WO2006049003A1 - Process for producing thin-film photoelectric converter - Google Patents

Process for producing thin-film photoelectric converter Download PDF

Info

Publication number
WO2006049003A1
WO2006049003A1 PCT/JP2005/018930 JP2005018930W WO2006049003A1 WO 2006049003 A1 WO2006049003 A1 WO 2006049003A1 JP 2005018930 W JP2005018930 W JP 2005018930W WO 2006049003 A1 WO2006049003 A1 WO 2006049003A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
layer
transparent conductive
conductive film
conversion unit
Prior art date
Application number
PCT/JP2005/018930
Other languages
French (fr)
Japanese (ja)
Inventor
Toru Sawada
Kenji Yamamoto
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2006542938A priority Critical patent/JPWO2006049003A1/en
Publication of WO2006049003A1 publication Critical patent/WO2006049003A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a method for manufacturing a thin film photoelectric conversion device in which a silicon-based one-conductivity type semiconductor layer is directly formed on a transparent conductive film containing zinc oxide as a main component.
  • Such a thin film photoelectric conversion device generally includes a transparent conductive film, one or more photoelectric conversion units, and a back electrode layer, which are sequentially stacked on a light-transmitting substrate.
  • One photoelectric conversion unit includes a photoelectric conversion layer sandwiched between one conductivity type semiconductor layer and another conductivity type semiconductor layer.
  • the one-conductivity-type semiconductor layer a silicon-based one-conductivity-type semiconductor layer is often used.
  • the photoelectric conversion layer is usually formed as an i-type layer.
  • the one-conductivity-type semiconductor layer is a p-type layer, and in this case, the other-conductivity-type semiconductor layer is an n-type layer, and vice versa.
  • the photoelectric conversion layer is not limited to an intrinsic semiconductor layer (i-type layer), but is doped in a small amount to p-type or n-type as long as loss of light absorbed by the doped impurity (dopant) does not become a problem. It may be a layer.
  • the photoelectric conversion layer is preferably thicker for light absorption, but if it is thicker than necessary, the cost and time for film formation will increase.
  • the p-type and n-type conductive semiconductor layers serve to generate an internal electric field in the photoelectric conversion unit, and are one of the important characteristics of the thin film photoelectric conversion device depending on the magnitude of the internal electric field.
  • the value of open circuit voltage (Voc) is affected.
  • these conductive semiconductor layers are inactive layers that do not directly contribute to photoelectric conversion, and light absorbed by impurities doped in the conductive semiconductor layer is a loss that does not contribute to power generation. Therefore, it is preferable to keep the p-type and n-type conductive semiconductor layers as small as possible as long as they are within a range in which a sufficient internal electric field can be generated.
  • the thickness of the conductive semiconductor layer is generally about 20 nm It is as follows.
  • the photoelectric conversion unit or the thin film photoelectric conversion device has a photoelectric conversion layer that occupies the main part regardless of whether the p-type and n-type conductive semiconductor layers included therein are amorphous or crystalline.
  • Amorphous materials are referred to as amorphous units or amorphous thin film photoelectric conversion devices, and those with a crystalline photoelectric conversion layer are referred to as crystalline units or crystalline thin film photoelectric conversion devices.
  • a method for improving the conversion efficiency of a thin film photoelectric conversion device there is a method of stacking two or more photoelectric conversion units into a tandem type.
  • a front unit including a photoelectric conversion layer having a large band gap is disposed on the light incident side of the thin film photoelectric conversion device, and a rear unit including a photoelectric conversion layer having a small band gap is sequentially disposed behind the front unit.
  • photoelectric conversion can be performed over a wide wavelength range of incident light, thereby improving the conversion efficiency of the entire photoelectric conversion device.
  • tandem photoelectric conversion devices those in which an amorphous photoelectric conversion unit and a crystalline photoelectric conversion unit are stacked are called hybrid thin film photoelectric conversion devices.
