程度の波長までの光を光電変換することができる。ただし、光吸収係数の大きな非晶質シリコン光電変換層は光吸収のためには0.3μm程度以下の厚さでも十分であるが、光吸収係数の小さな結晶質シリコン光電変換層は長波長の光をも十分に吸収するためには1.5〜3μm程度の厚さを有することが好ましい。すなわち、結晶質光電変換層は、通常は非晶質光電変換層に比べて5〜10倍程度の厚さを有することが望まれる。   For example, the wavelength of light that can be photoelectrically converted by an amorphous silicon photoelectric conversion unit using i-type amorphous silicon as a photoelectric conversion layer is up to about 800 nm on the long wavelength side, but i-type crystalline silicon is used as the photoelectric conversion layer. The crystalline silicon photoelectric conversion unit described above can photoelectrically convert light having a longer wavelength up to about 1150 nm. However, although an amorphous silicon photoelectric conversion layer having a large light absorption coefficient may have a thickness of about 0.3 μm or less for light absorption, a crystalline silicon photoelectric conversion layer having a small light absorption coefficient has a long wavelength. In order to sufficiently absorb light, it is preferable to have a thickness of about 1.5 to 3 μm. That is, the crystalline photoelectric conversion layer is usually desired to have a thickness of about 5 to 10 times that of the amorphous photoelectric conversion layer.

透光性基板は通常その上に形成される透明導電膜や光電変換ユニットに十分な光を到達させ、かつ光電変換装置を屋外に設置する際にこれらを衝撃や外気から保護する役割を果たす。このため、例えば結晶質シリコンを光電変換層とする結晶質光電変換ユニットを透光性基板上に形成する場合には、透光性基板は350〜1150nm程度の波長の光に対して十分な光線透過率を有することが望まれる。また、透光性基板としては耐衝撃性や耐候性に優れた材料を用いることが望ましい。   The translucent substrate normally serves to protect the transparent conductive film and the photoelectric conversion unit formed thereon from sufficient light and protect the photoelectric conversion device from impact and outside air when installed outdoors. For this reason, for example, when a crystalline photoelectric conversion unit having crystalline silicon as a photoelectric conversion layer is formed on a light-transmitting substrate, the light-transmitting substrate has sufficient light for light having a wavelength of about 350 to 1150 nm. It is desirable to have transmittance. In addition, it is desirable to use a material excellent in impact resistance and weather resistance as the translucent substrate.

透明導電膜は透光性基板を通じて入射された光をできるだけ失うことなく光電変換ユニット側に透過させると共に、光電変換ユニット内で発生した光電流を効率良く外部に取り出す役割を果たす。このため、高い透明性と低いシート抵抗を兼ね備えていることが望ましい。シート抵抗が高くなると光電変換装置の直列抵抗が大きくなり、結果的に曲線因子(FF)の低下につながる。   The transparent conductive film transmits light incident through the translucent substrate to the photoelectric conversion unit side without losing as much as possible, and efficiently takes out the photocurrent generated in the photoelectric conversion unit to the outside. For this reason, it is desirable to have both high transparency and low sheet resistance. When the sheet resistance increases, the series resistance of the photoelectric conversion device increases, and as a result, the fill factor (FF) decreases.

薄膜光電変換装置は、従来のバルクの単結晶や多結晶を使用した光電変換装置に比べて光電変換層を薄くすることが可能であるが、反面、光吸収が光電変換層の厚さによって制限されてしまうという問題がある。そこで、光電変換層を含む光電変換ユニットに入射した光をより有効に利用するために、光電変換ユニットに接する透明導電膜の表面に微細な凹凸を形成し、その界面で光を散乱した後、光電変換ユニット内へ入射させることで光路長を延長せしめ、光電変換層内での光吸収量を増加させる工夫がなされている。この技術は「光閉じ込め」と呼ばれており、高い光電変換効率を有する薄膜光電変換装置を実用化する上で、重要な要素技術となっている。   Thin film photoelectric conversion devices can make the photoelectric conversion layer thinner than conventional bulk single crystal and polycrystal photoelectric conversion devices, but the light absorption is limited by the thickness of the photoelectric conversion layer. There is a problem of being done. Therefore, in order to more effectively use the light incident on the photoelectric conversion unit including the photoelectric conversion layer, after forming fine irregularities on the surface of the transparent conductive film in contact with the photoelectric conversion unit and scattering light at the interface, A device has been devised to extend the optical path length by making it enter the photoelectric conversion unit and to increase the amount of light absorption in the photoelectric conversion layer. This technique is called “optical confinement”, and is an important elemental technique for practical use of a thin film photoelectric conversion device having high photoelectric conversion efficiency.

その凹凸の高低差は一般的には0.05μm〜0.3μm程度である。   The height difference of the unevenness is generally about 0.05 μm to 0.3 μm.

この透明導電膜の凹凸の度合いを表す指標としてヘイズ率がある。これは特定の光源の光を透明導電膜が付いた透光性基板に入射した際に透過する光のうち、光路が曲げられた散乱成分を全成分で割ったものに相当し、通常可視光を含むC光源を用いて測定される。一般的には凹凸の高低差を大きくするほど、または凹凸の凸部と凸部の間隔が大きくなるほどヘイズ率が高くなり、光電変換ユニット内に入射された光は有効に閉じ込められ、いわゆる光閉じ込め効果が優れている。   There is a haze ratio as an index representing the degree of unevenness of the transparent conductive film. This is equivalent to the light that is transmitted when the light from a specific light source is incident on a transparent substrate with a transparent conductive film divided by the scattered component whose optical path is bent and divided by all components. Measured using a C light source containing Generally, the haze ratio increases as the height difference between the projections and depressions increases, or as the distance between the projections and depressions of the projections and projections increases, and the light incident into the photoelectric conversion unit is effectively confined. The effect is excellent.

したがって、非晶質シリコン単層の薄膜光電変換装置にせよ、前述のハイブリッド薄膜光電変換装置にせよ、透明導電膜の透明性を向上させ、ヘイズ率を高くし、かつシート抵抗を低く保つことができれば、光電変換層の厚さをより薄くしても高い短絡電流密度(Jsc)を維持できると共に、高い曲線因子(FF)を得ることができるので薄膜光電変換装置の性能を向上させることができ、また、製造コストを下げることにつながる。   Therefore, whether the amorphous silicon single layer thin film photoelectric conversion device or the hybrid thin film photoelectric conversion device described above can improve the transparency of the transparent conductive film, increase the haze ratio, and keep the sheet resistance low. If possible, a high short circuit current density (Jsc) can be maintained even when the photoelectric conversion layer is made thinner, and a high fill factor (FF) can be obtained, so that the performance of the thin film photoelectric conversion device can be improved. Moreover, it leads to lowering the manufacturing cost.

透明導電膜の材料としては酸化錫が古くから一般的に用いられているが、500℃以上の熱CVD法を用いるため、透光性基板に用いる材料が限定されることや、形成条件を調整することにより凹凸の凸部と凸部の間隔を大きくしてヘイズ率を上げていくと、Vocを維持するのが困難になるという問題点がある。更に、材料自体の光吸収損失が大きいため、シート抵抗を通常使用する10Ω/□程度の値に保持しようとすれば、薄膜非晶質シリコンや結晶質シリコンの重要な吸収領域である500〜800nmの吸収損失が無視できない大きさとなる。   Tin oxide has been generally used as a material for transparent conductive films, but since the thermal CVD method at 500 ° C. or higher is used, the material used for the light-transmitting substrate is limited and the formation conditions are adjusted. As a result, when the haze ratio is increased by increasing the interval between the convex and concave portions of the concave and convex portions, there is a problem that it becomes difficult to maintain Voc. Furthermore, since the light absorption loss of the material itself is large, if the sheet resistance is kept at a value of about 10 Ω / □, which is normally used, 500 to 800 nm which is an important absorption region of thin film amorphous silicon or crystalline silicon. The absorption loss is not negligible.

