JPH05175528A - Manufacture of amorphous silicon solar cell - Google Patents

Manufacture of amorphous silicon solar cell

Info

Publication number
JPH05175528A
JPH05175528A JP3344263A JP34426391A JPH05175528A JP H05175528 A JPH05175528 A JP H05175528A JP 3344263 A JP3344263 A JP 3344263A JP 34426391 A JP34426391 A JP 34426391A JP H05175528 A JPH05175528 A JP H05175528A
Authority
JP
Japan
Prior art keywords
solar cell
surface electrode
amorphous silicon
zinc oxide
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3344263A
Other languages
Japanese (ja)
Inventor
Tetsuo Arai
哲郎 新居
Shitsuchiyanuritsutsu Poopon
ポーポン・シッチャヌリッツ
Takahisa Kase
高久 加瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Original Assignee
Showa Shell Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK filed Critical Showa Shell Sekiyu KK
Priority to JP3344263A priority Critical patent/JPH05175528A/en
Publication of JPH05175528A publication Critical patent/JPH05175528A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To provide good ohmic contact between an n-type layer and a back- surface electrode layer to eliminate nonlinear factors. CONSTITUTION:An amorphous silicon solar cell includes a glass substrate 1 provided with a transparent electrode 2. A pin structure (3-1 to 3-3) including an n-type micro-crystalline silicon layer (3-3) is formed on the transparent electrode by plasma CVD. After the n-type layer is formed, sputtering with a metal- doped target is carried out to form a first back-surface electrode 4 and then a second back-surface electrode on the first electrode, followed by a heat treatment. Preferably, the first back-surface electrode is of zinc oxide, and the target is doped with aluminum. This eliminates nonlinear factors and improves the performance of the solar cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池等の光デバイ
ス装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical device such as a solar cell.

【0002】[0002]

【従来の技術】pin接合を有するアモルファスシリコ
ン太陽電池では、ガラス基板上に透明電極層、例えばイ
ンジウムスズ酸化物や酸化亜鉛等をスパッタ法や熱CV
D法で形成させ、次にアモルファスシリコン層、n型ア
モルファスシリコン層をプラズマCVD法にて形成す
る。そのn型層には微結晶アモルファスシリコンが用い
られている。その後、スパッタ法や蒸着法、あるいは熱
CVD法で裏面電極、例えばアルミニウム、酸化亜鉛、
銀、銅などを形成する。
2. Description of the Related Art In an amorphous silicon solar cell having a pin junction, a transparent electrode layer such as indium tin oxide or zinc oxide is formed on a glass substrate by a sputtering method or thermal CV.
Then, the amorphous silicon layer and the n-type amorphous silicon layer are formed by the plasma CVD method. Microcrystalline amorphous silicon is used for the n-type layer. After that, a back surface electrode such as aluminum, zinc oxide, or the like is formed by a sputtering method, an evaporation method, or a thermal CVD method.
Form silver, copper, etc.

【0003】[0003]

【発明が解決しようとする課題】ところで、変換効率の
向上を図るための一つの方法として、裏面電極を2層構
造にすることが知られている。すなわち、裏面電極はn
型層上に形成され、透過光を散乱させる第1の裏面電極
と該第1裏面電極内で散乱する光を完全に封じ込めるた
めの第2裏面電極から構成される。例えば、第1裏面電
極には酸化亜鉛を、また第2裏面電極にはアルミニウ
ム、銀、銅などが用いられている。しかし、酸化亜鉛の
電気伝導度が低い場合は、n層と酸化亜鉛との接触抵抗
が高くなり、オーミック特性が低下し、太陽電池の変換
効率に影響を与えるという問題があった。本発明の目的
は、n型層と裏面電極層のオーミック接合を良くし、曲
線因子を改善して高効率なアモルファスシリコン太陽電
池の製造方法を提供することにある。
By the way, it is known that the back electrode has a two-layer structure as one method for improving the conversion efficiency. That is, the back electrode is n
The first back surface electrode is formed on the mold layer and scatters the transmitted light, and the second back surface electrode for completely confining the light scattered in the first back surface electrode. For example, zinc oxide is used for the first back surface electrode, and aluminum, silver, copper or the like is used for the second back surface electrode. However, when the electrical conductivity of zinc oxide is low, there is a problem that the contact resistance between the n layer and zinc oxide becomes high, the ohmic characteristics deteriorate, and the conversion efficiency of the solar cell is affected. An object of the present invention is to improve the ohmic contact between the n-type layer and the back electrode layer, improve the fill factor, and provide a highly efficient method for manufacturing an amorphous silicon solar cell.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
め、本発明はプラズマCVD法にて、n型層が微結晶シ
リコン膜であるpin接合構造を有するアモルファスシ
リコン太陽電池の製造方法において、前記n型層の形成
後に、ターゲット材中に金属をドープしてスパッタ法に
て第1裏面電極を形成する工程と、前記第1裏面電極上
に第2裏面電極を形成する工程と、前記第2裏面電極を
形成した後に熱処理を行う工程とを具備するものであ
る。好ましくは、第1裏面電極を酸化亜鉛とし、該酸化
亜鉛のターゲット材にアルミニウムが添加されている。
In order to achieve the above object, the present invention provides a method for producing an amorphous silicon solar cell having a pin junction structure in which an n-type layer is a microcrystalline silicon film by a plasma CVD method. After the formation of the n-type layer, a step of doping a target material with a metal to form a first back surface electrode by a sputtering method; a step of forming a second back surface electrode on the first back surface electrode; 2 a step of performing heat treatment after forming the back surface electrode. Preferably, the first back surface electrode is zinc oxide, and aluminum is added to the target material of the zinc oxide.