  • the wavelength of light that can be photoelectrically converted by an amorphous silicon photoelectric conversion unit using i-type amorphous silicon as a photoelectric conversion layer is about 800 nm on the long wavelength side.
  • the crystalline silicon photoelectric conversion unit as the photoelectric conversion layer can photoelectrically convert light up to about 1150 nm longer than that.
  • an amorphous silicon photoelectric conversion layer with a large light absorption coefficient may have a thickness of about 0.3 ⁇ m or less for light absorption, but a crystalline silicon photoelectric conversion layer with a small light absorption coefficient is long.
  • the translucent substrate usually allows sufficient light to reach the transparent conductive film and the photoelectric conversion unit formed thereon, and protects the photoelectric conversion device from impact and outside air when installed outdoors. Play a role. For this reason, for example, when a crystalline photoelectric conversion unit having crystalline silicon as a photoelectric conversion layer is formed on a light-transmitting substrate, the light-transmitting substrate is used for light having a wavelength of about 350 to 1150 ⁇ m. It is desirable to have sufficient light transmittance. Translucent As the conductive substrate, it is desirable to use a material excellent in impact resistance and weather resistance.
  • the transparent conductive film transmits the light incident through the translucent substrate to the photoelectric conversion unit side without losing as much as possible, and efficiently takes out the photocurrent generated in the photoelectric conversion unit to the outside. For this reason, it is desirable to have both high transparency and low sheet resistance.
  • the sheet resistance increases, the series resistance of the photoelectric conversion device increases, and as a result, the fill factor (FF) decreases.
  • the thin film photoelectric conversion device can make the photoelectric conversion layer thinner than conventional photoelectric conversion devices using Balta single crystals or polycrystals, but on the other hand, the light absorption is the thickness of the photoelectric conversion layer. There is a problem that it is limited by this. Therefore, in order to use light incident on the photoelectric conversion unit including the photoelectric conversion layer more effectively, after forming fine irregularities on the surface of the transparent conductive film in contact with the photoelectric conversion unit and scattering the light at the interface, A device has been devised to extend the optical path length by making it enter the photoelectric conversion unit and to increase the amount of light absorption in the photoelectric conversion layer. This technology is called “optical confinement” and has become an important elemental technology for the practical application of thin film photoelectric conversion devices with high photoelectric conversion efficiency.
  • the height difference of the irregularities is generally about 0 ⁇ 05 ⁇ m to 0.3 ⁇ m.
  • a haze ratio as an index representing the degree of unevenness of the transparent conductive film. This is equivalent to the light that is transmitted when the light from a specific light source is incident on a transparent substrate with a transparent conductive film divided by the scattered component whose optical path is bent and divided by all components. Measured using a C light source containing light.
  • the haze ratio increases as the height difference between the projections and depressions increases, or as the spacing between the projections and depressions of the projections and projections increases, and the light incident on the photoelectric conversion unit is effectively confined. The effect is excellent.
  • the amorphous silicon single-layer thin film photoelectric conversion device or the above-described hybrid thin film photoelectric conversion device the transparency of the transparent conductive film is improved, the haze ratio is increased, and the sheet resistance is increased. If it can be kept low, a high short-circuit current density (tisc) can be maintained even if the thickness of the photoelectric conversion layer is reduced, and a high fill factor (FF) can be obtained, so that the performance of the thin film photoelectric conversion device can be improved. Can be improved, and also leads to lower manufacturing costs
  • Tin oxide has been generally used as a material for the transparent conductive film since ancient times, but it is 500 ° C. Since the above thermal CVD method is used, the material used for the light-transmitting substrate is limited, and by adjusting the formation conditions, the distance between the convex and concave portions is increased to increase the haze ratio. The problem is that it will be difficult to maintain Voc. Furthermore, since the light absorption loss of the material itself is large, if the sheet resistance is kept at a value of about 10 ⁇ , which is normally used, the thin film amorphous silicon is an important absorption region of crystalline silicon. Absorption loss of ⁇ 800nm is negligible.