このような課題に対して、近年、透明導電膜に200℃程度の熱CVD法で形成した酸化亜鉛を用いる方法が注目されている。酸化亜鉛から成る透明導電膜は低温で形成されるため、透光性基板に使用可能な材料の選択肢が広がる上、ヘイズ率を上げてもVocが維持できるという利点がある。これは酸化錫から成る透明導電膜との表面形状の違いによるものと考えられる。更に、材料自体の光吸収損失が小さく、薄膜光電変換装置のJscを大きくできるという利点もある。   In recent years, attention has been paid to a method using zinc oxide formed on a transparent conductive film by a thermal CVD method at about 200 ° C. for such a problem. Since the transparent conductive film made of zinc oxide is formed at a low temperature, there are advantages that the choice of materials that can be used for the light-transmitting substrate is widened and that Voc can be maintained even if the haze ratio is increased. This is considered to be due to the difference in surface shape from the transparent conductive film made of tin oxide. Further, there is an advantage that the light absorption loss of the material itself is small, and Jsc of the thin film photoelectric conversion device can be increased.

薄膜光電変換装置の透明導電膜としてCVD法で形成された酸化亜鉛からなる膜を用いることは、非特許文献1に記載されている。具体的には、ボロンを添加した酸化亜鉛から成る透明導電膜を170〜200℃で形成し、シート抵抗値が4Ω/□前後の透明導電膜とした後その上に、非晶質シリコン層を高周波プラズマCVDで形成し、非晶質シリコンのシングル光電変換装置を得ている。ここでi型非晶質シリコン層の厚さが0.35μmの場合に、FFが0.72〜0.73、Jscが17.5mA/cm2、変換効率が11.2%であったと記載されている。
J. Meier et al., "Efficiency enhancement of amorphous silicon p-i-n solar cells by LP-CVD ZnO", Proc. of 28th IEEE Photovoltaic Specialists Conference, Anchorage, 2000, pp.746-749
Non-patent document 1 describes that a film made of zinc oxide formed by a CVD method is used as a transparent conductive film of a thin film photoelectric conversion device. Specifically, a transparent conductive film made of zinc oxide to which boron is added is formed at 170 to 200 ° C., a transparent conductive film having a sheet resistance value of about 4Ω / □ is formed, and an amorphous silicon layer is formed thereon. A single photoelectric conversion device of amorphous silicon is obtained by high-frequency plasma CVD. Here, when the thickness of the i-type amorphous silicon layer is 0.35 μm, FF is 0.72 to 0.73, Jsc is 17.5 mA / cm 2 , and conversion efficiency is 11.2%. Has been.
J. Meier et al., "Efficiency enhancement of amorphous silicon pin solar cells by LP-CVD ZnO", Proc. Of 28th IEEE Photovoltaic Specialists Conference, Anchorage, 2000, pp.746-749

上述のような状況に鑑み、本発明は、酸化亜鉛を主成分とする透明導電膜上に直接シリコン系一導電型半導体層を形成してなる薄膜光電変換装置に関し、さらに、その光電変換特性を向上させうる薄膜光電変換装置の製造方法を得ることを課題としている。   In view of the situation as described above, the present invention relates to a thin film photoelectric conversion device in which a silicon-based one-conductivity-type semiconductor layer is directly formed on a transparent conductive film containing zinc oxide as a main component. It is an object to obtain a method for manufacturing a thin film photoelectric conversion device that can be improved.

特に熱CVDで形成された耐熱性の低い酸化亜鉛から成る透明導電膜を用いた場合に、その抵抗率を変化させることなく、透明導電膜上に光電変換ユニットを形成することにより、前記透明導電膜の潜在的能力を十分に発揮できる薄膜光電変換装置の製造方法に関するものである。   In particular, when a transparent conductive film made of zinc oxide with low heat resistance formed by thermal CVD is used, the transparent conductive film is formed by forming a photoelectric conversion unit on the transparent conductive film without changing its resistivity. The present invention relates to a method of manufacturing a thin film photoelectric conversion device that can fully exhibit the potential of the film.

本発明による薄膜光電変換装置の製造方法は、透光性基板の一方の主面上に順に、酸化亜鉛を主成分とする透明導電膜、少なくとも第一光電変換ユニットを含む1ユニット以上の光電変換ユニット、及び裏面電極層を備えてなる薄膜光電変換装置の製造方法であって、前記光電変換ユニットは、前記透光性基板側から順に一導電型半導体層、光電変換層、及び他導電型半導体層からなり、かつ、前記透明導電膜上には、直接、前記第一光電変換ユニットが形成されてなり、かつ、前記第一光電変換ユニットを構成する前記一導電型半導体層はシリコン系であり、前記シリコン系一導電型半導体層を170℃以下の温度に保持された前記透明導電膜上に形成する工程、及び前記裏面電極層形成後に170℃以上の大気圧下で加熱する工程を含むことを特徴とする薄膜光電変換装置の製造方法である。透明導電膜上に形成されるシリコン系一導電型半導体層の形成温度を、透明導電膜の加熱による高抵抗化を防止するために170℃以下に設定し、さらに、そのシリコン系一導電型半導体層中のドーパントの活性化率を上げ、また透明導電膜とシリコン系一導電型半導体層、他導電型半導体層と裏面電極層の各接合界面を確実にオーミック接触とするために、裏面電極層形成後に前記シリコン系一導電型半導体層の形成温度以上での大気圧下で加熱している。これらの作用により、光電変換特性が向上した薄膜光電変換装置を製造することができる。   The method for producing a thin film photoelectric conversion device according to the present invention comprises, in order, one or more units of photoelectric conversion including a transparent conductive film containing zinc oxide as a main component and at least a first photoelectric conversion unit on one main surface of a translucent substrate. A method of manufacturing a thin-film photoelectric conversion device comprising a unit and a back electrode layer, wherein the photoelectric conversion unit includes a one-conductivity-type semiconductor layer, a photoelectric-conversion layer, and another-conductivity-type semiconductor in order from the translucent substrate side. The first photoelectric conversion unit is formed directly on the transparent conductive film, and the one-conductivity-type semiconductor layer constituting the first photoelectric conversion unit is silicon-based. A step of forming the silicon-based one-conductivity type semiconductor layer on the transparent conductive film maintained at a temperature of 170 ° C. or lower, and a step of heating at an atmospheric pressure of 170 ° C. or higher after the formation of the back electrode layer. A method for manufacturing a thin film photoelectric conversion device comprising and. The formation temperature of the silicon-based one-conductivity-type semiconductor layer formed on the transparent conductive film is set to 170 ° C. or lower in order to prevent the resistance of the transparent conductive film from being increased by heating. In order to increase the activation rate of the dopant in the layer and to ensure ohmic contact between the transparent conductive film and the silicon-based one-conductivity-type semiconductor layer, and each junction interface between the other conductive-type semiconductor layer and the back-surface electrode layer, After the formation, heating is performed under atmospheric pressure at a temperature equal to or higher than the formation temperature of the silicon-based one conductivity type semiconductor layer. By these actions, a thin film photoelectric conversion device with improved photoelectric conversion characteristics can be manufactured.

また、本発明による薄膜光電変換装置の製造方法は、前記透明導電膜を元素として少なくとも亜鉛、硼素、及び酸素を含む原料ガスを用いてCVD法で形成する工程をさらに含むことが好ましい。何故なら、本発明の作用効果は、特に亜鉛、硼素、及び酸素を元素として含む原料ガスを用いてCVD法で形成した酸化亜鉛に対して有効であるからである。   In addition, the method for manufacturing a thin film photoelectric conversion device according to the present invention preferably further includes a step of forming the transparent conductive film by a CVD method using a raw material gas containing at least zinc, boron, and oxygen as elements. This is because the effects of the present invention are particularly effective for zinc oxide formed by a CVD method using a source gas containing zinc, boron, and oxygen as elements.

本発明によれば、耐熱性の低い酸化亜鉛から成る透明導電膜を用いた場合にも透明導電膜の抵抗変化を抑制でき、光電変換装置の直列抵抗を小さく保つことができる。この結果、高効率な薄膜光電変換装置を簡単なプロセスで安価に提供することができる。   According to the present invention, even when a transparent conductive film made of zinc oxide having low heat resistance is used, the resistance change of the transparent conductive film can be suppressed, and the series resistance of the photoelectric conversion device can be kept small. As a result, a highly efficient thin film photoelectric conversion device can be provided at a low cost by a simple process.