【0005】[0005]

【作用】n型アモルファスシリコン層上に、少なくとも
スパッタ法で形成される第1裏面電極をもつ裏面電極の
形成後に熱処理を施すことにより、n型層と酸化亜鉛膜
のオーミック接合を良くし、曲線因子が改善される。
By forming a back surface electrode having at least a first back surface electrode formed by a sputtering method on the n-type amorphous silicon layer and then performing a heat treatment, the ohmic contact between the n-type layer and the zinc oxide film is improved, and the curve The factor is improved.

【0006】[0006]

【実施例】以下、本発明の実施例を説明する。図1はア
モルファスシリコン太陽電池の基本構成を示している。
図において、ガラス基板上1に厚さが約0.45μm程度の
SnO2を熱CVD法により透明電極層2を形成する。
続いて、pin接合を有するアモルファスシリコン膜3
をプラズマCVD法を用いて約0.4μmの厚さに形成す
る。その後に、スパッタ法にて酸化亜鉛膜を約0.1μm
の厚さで第1裏面電極4を形成し、次いで蒸着法にて銀
を約0.7μmの厚さで第2裏面電極5を形成する。酸化
亜鉛膜をスパッタ法にて形成する際、そのターゲット材
にはアルミニウムが約2%程度含有されている。
EXAMPLES Examples of the present invention will be described below. FIG. 1 shows the basic structure of an amorphous silicon solar cell.
In the figure, a transparent electrode layer 2 of SnO 2 having a thickness of about 0.45 μm is formed on a glass substrate 1 by a thermal CVD method.
Subsequently, the amorphous silicon film 3 having a pin junction
Is formed to a thickness of about 0.4 μm by using the plasma CVD method. After that, a zinc oxide film of about 0.1 μm is formed by the sputtering method.
To form the first back surface electrode 4 and then form the second back surface electrode 5 to a thickness of about 0.7 μm by vapor deposition. When the zinc oxide film is formed by the sputtering method, the target material contains about 2% aluminum.

【0007】このアモルファスシリコン太陽電池の構造
において、n型層(3−3)のアモルファスシリコン膜
と第1裏面電極4の酸化亜鉛膜とのオーミック接合は、
酸化亜鉛膜の高抵抗が原因で、接触特性が低下してい
る。そこで、裏面電極の形成後に温度約1500Cで熱
処理を行い、酸化亜鉛膜中のアルミニウムをn型層内に
拡散させる。これにより、オーミック接合は改善され、
n層と第1裏面電極の酸化亜鉛層との接触特性が良くな
った。
In the structure of this amorphous silicon solar cell, the ohmic contact between the amorphous silicon film of the n-type layer (3-3) and the zinc oxide film of the first back electrode 4 is
The contact resistance is deteriorated due to the high resistance of the zinc oxide film. Accordingly, a heat treatment at a temperature of about 0.99 0 C after the formation of the back electrode, to diffuse the aluminum in the zinc oxide film on the n-type layer. This improves the ohmic contact,
The contact characteristics between the n-layer and the zinc oxide layer of the first back electrode were improved.