  • Non-Patent Document 1 describes the use of a film having a zinc oxide force formed by a CVD method as a transparent conductive film of a thin film photoelectric conversion device. Specifically, a transparent conductive film made of zinc oxide with boron added is formed at 170-200 ° C to form a transparent conductive film having a sheet resistance value of about 4 ⁇ / mouth, and then an amorphous film is formed thereon. A silicon layer is formed by high-frequency plasma CVD to obtain an amorphous silicon single-pole photoelectric conversion device.
  • the thickness of the i-type amorphous silicon layer is 0.35 ⁇
  • FF is 0.72 to 0.73
  • Jsc is 17.5 mA / cm 2
  • conversion efficiency is 2%. Has been.
  • Non-Patent Document 1 J. Meier et al., "Efficiency enhancement of amorphous silicon p_i_n solar cells by LP-CVD ZnO", Proc. Of 28th IEEE Photovoltaic Specialists Conferenc e, Anchorage, 2000, pp.746-749
  • the present invention relates to a thin film photoelectric conversion device in which a silicon-based one-conductivity type semiconductor layer is directly formed on a transparent conductive film containing zinc oxide as a main component. It is an object of the present invention to obtain a method for manufacturing a thin film photoelectric conversion device capable of improving the photoelectric conversion characteristics.
  • a transparent conductive film having low heat resistance and zinc oxide strength formed by thermal CVD is used, a photoelectric conversion unit is formed on the transparent conductive film without changing its resistivity.
  • the present invention relates to a method of manufacturing a thin film photoelectric conversion device that can sufficiently exhibit the potential of the transparent conductive film.
  • a method for producing a thin film photoelectric conversion device includes a transparent conductive film mainly composed of zinc oxide and at least a first photoelectric conversion unit in order on one main surface of a translucent substrate.
  • a method of manufacturing a thin film photoelectric conversion device comprising the above photoelectric conversion unit and a back electrode layer, wherein the photoelectric conversion unit comprises, in order from the translucent substrate side, a one-conductive semiconductor layer, a photoelectric conversion layer, and The one-conductivity-type semiconductor layer comprising another conductive-type semiconductor layer, wherein the first photoelectric conversion unit is directly formed on the transparent conductive film, and which constitutes the first photoelectric-conversion unit Is silicon-based, and the step of forming the silicon-based one-conductivity type semiconductor layer on the transparent conductive film maintained at a temperature of 170 ° C.
  • the formation temperature of the silicon-based one-conductivity-type semiconductor layer formed on the transparent conductive film is set to 170 ° C or lower to prevent the resistance of the transparent conductive film from being increased by heating.
  • the back electrode After the layer formation, heating is performed under atmospheric pressure at a temperature equal to or higher than the formation temperature of the silicon-based single conductivity type semiconductor layer.
  • the method for manufacturing a thin film photoelectric conversion device further includes a step of forming the transparent conductive film by a CVD method using a source gas containing at least zinc, boron, and oxygen as elements.
  • a source gas containing at least zinc, boron, and oxygen as elements preferable. This is because the effects of the present invention are particularly effective for zinc oxide formed by CVD using a source gas containing zinc, boron, and oxygen as elements.
  • the invention's effect according to the present invention, even when a transparent conductive film having low heat resistance and zinc oxide strength is used, the resistance change of the transparent conductive film can be suppressed, and the series resistance of the photoelectric conversion device can be kept small. . As a result, a highly efficient thin film photoelectric conversion device can be provided at a low cost with a simple process.
  • FIG. 1 is a schematic cross-sectional view of a hybrid thin film photoelectric conversion device.
  • FIG. 2 is a schematic cross-sectional view of an amorphous silicon single photoelectric conversion device.
  • FIG. 3 is a depth profile of hydrogen, carbon, oxygen and nitrogen concentrations of an amorphous silicon single photoelectric conversion device fabricated under the conditions of Example 1.
  • FIG. 4 is a depth profile of hydrogen, carbon, oxygen and nitrogen concentrations of an amorphous silicon single photoelectric conversion device fabricated under the conditions of Comparative Example 1.