ハイブリッド薄膜光電変換装置の模式的断面図である。It is a typical sectional view of a hybrid thin film photoelectric conversion device. 非晶質シリコンシングル光電変換装置の模式的断面図である。It is a typical sectional view of an amorphous silicon single photoelectric conversion device. 実施例1の条件で作製した非晶質シリコンシングル光電変換装置の、水素、炭素、酸素および窒素濃度の深さ方向プロファイルである。It is a depth direction profile of hydrogen, carbon, oxygen, and nitrogen concentration of the amorphous silicon single photoelectric conversion device produced on the conditions of Example 1. 比較例1の条件で作製した非晶質シリコンシングル光電変換装置の、水素、炭素、酸素および窒素濃度の深さ方向プロファイルである。It is a depth direction profile of hydrogen, carbon, oxygen, and nitrogen concentration of the amorphous silicon single photoelectric conversion device produced on the conditions of Comparative Example 1. 参考例の条件で作製した非晶質シリコンシングル光電変換装置の、水素、炭素、酸素および窒素濃度の深さ方向プロファイルである。It is the depth direction profile of hydrogen, carbon, oxygen, and nitrogen concentration of the amorphous silicon single photoelectric conversion device produced on condition of a reference example. 集積型ハイブリッド薄膜光電変換装置の模式的断面図である。It is typical sectional drawing of an integrated hybrid thin film photoelectric conversion apparatus.

符号の説明Explanation of symbols

1 透光性基板
2 透明導電膜
3 非晶質光電変換ユニット
3p 非晶質p型シリコンカーバイド層
3i ノンドープ非晶質i型シリコン光電変換層
3n n型シリコン層
4 結晶質光電変換ユニット
4p p型結晶質シリコン層
4i 結晶質i型シリコン光電変換層
4n n型結晶質シリコン層
5 裏面電極層
5t 透明反射層
2a 透明電極層分離溝
4a 接続溝
5a 裏面電極層分離溝
DESCRIPTION OF SYMBOLS 1 Translucent substrate 2 Transparent electrically conductive film 3 Amorphous photoelectric conversion unit 3p Amorphous p-type silicon carbide layer 3i Non-doped amorphous i-type silicon photoelectric conversion layer 3n N-type silicon layer 4 Crystalline photoelectric conversion unit 4p p-type Crystalline silicon layer 4i Crystalline i-type silicon photoelectric conversion layer 4n n-type crystalline silicon layer 5 Back electrode layer 5t Transparent reflection layer 2a Transparent electrode layer separation groove 4a Connection groove 5a Back electrode layer separation groove

本発明者らは、薄膜光電変換装置の透明導電膜としてCVD法で形成された酸化亜鉛からなる膜を用い、実際に薄膜光電変換装置を形成した。その結果、以下の問題があることを見出し、本発明を為すに到った。   The present inventors actually formed a thin film photoelectric conversion device using a film made of zinc oxide formed by a CVD method as a transparent conductive film of the thin film photoelectric conversion device. As a result, the inventors have found that there are the following problems and have come to make the present invention.

まず、熱CVDで形成された酸化亜鉛を用いた透明導電膜は耐熱性が低いという問題点があることがわかった。具体的には、透明導電膜を形成した後そのままの状態で大気中に数ヶ月放置すると、膜のシート抵抗が1桁以上増大する。また、透明導電膜を大気中で200℃程度の温度でアニールすると、同様に膜のシート抵抗が増大する。また、透明導電膜上に薄膜光電変換装置を形成した場合、同様に透明導電膜が高抵抗化して光電変換装置の直列抵抗が増大する。   First, it has been found that a transparent conductive film using zinc oxide formed by thermal CVD has a problem of low heat resistance. Specifically, when the transparent conductive film is formed and left in the atmosphere for several months, the sheet resistance of the film increases by an order of magnitude or more. Further, when the transparent conductive film is annealed in the atmosphere at a temperature of about 200 ° C., the sheet resistance of the film similarly increases. Further, when a thin film photoelectric conversion device is formed on a transparent conductive film, the resistance of the transparent conductive film similarly increases, and the series resistance of the photoelectric conversion device increases.

本発明者らは、このような問題を解決するため、最適な光電変換装置の作製条件を鋭意検討した。その結果、透明導電膜上に形成されるシリコン系一導電型半導体層を170℃以下の温度で形成し、その後、光電変換層、他導電型半導体層、裏面電極層を形成し、更に前記温度以上の雰囲気温度で大気圧下において加熱することにより、透明導電膜の高抵抗化を防止できることを見出した。   In order to solve such a problem, the present inventors diligently studied an optimum manufacturing condition of a photoelectric conversion device. As a result, a silicon-based one-conductivity-type semiconductor layer formed on the transparent conductive film is formed at a temperature of 170 ° C. or lower, and then a photoelectric conversion layer, another conductivity-type semiconductor layer, and a back electrode layer are formed. It has been found that the resistance of the transparent conductive film can be prevented from being increased by heating at the above atmospheric temperature under atmospheric pressure.

本発明は、CVD法、スパッタ法、蒸着法等のいずれの方法で形成された酸化亜鉛から成る透明導電膜にも適用可能であるが、特に亜鉛、硼素、及び酸素を元素として含む原料ガスを用いてCVD法で形成した酸化亜鉛に対して有効である。   The present invention can be applied to a transparent conductive film made of zinc oxide formed by any method such as a CVD method, a sputtering method, and a vapor deposition method. In particular, a source gas containing zinc, boron, and oxygen as elements is used. It is effective for zinc oxide formed by CVD method.

本発明においては、透明導電膜上に直接形成されるシリコン系一導電型半導体層を170℃以下の温度で形成することにより酸化亜鉛からなる透明導電膜の高抵抗化を防ぐことができる。このメカニズムは明らかではないが、酸化亜鉛膜の導電性には膜中の酸素欠陥構造が大きく関与しており、これを酸素雰囲気下で加熱した場合、たとえ減圧下であっても雰囲気中に僅かに含まれる酸素が膜中に取り込まれて、電子の流路となる酸素欠損が減少し、抵抗率が増大すると考えられる。一方、シリコン系一導電型半導体層を170℃以下の温度で形成し、透明導電膜を覆ってしまえば、その後前記温度よりも高温の工程を経ても、酸素原子が透明導電膜中に取り込まれることはない。このことにより、透明導電膜の高抵抗化が防止できていると考えられる。   In the present invention, it is possible to prevent the transparent conductive film made of zinc oxide from increasing in resistance by forming the silicon-based one-conductivity-type semiconductor layer directly formed on the transparent conductive film at a temperature of 170 ° C. or lower. Although this mechanism is not clear, the oxygen defect structure in the film is greatly involved in the conductivity of the zinc oxide film, and when this is heated in an oxygen atmosphere, it is slightly in the atmosphere even under reduced pressure. It is considered that oxygen contained in the film is taken into the film, oxygen vacancies serving as electron channels are reduced, and resistivity is increased. On the other hand, if the silicon-based one-conductivity type semiconductor layer is formed at a temperature of 170 ° C. or lower and the transparent conductive film is covered, oxygen atoms are taken into the transparent conductive film even after a temperature higher than the above temperature. There is nothing. It is considered that this makes it possible to prevent the transparent conductive film from increasing in resistance.

一方、170℃以下の形成温度では、シリコンを主成分とする一導電型半導体層中のドーパントの活性化率が十分上がらない場合があり、また透明導電膜とシリコン系一導電型半導体層、他導電型半導体層と裏面電極層の各接合界面がオーミック接触とならない場合がある。この問題は光電変換装置形成後、例えば裏面電極層形成後に前記170℃以上の温度で大気圧下で、光電変換装置を加熱する工程を経ることによって解決される。   On the other hand, at a formation temperature of 170 ° C. or lower, the activation rate of the dopant in the one-conductivity-type semiconductor layer containing silicon as a main component may not be sufficiently increased, and the transparent conductive film, the silicon-based one-conductivity-type semiconductor layer, etc. In some cases, each junction interface between the conductive semiconductor layer and the back electrode layer is not in ohmic contact. This problem is solved by performing a step of heating the photoelectric conversion device after forming the photoelectric conversion device, for example, after forming the back electrode layer, at the temperature of 170 ° C. or higher under atmospheric pressure.