【0008】図2は、温度約150℃にて熱処理したと
きのアモルファスシリコン太陽電池の曲線因子の変化を
示している。この図から判るように、熱処理を約60分
することで、性能を十分改善することができた。アモル
ファスシリコン太陽電池素子の従来型と本発明の特性比
較を表1に示する。本発明の太陽電池素子では、100
mW/cm2の入射光の場合に10.9%という高い変
換効率が得られた。また熱CVD法にて第1裏面電極を
形成する際はアルミニウムが添加されていれば、同じよ
うな効果が得られる。
FIG. 2 shows changes in the fill factor of an amorphous silicon solar cell when heat-treated at a temperature of about 150 ° C. As can be seen from this figure, the performance could be sufficiently improved by performing the heat treatment for about 60 minutes. Table 1 shows a characteristic comparison between the conventional amorphous silicon solar cell element and the present invention. In the solar cell element of the present invention, 100
A high conversion efficiency of 10.9% was obtained in the case of incident light of mW / cm 2 . Further, when aluminum is added when the first back electrode is formed by the thermal CVD method, the same effect can be obtained.

【0009】 表1 太陽電池 変換効率 開放電圧 短絡電流 曲線因子 種類 (%) (V) (mA/cm2) 従来型 10.3 0.89 17.98 0.65 本発明 10.9 0.89 17.90 0.68Table 1 Conversion efficiency of solar cell Open circuit voltage Short circuit current Fill factor (%) (V) (mA / cm 2 ) Conventional type 10.3 0.89 17.98 0.65 Present invention 10.9 0.89 17.90 0.68

【0010】[0010]

【発明の効果】以上説明したように、本発明によれば、
n型アモルファスシリコン層上に、少なくともスパッタ
法で形成される第1裏面電極をもつ裏面電極の形成後に
熱処理を施すことにより、従来のものに比べて曲線因子
の改善が図られ、変換効率が向上されるアモルファスシ
リコン太陽電池の製造が可能となる。
As described above, according to the present invention,
By performing heat treatment after forming a back electrode having at least a first back electrode formed by a sputtering method on the n-type amorphous silicon layer, the fill factor is improved and conversion efficiency is improved compared to the conventional one. It is possible to manufacture an amorphous silicon solar cell as described above.

【図面の簡単な説明】[Brief description of drawings]

【図1】 アモルファスシリコン太陽電池の基本構成図
である。
FIG. 1 is a basic configuration diagram of an amorphous silicon solar cell.

【図2】 熱処理時間による曲線因子への依存性を示す
図である。
FIG. 2 is a diagram showing the dependence of the heat treatment time on the fill factor.

【符号の説明】[Explanation of symbols]

1 ガラス基板、2 透明絶縁層、3 アモルファスシ
リコン層、4 第1裏面電極、5 第2裏面電極
1 glass substrate, 2 transparent insulating layer, 3 amorphous silicon layer, 4 first back electrode, 5 second back electrode

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年12月21日[Submission date] December 21, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】[0003]

【発明が解決しようとする課題】ところで、変換効率の
向上を図るための一つの方法として、裏面電極を2層構
造にすることが知られている。すなわち、裏面電極はn
型層上に形成され、透過光を散乱させる第1の裏面電極
と該第1裏面電極内で散乱する光を完全に封じ込めるた
めの第2裏面電極から構成される。例えば、第1裏面電
極には酸化亜鉛を、また第2裏面電極にはアルミニウ
ム、銀、銅などが用いられている。しかし、酸化亜鉛の
特性が、例えば、抵抗が高い場合や電気伝導度が低い場
合は、酸化亜鉛によるシャント抵抗の増加や、n層と酸
化亜鉛との接触抵抗が高くなり、太陽電池の変換効率に
影響を与えるという問題があった。本発明の目的は、
化亜鉛の特性を改善し、それによって、太陽電池の曲線
因子を改善することで、高効率なアモルファスシリコン
太陽電池の製造方法を提供することにある。
By the way, it is known that the back electrode has a two-layer structure as one method for improving the conversion efficiency. That is, the back electrode is n
The first back surface electrode is formed on the mold layer and scatters the transmitted light, and the second back surface electrode for completely confining the light scattered in the first back surface electrode. For example, zinc oxide is used for the first back surface electrode, and aluminum, silver, copper or the like is used for the second back surface electrode. But of zinc oxide
If the characteristics are, for example, high resistance or low electrical conductivity.
In that case, there was a problem that the shunt resistance increased due to zinc oxide and the contact resistance between the n layer and zinc oxide increased, which affected the conversion efficiency of the solar cell. An object of the present invention, acid
Improves the properties of zinc oxide and thereby the curve of solar cells
It is to provide a highly efficient method for manufacturing an amorphous silicon solar cell by improving the factor .