  • 2 is a depth profile of oxygen and nitrogen concentrations.
  • FIG. 6 is a schematic cross-sectional view of an integrated hybrid thin film photoelectric conversion device.
  • the present inventors actually formed a thin film photoelectric conversion device using a zinc oxide-powered film formed by a CVD method as the transparent conductive film of the thin film photoelectric conversion device. As a result, the inventors have found that there are the following problems and arrived at the present invention.
  • a transparent conductive film using zinc oxide formed by thermal CVD has a problem of low heat resistance. Specifically, if the transparent conductive film is formed and left in the atmosphere for several months, the sheet resistance of the film increases by an order of magnitude or more. In addition, when the transparent conductive film is annealed in the atmosphere at a temperature of about 200 ° C., the sheet resistance of the film similarly increases. In addition, when a thin film photoelectric conversion device is formed on a transparent conductive film, the resistance of the transparent conductive film similarly increases and the series resistance of the photoelectric conversion device increases.
  • a silicon-based one-conductivity-type semiconductor layer formed on the transparent conductive film is formed at a temperature of 170 ° C. or lower, and then a photoelectric conversion layer, another conductivity-type semiconductor layer, and a back electrode layer are formed. It has been found that the resistance of the transparent conductive film can be prevented from being increased by heating at atmospheric temperature or higher under atmospheric pressure.
  • the present invention can be applied to a transparent conductive film made of zinc oxide and formed by a shift method such as a CVD method, a sputtering method, or a vapor deposition method.
  • a shift method such as a CVD method, a sputtering method, or a vapor deposition method.
  • zinc, boron, and oxygen are used as elements. It is effective for zinc oxide formed by the CVD method using source gas containing
  • the high resistance of the transparent conductive film made of zinc oxide is prevented by forming the silicon-based one-conductivity-type semiconductor layer directly formed on the transparent conductive film at a temperature of 170 ° C or lower. Can do.
  • the conductivity of the zinc oxide film is largely related to the oxygen defect structure in the film, and when this is heated in an oxygen atmosphere, it is slightly in the atmosphere even under reduced pressure. It is considered that oxygen contained in the film is taken into the film and oxygen deficiency that becomes an electron flow path is reduced, and the resistivity is increased.
  • the silicon-based one-conductivity-type semiconductor layer is formed at a temperature of 170 ° C or lower and the transparent conductive film is covered, oxygen atoms are taken into the transparent conductive film even after a temperature higher than the above temperature. This That's not possible. This is considered to prevent the high resistance of the transparent conductive film.
  • the activation rate of the dopant in the one-conductivity-type semiconductor layer mainly composed of silicon may not be sufficiently increased.
  • the junction interface between the semiconductor layer, the other conductivity type semiconductor layer, and the back electrode layer does not form ohmic contact. This problem is determined by performing a process of heating the photoelectric conversion device at a temperature of 170 ° C. or higher and atmospheric pressure after the photoelectric conversion device is formed, for example, after the back electrode layer is formed.
  • the gas used in the heating atmosphere is preferably air, nitrogen, a mixture of nitrogen and oxygen, or the like. Moreover, the same effect is recognized not only at atmospheric pressure but also under some reduced pressure or increased pressure. Specifically, it has an effect in a range of at least 0.5 to: 1.5 atm.
  • a transparent conductive film 2 is formed on the translucent substrate 1.
  • a plate-like member made of glass, transparent resin or the like or a sheet-like member is used as the translucent substrate 1.
  • the total iron oxide converted to FeO contained in the glass be as small as possible in order to suppress the decrease in visible transmittance due to light irradiation. Specifically, it is desirable to be 0.02% by weight or less.
  • the transparent conductive film 2 zinc oxide is used.
  • the transparent conductive film 2 is preferably formed by a method such as CVD, sputtering, or vapor deposition.
  • the transparent conductive film 2 is preferably formed by a CVD method having a formation temperature of about 200 ° C.