加熱雰囲気に用いられる気体としては、大気、窒素、窒素と酸素の混合物等が好ましく用いられる。また、大気圧に限らず多少の減圧下または加圧下でも同様の効果が認められる。具体的には少なくとも0.5〜1.5気圧の範囲で効果を有する。   As the gas used in the heating atmosphere, air, nitrogen, a mixture of nitrogen and oxygen, or the like is preferably used. Moreover, the same effect is recognized not only in atmospheric pressure but also in some decompression or pressurization. Specifically, it has an effect in a range of at least 0.5 to 1.5 atmospheres.

以下に、本発明の実施の形態としての薄膜光電変換装置を、図1および図2を参照しつつ説明する。   Hereinafter, a thin film photoelectric conversion device as an embodiment of the present invention will be described with reference to FIG. 1 and FIG.

透光性基板1の上に透明導電膜2が形成されている。透光性基板1としては、ガラス、透明樹脂等から成る板状部材やシート状部材が用いられる。透光性基板1としてガラスを用いる場合には、光照射による可視域の透過率低下を抑制するために、ガラス中に含まれるFe23に換算した全酸化鉄ができるだけ少ないことが望ましく、具体的には0.02重量%以下であることが望ましい。A transparent conductive film 2 is formed on the translucent substrate 1. As the translucent substrate 1, a plate-like member or a sheet-like member made of glass, transparent resin or the like is used. When glass is used as the translucent substrate 1, it is desirable that the total iron oxide converted to Fe 2 O 3 contained in the glass be as small as possible in order to suppress a decrease in visible transmittance due to light irradiation. Specifically, it is preferably 0.02% by weight or less.

透明導電膜2としては酸化亜鉛が用いられる。透明導電膜2はCVD、スパッタ、蒸着等の方法を用いて形成されることが好ましく、特に形成温度200℃程度のCVD法で形成されることが望ましい。また、ドーピング原料としてはボロンを用いることが望ましい。透明導電膜2は、形成条件の工夫によりその表面に微細な凹凸を生じさせて入射光の散乱を増大させる効果を有している。凹凸の高低差は0.05〜0.3μm程度であり、シート抵抗は5〜20Ω/□程度に設定される。   Zinc oxide is used as the transparent conductive film 2. The transparent conductive film 2 is preferably formed using a method such as CVD, sputtering, or vapor deposition, and is particularly preferably formed by a CVD method at a formation temperature of about 200 ° C. Further, it is desirable to use boron as a doping material. The transparent conductive film 2 has the effect of increasing the scattering of incident light by producing fine irregularities on the surface by devising the formation conditions. The height difference of the unevenness is about 0.05 to 0.3 μm, and the sheet resistance is set to about 5 to 20Ω / □.

酸化亜鉛を主成分とする透明導電膜2の上には、1以上の光電変換ユニットが形成される。光電変換ユニットは非晶質光電変換ユニット、結晶質光電変換ユニットの単ユニットでもよく、これらを積層したハイブリッド型でも良い。さらにこれらが3ユニット以上積層されていてもよい。また、光電変換ユニットに用いられる材料には、シリコン、シリコンカーバイド、シリコンゲルマニウム等のシリコン合金や、銅−インジウム−セレン、ガリウム−砒素等の化合物系材料も好ましく用いられる。   One or more photoelectric conversion units are formed on the transparent conductive film 2 mainly composed of zinc oxide. The photoelectric conversion unit may be a single unit of an amorphous photoelectric conversion unit or a crystalline photoelectric conversion unit, or may be a hybrid type in which these are stacked. Further, three or more units of these may be laminated. As a material used for the photoelectric conversion unit, a silicon alloy such as silicon, silicon carbide, or silicon germanium, or a compound material such as copper-indium-selenium, gallium-arsenic, or the like is also preferably used.

例えば、光電変換ユニットとして非晶質光電変換ユニットの単ユニットを用い、材料としてシリコンを用いる場合には、図2に示すような構成となる。すなわち、透明導電膜2上に一導電型半導体層である非晶質p型シリコンカーバイド層3p、ノンドープ非晶質i型シリコン光電変換層3i、n型シリコン層3nから成る非晶質光電変換ユニット3が形成される。非晶質p型シリコンカーバイド層3pは、透明導電膜2の加熱による高抵抗化を防止するため、基板温度170℃以下で形成される。   For example, when a single unit of an amorphous photoelectric conversion unit is used as the photoelectric conversion unit and silicon is used as the material, the configuration is as shown in FIG. That is, an amorphous photoelectric conversion unit comprising an amorphous p-type silicon carbide layer 3p, a non-doped amorphous i-type silicon photoelectric conversion layer 3i, and an n-type silicon layer 3n, which are one-conductivity type semiconductor layers, on the transparent conductive film 2. 3 is formed. The amorphous p-type silicon carbide layer 3p is formed at a substrate temperature of 170 ° C. or lower in order to prevent the resistance of the transparent conductive film 2 from being increased by heating.

一方、例えば、ハイブリッド薄膜光電変換装置においては、図1に示すように非晶質光電変換ユニット3の上に結晶質光電変換ユニット4が形成される。結晶質光電変換ユニット4は結晶質p型シリコン層4p、結晶質i型シリコン光電変換層4i、および結晶質n型シリコン層4nから成り立っている。非晶質光電変換ユニット3、および結晶質光電変換ユニット4の形成には高周波プラズマCVD法が適している。光電変換ユニットの形成条件としては、基板温度100〜250℃(ただし、非晶質p型シリコンカーバイド層3pは170℃以下)、圧力30〜1500Pa、高周波パワー密度0.01〜0.5W/cm2が好ましく用いられる。光電変換ユニット形成に使用する原料ガスとしては、SiH4、Si26等のシリコン含有ガスまたは、それらのガスと水素を混合したものが用いられる。光電変換ユニットにおけるp型またはn型層を形成するためのドーパントガスとしては、B26またはPH3等が好ましく用いられる。On the other hand, for example, in a hybrid thin film photoelectric conversion device, a crystalline photoelectric conversion unit 4 is formed on an amorphous photoelectric conversion unit 3 as shown in FIG. The crystalline photoelectric conversion unit 4 includes a crystalline p-type silicon layer 4p, a crystalline i-type silicon photoelectric conversion layer 4i, and a crystalline n-type silicon layer 4n. A high frequency plasma CVD method is suitable for forming the amorphous photoelectric conversion unit 3 and the crystalline photoelectric conversion unit 4. As conditions for forming the photoelectric conversion unit, the substrate temperature is 100 to 250 ° C. (however, the amorphous p-type silicon carbide layer 3p is 170 ° C. or less), the pressure is 30 to 1500 Pa, and the high frequency power density is 0.01 to 0.5 W / cm. 2 is preferably used. As a source gas used for forming the photoelectric conversion unit, a silicon-containing gas such as SiH 4 or Si 2 H 6 or a mixture of these gases and hydrogen is used. B 2 H 6 or PH 3 is preferably used as the dopant gas for forming the p-type or n-type layer in the photoelectric conversion unit.