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】このアモルファスシリコン太陽電池の構造
において、n型層(3−3)のアモルファスシリコン膜
と第1裏面電極4の酸化亜鉛膜とのオーミック接合は、
酸化亜鉛膜の高抵抗が原因で、シャント抵抗の増加ある
いはn型層との接触特性が低下している。そこで、裏面
電極形成後にアモルファスシリコン膜の堆積温度にほぼ
近い温度約150℃で熱処理を行った。これにより、アモ
ルファスシリコン太陽電池の曲線因子が改善され、変換
効率が向上した。そこでアモルファスシリコン太陽電池
の曲線因子の向上の原因を調べるため、熱処理する前と
した後でのアモルファスシリコン太陽電池の収集効率を
測定した。図3は、そのスペクトルを示している。な
お、熱処理する前とした後のデータがほとんど一致して
いるため、図では重なって描かれている。図3におい
て、波長が650nmを超える長波長領域においての収集
効率には熱処理に関係なく変化が見られなかった。この
ことは、熱処理によるアモルファスシリコン太陽電池の
曲線因子の改善は、高抵抗な酸化亜鉛膜によるシャント
抵抗が原因であったことを意味し、n型層と酸化亜鉛の
オーミック接合の改善ではなかったことがわかった。即
ち、熱処理することで、酸化亜鉛膜中に含まれるアルミ
ニウムが十分に膜中に拡散し、それによって、酸化亜鉛
膜が低抵抗化し、太陽電池の酸化亜鉛によるシャント抵
抗が低下し、曲線因子を改善することができた。
In the structure of this amorphous silicon solar cell, the ohmic contact between the amorphous silicon film of the n-type layer (3-3) and the zinc oxide film of the first back electrode 4 is
There is an increase in shunt resistance due to the high resistance of the zinc oxide film
Or the contact characteristics with the n-type layer are deteriorated. Therefore, the deposition temperature of the amorphous silicon film is almost
It was Tsu line to a heat treatment at a temperature close about 150 ℃. This makes ammo
Ruffus Silicon Solar Cell Fill Factor Improved and Converted
Efficiency improved. So amorphous silicon solar cells
To investigate the cause of the improvement of fill factor of
The collection efficiency of the amorphous silicon solar cell after
It was measured. FIG. 3 shows the spectrum. Na
Oh, the data before and after heat treatment are almost the same
Therefore, they are drawn overlapping in the figure. Smell in Figure 3
For collection in the long wavelength region where the wavelength exceeds 650 nm
No change was observed in the efficiency regardless of the heat treatment. this
That is, the heat treatment of amorphous silicon solar cells
The fill factor is improved by a shunt with a high resistance zinc oxide film.
It means that the resistance was the cause of the n-type layer and zinc oxide.
It turned out that it was not an improvement in ohmic contact. Immediately
After heat treatment, the aluminum contained in the zinc oxide film
The nickel is well diffused into the film, which causes zinc oxide
The resistance of the film is reduced, and the shunt resistance of the solar cell due to zinc oxide is increased.
The resistance was reduced and the fill factor could be improved.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図3】 アモルファスシリコン太陽電池の収集効率の
スペクトルを示す図である。
FIG. 3 is a diagram showing a spectrum of collection efficiency of an amorphous silicon solar cell.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図3】 [Figure 3]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 プラズマCVD法にて、n型層が微結晶
シリコン膜であるpin接合構造を有するアモルファス
シリコン太陽電池の製造方法において、 前記n型層の形成後に、ターゲット材中に金属をドープ
してスパッタ法にて第1裏面電極を形成する工程と、 前記第1裏面電極上に第2裏面電極を形成する工程と、 前記第2裏面電極を形成した後に熱処理を行う工程と、 を具備するアモルファスシリコン太陽電池の製造方法。
1. A method of manufacturing an amorphous silicon solar cell having a pin junction structure in which an n-type layer is a microcrystalline silicon film by a plasma CVD method, wherein a target material is doped with a metal after the formation of the n-type layer. Forming a first back surface electrode by a sputtering method, forming a second back surface electrode on the first back surface electrode, and performing a heat treatment after forming the second back surface electrode. Method for producing amorphous silicon solar cell.
【請求項2】 前記第1裏面電極を酸化亜鉛とし、該酸
化亜鉛のターゲット材にアルミニウムが添加されている
ことを特徴とする請求項1記載のアモルファスシリコン
太陽電池の製造方法。
2. The method for manufacturing an amorphous silicon solar cell according to claim 1, wherein the first back surface electrode is zinc oxide, and aluminum is added to a target material of the zinc oxide.
JP3344263A 1991-12-26 1991-12-26 Manufacture of amorphous silicon solar cell Pending JPH05175528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3344263A JPH05175528A (en) 1991-12-26 1991-12-26 Manufacture of amorphous silicon solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3344263A JPH05175528A (en) 1991-12-26 1991-12-26 Manufacture of amorphous silicon solar cell