  • the transparent conductive film 2 has the effect of increasing the scattering of incident light by producing fine irregularities on the surface by devising the formation conditions.
  • the height difference of the unevenness is about 0.05 to 0.
  • the sheet resistance is set to about 5 to 20 ⁇ Z port.
  • One or more photoelectric conversion units are formed on the transparent conductive film 2 mainly composed of zinc oxide.
  • the photoelectric conversion unit may be an amorphous photoelectric conversion unit or a single unit of a crystalline photoelectric conversion unit, or a hybrid type in which these are laminated. Further, three or more units of these may be laminated.
  • materials used for the photoelectric conversion unit include silicon, Silicon alloys such as silicon carbide and silicon germanium, and compound materials such as copper-indium-selenium and gallium-arsenic are also preferably used.
  • an amorphous photoelectric conversion unit comprising an amorphous p-type silicon carbide layer 3p, a non-doped amorphous i-type silicon photoelectric conversion layer 3i, and an n-type silicon layer 3n on the transparent conductive film 2 as a one-conductivity type semiconductor layer. 3 is formed.
  • the amorphous p-type silicon carbide layer 3p is formed at a substrate temperature of 170 ° C. or less in order to prevent the transparent conductive film 2 from being increased in resistance by heating.
  • a crystalline photoelectric conversion unit 4 is formed on an amorphous photoelectric conversion unit 3 as shown in FIG.
  • the crystalline photoelectric conversion unit 4 includes a crystalline p-type silicon layer 4p, a crystalline i-type silicon photoelectric conversion layer 4i, and a crystalline n-type silicon layer 4n.
  • a high-frequency plasma CVD method is suitable for forming the amorphous photoelectric conversion unit 3 and the crystalline photoelectric conversion unit 4.
  • the formation conditions of the photoelectric conversion unit are: substrate temperature 100 to 250 ° C (however, amorphous p-type silicon carbide layer 3p is 170 ° C or less), pressure 30 to: 1500Pa, high frequency power density 0 ⁇ 01 to 0.5 W / cm 2 is preferably used.
  • the source gas used to form the photoelectric conversion unit is SiH
  • a silicon-containing gas such as SiH or a mixture of these gases and hydrogen is used.
  • B H or PH is preferably used as the dopant gas for forming the p-type or n-type layer in the photoelectric conversion unit.
  • a back electrode layer 5 is formed on the n-type silicon layer 3n in FIG. 2 or the n-type silicon layer 4n in FIG.
  • Ag A or an alloy thereof is preferably used.
  • a transparent reflective layer 5t may be inserted in order to prevent diffusion of metal from the back electrode layer 5 to the n-type silicon layer 4n.
  • a metal oxide having high resistance and excellent transparency such as ZnO or ITO is used.
  • methods such as sputtering and vapor deposition are preferably used.
  • the silicon-based one-conductivity-type semiconductor layer for example, the amorphous P-type silicon carbide layer 3p is formed under atmospheric pressure at an atmospheric temperature equal to or higher than the formation temperature.
  • FIG. 2 is a cross-sectional view schematically showing the amorphous silicon single photoelectric conversion device manufactured in Example 1.
  • a transparent conductive film 2 having a fine concavo-convex structure on a surface made of zinc oxide was formed on one main surface of a light-transmitting substrate 1 made of white plate glass having a thickness of 0.7 mm by a thermal CVD method.
  • the surface temperature of the substrate 1 was set to 160 to 180 ° C.
  • the pressure was lOOPa
  • jetyl zinc, water, BH, argon, and hydrogen were used as source gases.
  • the obtained transparent conductive film 2 had a thickness of 1 ⁇ 5 ⁇ , a haze ratio of 22%, and a sheet resistance of 10 ⁇ / mouth.