図2におけるn型シリコン層3n、または図1におけるn型シリコン層4nの上には裏面電極層5が形成される。裏面電極層5にはAg、Alまたはそれらの合金が好ましく用いられる。裏面電極層5とn型シリコン層4nとの間には、裏面電極層5からn型シリコン層4nへの金属の拡散を防止するため、透明反射層5tを挿入してもよい。透明反射層5tにはZnO、ITO等の高抵抗で透明性の優れた金属酸化物が用いられる。透明反射層5tおよび裏面電極層5の形成においては、スパッタ、蒸着等の方法が好ましく用いられる。   A back electrode layer 5 is formed on the n-type silicon layer 3n in FIG. 2 or the n-type silicon layer 4n in FIG. For the back electrode layer 5, Ag, Al, or an alloy thereof is preferably used. A transparent reflective layer 5t may be inserted between the back electrode layer 5 and the n-type silicon layer 4n in order to prevent metal diffusion from the back electrode layer 5 to the n-type silicon layer 4n. For the transparent reflective layer 5t, a metal oxide having high resistance and excellent transparency, such as ZnO or ITO, is used. In forming the transparent reflective layer 5t and the back electrode layer 5, methods such as sputtering and vapor deposition are preferably used.

裏面電極層5の形成後、前述したように、シリコン系一導電型半導体層である、例えば非晶質p型シリコンカーバイド層3pの形成温度以上の雰囲気温度で大気圧下で光電変換装置を加熱することにより、本発明の薄膜光電変換装置の製造方法となる。   After the formation of the back electrode layer 5, as described above, the photoelectric conversion device is heated under atmospheric pressure at an atmospheric temperature equal to or higher than the formation temperature of the silicon-based one-conductivity-type semiconductor layer, for example, the amorphous p-type silicon carbide layer 3p. By doing so, it becomes a manufacturing method of the thin film photoelectric conversion device of the present invention.

以下に、本発明による薄膜光電変換装置の製造方法について実施例1、2を、図2、図3を参照しつつ、比較例1〜4と比較しながら説明する。   Below, the manufacturing method of the thin film photoelectric conversion apparatus by this invention is demonstrated, comparing Examples 1 and 2 with Comparative Examples 1-4, referring FIG. 2, FIG.

(実施例1)
図2は、実施例1で作製した非晶質シリコンシングル光電変換装置を模式的に示す断面図である。
(Example 1)
FIG. 2 is a cross-sectional view schematically showing the amorphous silicon single photoelectric conversion device manufactured in Example 1.

まず、0.7mm厚の白板ガラスから成る透光性基板1の一主面上に、酸化亜鉛からなる表面に微細な凹凸構造を有する透明導電膜2を熱CVD法により形成した。形成条件としては、基板1の表面温度を160〜180℃、圧力100Paに設定し、ジエチル亜鉛、水、B26、アルゴン、水素を原料ガスに用いた。得られた透明導電膜2の厚さは1.5μm、ヘイズ率は22%、シート抵抗は10Ω/□であった。First, the transparent conductive film 2 having a fine concavo-convex structure on the surface made of zinc oxide was formed on one main surface of the translucent substrate 1 made of 0.7 mm thick white glass by a thermal CVD method. As the formation conditions, the surface temperature of the substrate 1 was set to 160 to 180 ° C. and the pressure was set to 100 Pa, and diethyl zinc, water, B 2 H 6 , argon, and hydrogen were used as source gases. The obtained transparent conductive film 2 had a thickness of 1.5 μm, a haze ratio of 22%, and a sheet resistance of 10Ω / □.

次に、第一光電変換ユニットとして非晶質光電変換ユニット3を形成するために、透明導電膜2が形成された透光性基板1を高周波プラズマCVD装置内に導入し、基板1の表面温度が170℃になるように加熱した後、シリコン系一導電型半導体層として厚さ20Åの非晶質p型シリコンカーバイド(p型a−SiC)層(図示せず)、厚さ50Åの微結晶p型シリコン層(図示せず)、および厚さ150Åのp型a−SiC層3pを順次形成した。引き続いて基板1の表面温度を所定温度に加熱した後、光電変換層として厚さ3000Åのノンドープ非晶質i型シリコン光電変換層3iを、さらに、他導電型半導体層として厚さ150Åのn型シリコン層3nを順次積層した。   Next, in order to form the amorphous photoelectric conversion unit 3 as the first photoelectric conversion unit, the translucent substrate 1 on which the transparent conductive film 2 is formed is introduced into a high-frequency plasma CVD apparatus, and the surface temperature of the substrate 1 is determined. After heating to 170 ° C., an amorphous p-type silicon carbide (p-type a-SiC) layer (not shown) having a thickness of 20 mm as a silicon-based one-conductivity type semiconductor layer, a microcrystal having a thickness of 50 mm A p-type silicon layer (not shown) and a p-type a-SiC layer 3p having a thickness of 150 mm were sequentially formed. Subsequently, after the surface temperature of the substrate 1 is heated to a predetermined temperature, a non-doped amorphous i-type silicon photoelectric conversion layer 3i having a thickness of 3000 mm as a photoelectric conversion layer, and an n-type having a thickness of 150 mm as another conductive semiconductor layer are further formed. Silicon layers 3n were sequentially stacked.

このとき、p型a−SiC層3pの形成条件は、圧力150〜400Pa、高周波電力のパワー密度0.02〜0.05W/cm2、SiH4:水素:水素で0.1%に希釈されたB26:CH4のガス比が1:30:10:1.6であり、その層の厚さが80Å相当となった時点で放電を維持したまま、水素で0.1%に希釈されたB26およびCH4の供給を止め、代わりに水素のSiH4に対するガス比を30から40に増やして残り70Åの製膜を行った。At this time, the conditions for forming the p-type a-SiC layer 3p are: pressure 150 to 400 Pa, power density of high frequency power 0.02 to 0.05 W / cm 2 , SiH 4 : hydrogen: diluted to 0.1% with hydrogen. When the gas ratio of B 2 H 6 : CH 4 is 1: 30: 10: 1.6 and the thickness of the layer reaches 80 mm, the discharge is maintained and the hydrogen is reduced to 0.1%. The supply of diluted B 2 H 6 and CH 4 was stopped, and instead the gas ratio of hydrogen to SiH 4 was increased from 30 to 40, and the remaining 70 mm of film was formed.

次に、裏面電極層として厚さ900ÅのZnOから成る透明反射層5tと厚さ2000ÅのAgから成る裏面電極層5をDCスパッタ法によって形成した。さらに、YAG第2高調波パルスレーザーを透光性基板1側から照射することにより、透明導電膜2のみを残し、非晶質光電変換ユニット3、透明反射層5t、および裏面電極層5を幅50μmの線状に除去することにより、1cm角の島状の光電変換装置領域を形成した。   Next, a transparent reflective layer 5t made of ZnO having a thickness of 900 mm and a back electrode layer 5 made of Ag having a thickness of 2000 mm were formed as a back electrode layer by a DC sputtering method. Further, by irradiating the YAG second harmonic pulse laser from the translucent substrate 1 side, only the transparent conductive film 2 is left, and the amorphous photoelectric conversion unit 3, the transparent reflective layer 5t, and the back electrode layer 5 are made wide. By removing in a 50 μm line, a 1 cm square island-shaped photoelectric conversion device region was formed.

その後、大気中で雰囲気温度170℃にて90分間熱処理することにより、実施例1の光電変換装置が作製された。   Then, the photoelectric conversion apparatus of Example 1 was produced by heat-processing in air | atmosphere for 90 minutes at the atmospheric temperature of 170 degreeC.

実施例1で作製した非晶質シリコンシングル光電変換装置に、スペクトル分布AM1.5、エネルギー密度100mW/cm2の擬似太陽光を、測定雰囲気及び光電変換装置の温度が25±1℃の下で照射し薄膜光電変換装置の出力特性を測定した。Voc、Jsc、F.F.、変換効率(Eff.)、直列抵抗(Rs)の測定結果を表1に示す。なお、先の熱処理時の圧力を0.5〜1.5気圧の範囲で変化させた場合、得られた光電変換装置特性は同一であった。To the amorphous silicon single photoelectric conversion device manufactured in Example 1, pseudo-sunlight having a spectral distribution of AM1.5 and an energy density of 100 mW / cm 2 is measured under a measurement atmosphere and a temperature of the photoelectric conversion device of 25 ± 1 ° C. The output characteristics of the thin film photoelectric conversion device were measured by irradiation. Voc, Jsc, F.M. F. Table 1 shows the measurement results of conversion efficiency (Eff.) And series resistance (Rs). In addition, when the pressure at the time of the previous heat treatment was changed in the range of 0.5 to 1.5 atmospheres, the obtained photoelectric conversion device characteristics were the same.