Publications (1)

Publication Number Publication Date
JPH05175528A true JPH05175528A (en) 1993-07-13

Family

ID=18367891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3344263A Pending JPH05175528A (en) 1991-12-26 1991-12-26 Manufacture of amorphous silicon solar cell

Country Status (1)

Country Link
JP (1) JPH05175528A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419383B1 (en) * 1996-05-23 2004-06-04 에스케이 주식회사 Method for fabricating p-i-n amorphous silicon solar cell
WO2006049003A1 (en) * 2004-11-04 2006-05-11 Kaneka Corporation Process for producing thin-film photoelectric converter
US7671271B2 (en) 2006-03-08 2010-03-02 National Science And Technology Dev. Agency Thin film solar cell and its fabrication process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419383B1 (en) * 1996-05-23 2004-06-04 에스케이 주식회사 Method for fabricating p-i-n amorphous silicon solar cell
WO2006049003A1 (en) * 2004-11-04 2006-05-11 Kaneka Corporation Process for producing thin-film photoelectric converter
US7671271B2 (en) 2006-03-08 2010-03-02 National Science And Technology Dev. Agency Thin film solar cell and its fabrication process
US7838442B2 (en) 2006-03-08 2010-11-23 National Science And Technology Development Agency Thin film solar cell and its fabrication

Similar Documents

Publication Publication Date Title
KR100237661B1 (en) Back reflector layer, method for forming it, and photovoltaic element using it and manufacturing method thereof
CN109728103B (en) Solar cell
US20070193624A1 (en) Indium zinc oxide based front contact for photovoltaic device and method of making same
US20080223430A1 (en) Buffer layer for front electrode structure in photovoltaic device or the like
WO2019119817A1 (en) Heterjunction solar cell and preparation method therefor
JPH04233772A (en) Manufacture of chacopyrite solar battery
JP5174635B2 (en) Solar cell element
JPS6228598B2 (en)
JP3801342B2 (en) Solar cell substrate, manufacturing method thereof, and semiconductor element
CN211828779U (en) Silicon heterojunction solar cell and laminated transparent conductive oxide film
Akdemir et al. MoOx/Ag/MoOx multilayers as hole transport transparent conductive electrodes for n‐type crystalline silicon solar cells
JP2000058888A (en) Solar battery and manufacture thereof
KR101886818B1 (en) Method for manufacturing of heterojunction silicon solar cell
JPH06163955A (en) Solar cell substrate and solar cell
CN110085683A (en) Silicon/crystalline silicon heterogenous joint solar cell of non-impurity-doped and preparation method thereof
JPH05175528A (en) Manufacture of amorphous silicon solar cell
JPH06338623A (en) Thin-film solar cell
TWI753084B (en) Solar cell
JP2001274430A (en) Thin film photoelectric converter
JPH10226598A (en) Transparent conductive titanium oxide film and its production
CN110797428A (en) Heterojunction solar cell
JP3069159B2 (en) Solar cell and method of manufacturing the same
JP3069158B2 (en) Solar cell and method of manufacturing the same
JPH065770B2 (en) Manufacturing method of heat-resistant thin film photoelectric conversion element
JP3253449B2 (en) Method for manufacturing photovoltaic device