  • the transparent substrate 1 on which the transparent conductive film 2 is formed is introduced into a high-frequency plasma CVD apparatus, After heating so that the surface temperature of the plate 1 becomes 170 ° C, an amorphous p-type silicon carbide (p-type a_SiC) layer (not shown) having a thickness of 20 A as a silicon-based one-conductivity semiconductor layer, A microcrystalline p-type silicon layer (not shown) with a thickness of 50 A and a p-type a_SiC layer 3p with a thickness of 150 A were sequentially formed.
  • p-type a_SiC amorphous p-type silicon carbide
  • a non-doped amorphous i-type silicon photoelectric conversion layer 3i having a thickness of 3000 A is formed as a photoelectric conversion layer, and a thickness of 150 A is provided as another conductive type semiconductor layer.
  • the n-type silicon layer 3n was sequentially laminated.
  • the formation conditions of the p-type a_SiC layer 3p were as follows: the pressure was 150 to 400 Pa, the high frequency power density was 0.02 to 0.05 WZcm 2 , and SiH: hydrogen: hydrogen was diluted to 0.1%.
  • a transparent reflective layer 5t made of ZnO having a thickness of 900A and a back electrode layer 5 made of Ag having a thickness of 2000A were formed as a back electrode layer by a DC sputtering method.
  • YAG second harmonic By irradiating a wave pulse laser from the translucent substrate 1 side, only the transparent conductive film 2 is left, and the amorphous photoelectric conversion unit 3, the transparent reflective layer 5t, and the back electrode layer 5 are lines having a width of 50 / m. As a result, a 1 cm square island-shaped photoelectric conversion device region was formed.
  • the photoelectric conversion device of Example 1 was manufactured by performing heat treatment in the atmosphere at an atmospheric temperature of 170 ° C for 90 minutes.
  • amorphous silicon single Honoré photovoltaic device manufactured in Example 1 the spectral distribution AMI. 5, a pseudo solar light energy density lOOmW / cm 2, the temperature of the measurement atmosphere and the photoelectric conversion equipment is 25 ⁇ Irradiation was performed at 1 ° C, and the output characteristics of the thin film photoelectric conversion device were measured.
  • Table 1 shows the measurement results of Voc, Jsc, FF, conversion efficiency (Eff.), And series resistance (Rs). When the pressure during the previous heat treatment was changed in the range of 0.5 to 1.5 atm, the obtained photoelectric conversion device characteristics were the same.
  • Table 1 is a table comparing the photoelectric conversion characteristics of amorphous silicon single photoelectric conversion devices manufactured under the conditions of Example 1 and Comparative Examples 1 and 2 and Reference Examples described later.
  • Comparative Example 1 In Comparative Example 1, almost the same process as in Example 1 was performed, but the point power was different from that in Example 1 in which heat treatment was performed in the atmosphere at an atmospheric temperature of 150 ° C. after the back electrode layer 5 was formed. Table 1 shows the measurement results.
  • Comparative Example 1 In Comparative Example 1, almost the same process as in Example 1 was performed, but the formation temperature of the p-type a-SiC layer 3p was 185 ° C, which was different from Example 1. Table 1 shows the measurement results.
  • Example 1 From the comparison between Example 1 and Comparative Example 1 in Table 1, it was found that the atmospheric temperature for heat treatment in the atmosphere was 150 ° C force, and 170 ° C, the same as the formation temperature of the p-type a_SiC layer. Improved by 0.3% I understand that. This is thought to be due to the improved dopant activation rate of the p-type a-SiC layer and the improved ohmic contact between the conductive semiconductor layer and the electrode. In addition, in Example 1, the sheet resistance of the transparent conductive film was 10 ⁇ / mouth, which was relatively high and the value was close to 0.74 FF. Compared to FF in Patent Document 1, it is a large value.
  • Example 1 On the other hand, from the comparison between Example 1 and Comparative Example 2, when the formation temperature of the p-type a_SiC layer is 185 ° C, the transparent conductive film increases in resistance, so that the series resistance (Rs) of the photoelectric conversion device is increased. Increases, FF decreases and the difference in Eff. Reaches 0.8%.