なお、表1は、実施例1、及び後述する比較例1、2、参考例の条件で作製した非晶質シリコンシングル光電変換装置の光電変換特性を比較した表である。   Table 1 is a table comparing the photoelectric conversion characteristics of the amorphous silicon single photoelectric conversion devices manufactured under the conditions of Example 1, Comparative Examples 1 and 2 described later, and Reference Example.

Figure 2006049003
Figure 2006049003

(比較例1)
比較例1においては、実施例1とほぼ同様の工程を実施したが、裏面電極層5形成後に大気中において雰囲気温度150℃で熱処理を行った点が、実施例1とは異なっていた。測定結果を表1に示す。
(Comparative Example 1)
In Comparative Example 1, almost the same process as in Example 1 was performed, but the heat treatment was performed at an atmospheric temperature of 150 ° C. in the air after the back electrode layer 5 was formed. The measurement results are shown in Table 1.

(比較例2)
比較例1においては、実施例1とほぼ同様の工程を実施したが、p型a−SiC層3pの形成温度が185℃であった点が、実施例1とは異なっていた。測定結果を表1に示す。
(Comparative Example 2)
In Comparative Example 1, almost the same process as in Example 1 was performed, but the formation temperature of the p-type a-SiC layer 3p was 185 ° C., which was different from Example 1. Table 1 shows the measurement results.

表1の実施例1と比較例1の比較から、大気中で熱処理を行う雰囲気温度を150℃からp型a−SiC層の形成温度と同じ170℃とすることにより、Eff.が0.3%向上していることがわかる。これは、p型a−SiC層のドーパントの活性化率が向上し、また導電型半導体層と電極間のオーミック接触が改善されたことによるものと考えられる。また、実施例1においては透明導電膜のシート抵抗は10Ω/□と比較的高い値でありながら、0.74近いF.F.が得られており、先に示した非特許文献1のF.F.と比べても大きい値となっている。   From the comparison between Example 1 and Comparative Example 1 in Table 1, the Eff. It can be seen that is improved by 0.3%. This is considered to be because the activation rate of the dopant of the p-type a-SiC layer was improved and the ohmic contact between the conductive semiconductor layer and the electrode was improved. Further, in Example 1, the sheet resistance of the transparent conductive film is a relatively high value of 10Ω / □, but the F. F. Is obtained, as described in F. of Non-Patent Document 1 shown above. F. It is also a large value compared to.

一方、実施例1と比較例2の比較から、p型a−SiC層の形成温度を185℃とすると、透明導電膜が高抵抗化することにより光電変換装置のシリーズ抵抗(Rs)が増大し、F.F.が低下してEff.の差は0.8%にも達する。   On the other hand, from the comparison between Example 1 and Comparative Example 2, when the formation temperature of the p-type a-SiC layer is 185 ° C., the series resistance (Rs) of the photoelectric conversion device increases due to the high resistance of the transparent conductive film. , F. F. Decreases and Eff. The difference reaches 0.8%.

(参考例)
参考例においては、比較例1とほぼ同様の工程を実施したが、透明電極膜2を形成した後、一旦透光性基板1を大気中で雰囲気温度200℃で90分熱処理してから、高周波プラズマCVD装置内に導入した点が、比較例1とは異なっていた。測定結果を表1に示す。この参考例においては、大気中での200℃での加熱処理の影響で酸化亜鉛膜の抵抗率が増大したためか、あるいは、この処理により酸化亜鉛膜に取り込まれた酸素原子が光電変換ユニット、特にp型層に拡散したためか、特にシリーズ抵抗Rsが大きくなり、実施例1や各比較例より低い光電変換特性Eff.となった。
(Reference example)
In the reference example, substantially the same process as in Comparative Example 1 was performed. After the transparent electrode film 2 was formed, the translucent substrate 1 was once heat treated in the atmosphere at an atmospheric temperature of 200 ° C. for 90 minutes, and then the high frequency It was different from Comparative Example 1 in that it was introduced into the plasma CVD apparatus. Table 1 shows the measurement results. In this reference example, the resistivity of the zinc oxide film increased due to the influence of the heat treatment at 200 ° C. in the atmosphere, or oxygen atoms taken into the zinc oxide film by this treatment are converted into photoelectric conversion units, particularly The series resistance Rs is particularly large because of the diffusion to the p-type layer, which is lower than the photoelectric conversion characteristics Eff. It became.

また、実施例1、比較例1および参考例の条件で作製した非晶質シリコンシングル光電変換装置の各々について、裏面電極層5側から透光性基板1側に向かってイオンスパッタリングしながらSIMSで水素、炭素、酸素および窒素濃度の深さ方向プロファイルを測定した。実施例1、比較例1、及び参考例の測定結果を各々、図3、図4、及び図5に示す。各図において、横軸0.6μmはp型層であるa−SiCと光電変換層のi型層であるa−Si層との界面に相当し、透明導電膜の表面凹凸により界面自体は平面でなく平均的な値ではあるものの、その地点での酸素量は各図の横線で示すように、実施例1、及び比較例1が1021atoms/cc半ば程度なのに対し、参考例では1022atoms/cc程度で数倍参考例の方が高くなっており、前記推定を裏付ける結果が得られた。Further, for each of the amorphous silicon single photoelectric conversion devices manufactured under the conditions of Example 1, Comparative Example 1, and Reference Example, SIMS was performed while performing ion sputtering from the back electrode layer 5 side toward the translucent substrate 1 side. The depth profiles of hydrogen, carbon, oxygen and nitrogen concentrations were measured. The measurement results of Example 1, Comparative Example 1, and Reference Example are shown in FIG. 3, FIG. 4, and FIG. 5, respectively. In each figure, the horizontal axis of 0.6 μm corresponds to the interface between the a-SiC that is the p-type layer and the a-Si layer that is the i-type layer of the photoelectric conversion layer. Although it is not an average value, the oxygen amount at that point is about 10 21 atoms / cc in Example 1 and Comparative Example 1 as shown by the horizontal line in each figure, whereas it is 10 22 in the reference example. The reference example was several times higher at about atoms / cc, and the results supporting the above estimation were obtained.

(実施例2)
図6は、実施例2で作製した集積型ハイブリッド薄膜光電変換装置を模式的に示す断面図である。
(Example 2)
6 is a cross-sectional view schematically showing the integrated hybrid thin film photoelectric conversion device manufactured in Example 2. FIG.

まず、910mm×455mm×4mm厚の白板ガラスから成る透光性基板1の一主面上に、酸化亜鉛からなる表面に微細な凹凸構造を有する透明導電膜2を熱CVD法により形成した。形成条件としては、透光性基板1の表面温度を150〜180℃、圧力100Paに設定し、ジエチル亜鉛、水、B26、アルゴン、水素を原料ガスに用いた。得られた透明導電膜2の厚さは1.7μm、ヘイズ率は25%、シート抵抗は9.5Ω/□であった。次に、透明電極層2を複数の帯状パタ−ンへと分割するためにYAG基本波パルスレーザーを透光性基板1に照射することにより、幅50μmの透明電極層分離溝2aを形成し、超音波洗浄および乾燥を行った。First, a transparent conductive film 2 having a fine concavo-convex structure on a surface made of zinc oxide was formed on one main surface of a translucent substrate 1 made of white glass having a thickness of 910 mm × 455 mm × 4 mm by a thermal CVD method. As the formation conditions, the surface temperature of the translucent substrate 1 was set to 150 to 180 ° C. and the pressure was 100 Pa, and diethyl zinc, water, B 2 H 6 , argon, and hydrogen were used as source gases. The obtained transparent conductive film 2 had a thickness of 1.7 μm, a haze ratio of 25%, and a sheet resistance of 9.5Ω / □. Next, a transparent electrode layer separation groove 2a having a width of 50 μm is formed by irradiating the translucent substrate 1 with a YAG fundamental wave pulse laser in order to divide the transparent electrode layer 2 into a plurality of strip patterns. Ultrasonic cleaning and drying were performed.

次に、、第一光電変換ユニットとして非晶質光電変換ユニット3を形成するために、透明導電膜2が形成された透光性基板1を高周波プラズマCVD装置内に導入し、基板1の表面温度が165℃になるように加熱した後、シリコン系一導電型半導体層として厚さ20Åの非晶質p型シリコンカーバイド(p型a−SiC)層(図示せず)、厚さ50Åの微結晶p型シリコン層(図示せず)、および厚さ150Åのp型a−SiC層3pを順次形成した。引き続いて基板1の表面温度を所定温度に加熱した後、光電変換層として厚さ3000Åのノンドープ非晶質i型シリコン光電変換層3iを、さらに、他導電型半導体層として厚さ300Åのn型シリコン層3nを順次積層した。   Next, in order to form the amorphous photoelectric conversion unit 3 as the first photoelectric conversion unit, the translucent substrate 1 on which the transparent conductive film 2 is formed is introduced into a high-frequency plasma CVD apparatus, and the surface of the substrate 1 is After heating to a temperature of 165 ° C., an amorphous p-type silicon carbide (p-type a-SiC) layer (not shown) having a thickness of 20 mm as a silicon-based one-conductivity type semiconductor layer, A crystalline p-type silicon layer (not shown) and a p-type a-SiC layer 3p having a thickness of 150 mm were sequentially formed. Subsequently, after the surface temperature of the substrate 1 is heated to a predetermined temperature, a non-doped amorphous i-type silicon photoelectric conversion layer 3i having a thickness of 3000 mm as a photoelectric conversion layer, and an n-type having a thickness of 300 mm as another conductive semiconductor layer. Silicon layers 3n were sequentially stacked.

このとき、p型a−SiC層3pの形成条件は、圧力120〜200Pa、高周波電力のパワー密度0.01〜0.02W/cm2、SiH4:水素:水素で0.1%に希釈されたB26:CH4のガス比が1:11:1.6:1.8であり、その層の厚さが80Å相当となった時点で放電を維持したまま、水素で0.1%に希釈されたB26およびCH4の供給を止めて残り70Åの製膜を行った。At this time, the conditions for forming the p-type a-SiC layer 3p are as follows: the pressure is 120 to 200 Pa, the power density of the high frequency power is 0.01 to 0.02 W / cm 2 , and SiH 4 is diluted to 0.1% with hydrogen: hydrogen. When the gas ratio of B 2 H 6 : CH 4 is 1: 11: 1.6: 1.8 and the thickness of the layer reaches 80 mm, the discharge is maintained and 0.1 The supply of B 2 H 6 and CH 4 diluted to% was stopped, and the remaining 70 mm of film was formed.

さらに、第二の光電変換ユニットとして結晶質光電変換ユニット4を形成するために、引き続きプラズマCVD装置を用いて、一導電型半導体層として厚さ150Åのp型結晶質シリコン層4p、光電変換層として厚さ1.5μmの結晶質i型シリコン光電変換層4i、他導電型半導体層として厚さ100Åのn型結晶質シリコン層4nを順次積層した。   Further, in order to form the crystalline photoelectric conversion unit 4 as the second photoelectric conversion unit, a p-type crystalline silicon layer 4p having a thickness of 150 mm as a one-conductivity-type semiconductor layer is continuously used using a plasma CVD apparatus, a photoelectric conversion layer In this case, a crystalline i-type silicon photoelectric conversion layer 4i having a thickness of 1.5 μm and an n-type crystalline silicon layer 4n having a thickness of 100 mm are sequentially stacked as another conductive semiconductor layer.

その後、非晶質光電変換ユニット3及び結晶質光電変換ユニット4を複数の帯状パターンへと分割するためにYAG第2高調波パルスレーザーを透光性基板1側から照射することにより幅60μmの接続溝4aを形成した。   Thereafter, in order to divide the amorphous photoelectric conversion unit 3 and the crystalline photoelectric conversion unit 4 into a plurality of strip patterns, a YAG second harmonic pulse laser is irradiated from the translucent substrate 1 side to connect 60 μm in width. A groove 4a was formed.

次に、裏面電極層として厚さ900ÅのZnOから成る透明反射層(図示せず)と厚さ2000ÅのAgから成る裏面電極層5をDCスパッタ法によって形成した。さらに、非晶質光電変換ユニット3、結晶質光電変換ユニット4、及び裏面電極層5を複数の帯状パターンへと分割するために、YAG第2高調波パルスレーザーを透光性基板1側から照射することにより、幅60μmの裏面電極層分離溝5aを形成し、図3に示すような左右に隣接する短冊状ハイブリッド光電変換装置が電気的に直列接続された集積型ハイブリッド薄膜光電変換装置を作製した。この集積型ハイブリッド薄膜光電変換装置は、幅8.9mm×長さ430mmのハイブリッド光電変換装置が100段直列接続されている。   Next, a transparent reflecting layer (not shown) made of ZnO with a thickness of 900 mm and a back electrode layer 5 made of Ag with a thickness of 2000 mm were formed as a back electrode layer by DC sputtering. Further, in order to divide the amorphous photoelectric conversion unit 3, the crystalline photoelectric conversion unit 4, and the back electrode layer 5 into a plurality of strip patterns, YAG second harmonic pulse laser is irradiated from the translucent substrate 1 side. Thus, an integrated hybrid thin film photoelectric conversion device in which a back electrode layer separation groove 5a having a width of 60 μm is formed and strip-like hybrid photoelectric conversion devices adjacent to the left and right as shown in FIG. 3 are electrically connected in series is manufactured. did. In this integrated hybrid thin film photoelectric conversion device, 100 stages of hybrid photoelectric conversion devices each having a width of 8.9 mm and a length of 430 mm are connected.

最後に、この光電変換装置を大気中で雰囲気温度190℃にて60分間熱処理することにより、実施例2の光電変換装置が作製された。   Finally, the photoelectric conversion device of Example 2 was fabricated by heat-treating the photoelectric conversion device in the atmosphere at an atmospheric temperature of 190 ° C. for 60 minutes.

実施例2で作製した集積型ハイブリッド薄膜光電変換装置にスペクトル分布AM1.5、エネルギー密度100mW/cm2の擬似太陽光を、測定雰囲気及び光電変換装置の温度が25±1℃の下で照射し、薄膜光電変換装置の出力特性を測定した。Voc、Jsc、F.F.、Eff.の測定結果を表2に示す。なお、表2においては、Vocは実際に得られた値を直列段数(100)で割ったもの、Jscは実際に得られた短絡電流値を光電変換装置1段の面積で割ったものとした。The integrated hybrid thin film photoelectric conversion device manufactured in Example 2 was irradiated with pseudo-sunlight having a spectral distribution of AM1.5 and an energy density of 100 mW / cm 2 under a measurement atmosphere and a temperature of the photoelectric conversion device of 25 ± 1 ° C. The output characteristics of the thin film photoelectric conversion device were measured. Voc, Jsc, F.M. F. Eff. The measurement results are shown in Table 2. In Table 2, Voc is obtained by dividing the actually obtained value by the number of series stages (100), and Jsc is obtained by dividing the actually obtained short-circuit current value by the area of one stage of the photoelectric conversion device. .

なお、表2は、実施例2および後述する比較例3、4の条件で作製したハイブリッド薄膜光電変換装置の光電変換特性を比較表した表である。   Table 2 is a table comparing the photoelectric conversion characteristics of the hybrid thin film photoelectric conversion devices manufactured under the conditions of Example 2 and Comparative Examples 3 and 4 described later.

Figure 2006049003
Figure 2006049003

(比較例3)
比較例3においては、実施例2とほぼ同様の工程を実施したが、裏面電極層5形成後に大気中において雰囲気温度150℃で熱処理を行った点が、実施例1とは異なっていた。測定結果を表2に示す。
(Comparative Example 3)
In Comparative Example 3, almost the same process as in Example 2 was performed, but the heat treatment was performed at 150 ° C. in the air after the back electrode layer 5 was formed, which was different from Example 1. The measurement results are shown in Table 2.

(比較例4)
比較例4においては、実施例2とほぼ同様の工程を実施したが、p型a−SiC層3pの形成温度が180℃であった点が、実施例2とは異なっていた。測定結果を表2に示す。
(Comparative Example 4)
In Comparative Example 4, almost the same process as in Example 2 was performed, but the formation temperature of the p-type a-SiC layer 3p was 180 ° C., which was different from Example 2. The measurement results are shown in Table 2.

表2の実施例2と比較例3、4の比較からも実施例1と比較例1、2の比較で得られたものと同様のことがわかる。   From the comparison between Example 2 and Comparative Examples 3 and 4 in Table 2, the same results as those obtained by comparing Example 1 and Comparative Examples 1 and 2 can be seen.

以上のことから、本発明の薄膜光電変換装置の製造方法によれば耐熱性の低い酸化亜鉛から成る透明導電膜を用いた場合であっても、その抵抗率を変化させることなく、その上に直接形成されるシリコン系一導電型半導体層のドーパントの活性化率を向上させ、また透明導電膜とシリコン系一導電型半導体層、他導電型半導体層と裏面電極層の各接合界面を確実にオーミック接触とすることができる。この結果、高性能を発揮する薄膜光電変換装置を安価に提供することができる。   From the above, according to the method for manufacturing a thin film photoelectric conversion device of the present invention, even when a transparent conductive film made of zinc oxide having low heat resistance is used, the resistivity thereof is not changed. Improve the dopant activation rate of the directly formed silicon-based one-conductivity-type semiconductor layer, and ensure the bonding interface between the transparent conductive film and the silicon-based one-conductivity-type semiconductor layer, the other-conductivity-type semiconductor layer, and the back electrode layer It can be ohmic contact. As a result, a thin film photoelectric conversion device exhibiting high performance can be provided at low cost.

Claims (2)

透光性基板の一方の主面上に順に、酸化亜鉛を主成分とする透明導電膜、少なくとも第一光電変換ユニットを含む1ユニット以上の光電変換ユニット、及び裏面電極層を備えてなる薄膜光電変換装置の製造方法であって、
該光電変換ユニットは、該透光性基板側から順に一導電型半導体層、光電変換層、及び他導電型半導体層からなり、
かつ、該透明導電膜上には、直接、該第一光電変換ユニットが形成されてなり、
かつ、該第一光電変換ユニットを構成する該一導電型半導体層はシリコン系であり、
該シリコン系一導電型半導体層を170℃以下の温度に保持された該透明導電膜上に形成する工程、
及び該裏面電極層形成後に170℃以上の大気圧下で加熱する工程
を含むことを特徴とする薄膜光電変換装置の製造方法。
A thin film photoelectric device comprising a transparent conductive film containing zinc oxide as a main component, at least one photoelectric conversion unit including at least a first photoelectric conversion unit, and a back electrode layer in order on one main surface of the translucent substrate. A method for manufacturing a conversion device, comprising:
The photoelectric conversion unit is composed of one conductive semiconductor layer, a photoelectric conversion layer, and another conductive semiconductor layer in order from the translucent substrate side.
And the first photoelectric conversion unit is directly formed on the transparent conductive film,
And the one conductivity type semiconductor layer constituting the first photoelectric conversion unit is silicon-based,
Forming the silicon-based one conductivity type semiconductor layer on the transparent conductive film maintained at a temperature of 170 ° C. or lower;
And a method of manufacturing the thin film photoelectric conversion device, comprising a step of heating under an atmospheric pressure of 170 ° C. or higher after the back electrode layer is formed.
請求項1に記載の薄膜光電変換装置の製造方法であって、前記透明導電膜を元素として少なくとも亜鉛、硼素、及び酸素を含む原料ガスを用いてCVD法で形成する工程をさらに含むことを特徴とする薄膜光電変換装置の製造方法。   2. The method of manufacturing a thin film photoelectric conversion device according to claim 1, further comprising a step of forming the transparent conductive film by a CVD method using a source gas containing at least zinc, boron, and oxygen as elements. A method for manufacturing a thin film photoelectric conversion device.
JP2006542938A 2004-11-04 2005-10-14 Method for manufacturing thin film photoelectric conversion device Pending JPWO2006049003A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004320997 2004-11-04
JP2004320997 2004-11-04
PCT/JP2005/018930 WO2006049003A1 (en) 2004-11-04 2005-10-14 Process for producing thin-film photoelectric converter

Publications (1)

Publication Number Publication Date
JPWO2006049003A1 true JPWO2006049003A1 (en) 2008-05-29

Family

ID=36319017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006542938A Pending JPWO2006049003A1 (en) 2004-11-04 2005-10-14 Method for manufacturing thin film photoelectric conversion device

Country Status (2)

Country Link
JP (1) JPWO2006049003A1 (en)
WO (1) WO2006049003A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5469298B2 (en) * 2007-10-30 2014-04-16 株式会社カネカ Transparent conductive film for photoelectric conversion device and method for producing the same
JP2009164251A (en) * 2007-12-28 2009-07-23 Mitsubishi Heavy Ind Ltd Method of producing photoelectric converting apparatus
JP5613296B2 (en) * 2013-06-18 2014-10-22 株式会社カネカ Transparent conductive film for photoelectric conversion device, photoelectric conversion device, and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175528A (en) * 1991-12-26 1993-07-13 Showa Shell Sekiyu Kk Manufacture of amorphous silicon solar cell
JP2001060707A (en) * 1999-06-18 2001-03-06 Nippon Sheet Glass Co Ltd Photoelectric transfer device
JP5123444B2 (en) * 2000-09-08 2013-01-23 独立行政法人産業技術総合研究所 Manufacturing method of solar cell
JP4193962B2 (en) * 2000-10-31 2008-12-10 独立行政法人産業技術総合研究所 Solar cell substrate and thin film solar cell
JP3513505B2 (en) * 2001-12-26 2004-03-31 三菱重工業株式会社 Plasma CVD apparatus, photoelectric conversion element, and method of manufacturing photoelectric conversion element

Also Published As

Publication number Publication date
WO2006049003A1 (en) 2006-05-11

Similar Documents

Publication Publication Date Title
JP4257332B2 (en) Silicon-based thin film solar cell
US8120132B2 (en) Holey electrode grids for photovoltaic cells with subwavelength and superwavelength feature sizes
JP4940290B2 (en) Photoelectric conversion device and manufacturing method thereof
JP2010283161A (en) Solar cell and manufacturing method thereof
JP2005038907A (en) Integrated photoelectric converter
JP2004260014A (en) Multilayer type thin film photoelectric converter
JP5232362B2 (en) A manufacturing method of an integrated thin film photoelectric conversion device, and an integrated thin film photoelectric conversion device obtainable by the manufacturing method.
JP5400322B2 (en) Silicon-based thin film solar cell and method for manufacturing the same
JP2007305826A (en) Silicon-based thin film solar cell
JPWO2005109526A1 (en) Thin film photoelectric converter
JP4864077B2 (en) Photoelectric conversion device and manufacturing method thereof
JP2008283075A (en) Manufacturing method of photoelectric conversion device
JP4222910B2 (en) Photovoltaic device manufacturing method
JPWO2006049003A1 (en) Method for manufacturing thin film photoelectric conversion device
JP4215697B2 (en) Photoelectric conversion device and manufacturing method thereof
JP4441377B2 (en) Photoelectric conversion device and manufacturing method thereof
JP4441298B2 (en) Photoelectric conversion device and manufacturing method thereof
JP2004153028A (en) Thin-film photoelectric converting device
JP5763411B2 (en) Stacked photoelectric conversion device
US20100307573A1 (en) Solar cell and manufacturing method thereof
JP2010283162A (en) Solar cell and method for manufacturing the same
JP4971755B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
JP2011176084A (en) Photoelectric conversion module, and method for manufacturing same
JP2006332162A (en) Silicone stacked thin film solar cell
JP2005277200A (en) Silicon group thin film solar battery formed on transparent conductive film