  • Example 1 the ion is directed from the back electrode layer 5 side toward the translucent substrate 1 side.
  • the depth profiles of hydrogen, carbon, oxygen and nitrogen concentrations were measured by SIMS while sputtering.
  • the measurement results of Example 1, Comparative Example 1, and Reference Example are shown in FIG. 3, FIG. 4, and FIG. 5, respectively.
  • the horizontal axis 0.6 ⁇ ⁇ corresponds to the interface between the a- SiC that is the p-type layer and the a_S layer that is the i-type layer of the photoelectric conversion layer.
  • FIG. 6 schematically shows the integrated hybrid thin film photoelectric conversion device fabricated in Example 2. It is sectional drawing.
  • a transparent conductive film 2 having a fine concavo-convex structure on a surface made of zinc oxide is formed on one main surface of a translucent substrate 1 made of 910 mm x 455 mm x 4 mm thick white glass by a thermal CVD method.
  • the surface temperature of the translucent substrate 1 was set to 150 to: 180 ° C., pressure lOOPa, and jetyl zinc, water, BH, argon, and hydrogen were used as source gases.
  • the obtained transparent conductive film 2 had a thickness of 1.7 ⁇ m, a haze ratio of 25%, and a sheet resistance of 9.5 ⁇ / ⁇ .
  • a transparent electrode layer separation groove 2a having a width of 50 ⁇ m is formed by irradiating the transparent substrate 1 with a YAG fundamental pulse laser to divide the transparent electrode layer 2 into a plurality of strip patterns. Then, ultrasonic cleaning and drying were performed.
  • the translucent substrate 1 on which the transparent conductive film 2 is formed is introduced into a high-frequency plasma CVD apparatus, and the substrate After heating so that the surface temperature of 1 becomes 165 ° C, an amorphous p-type silicon carbide (p-type a-SiC) layer (not shown) having a thickness of 20 A is formed as a silicon-based one-conductivity-type semiconductor layer. ), A microcrystalline p-type silicon layer (not shown) having a thickness of 50 A, and a p-type a-SiC layer 3p having a thickness of 150 A were sequentially formed.
  • p-type a-SiC amorphous p-type silicon carbide
  • a non-doped amorphous i-type silicon photoelectric conversion layer 3i having a thickness of 3000 A is formed as a photoelectric conversion layer, and a thickness of 300 A is formed as another conductive type semiconductor layer.
  • the n-type silicon layer 3n was sequentially laminated.
  • the formation conditions of the p-type a-SiC layer 3p are as follows: pressure 120 to 200 Pa, high frequency power density of 0.01 to 0.02 W / cm 2 , SiH: hydrogen: hydrogen 0.1%
  • the gas ratio of CH is 1: 1 1: 1. 6: 1. 8 and the thickness of the layer is equivalent to 80 mm, the discharge is maintained and 0. The supply of ⁇ and CH diluted to 1% was stopped, and the remaining 70 ⁇ was produced.
  • the p-type crystalline silicon layer 4p having a thickness of 150A as the one-conductivity-type semiconductor layer is continuously used using a plasma CVD apparatus.
  • a crystalline i-type silicon photoelectric conversion layer 4i having a thickness of 1.5 zm was sequentially stacked as a photoelectric conversion layer, and an n-type crystalline silicon layer 4n having a thickness of 100 A was sequentially stacked as another conductive semiconductor layer.
  • the amorphous photoelectric conversion unit 3 and the crystalline photoelectric conversion unit 4 are connected to a plurality of strip-shaped filters.
  • a YAG second harmonic pulse laser was irradiated from the translucent substrate 1 side to form a connection groove 4a having a width of 60 ⁇ m.
  • a transparent reflective layer (not shown) made of ZnO having a thickness of 900A and a back electrode layer 5 made of Ag having a thickness of 20000A were formed as a back electrode layer by a DC sputtering method. Furthermore, in order to divide the amorphous photoelectric conversion unit 3, the crystalline photoelectric conversion unit 4, and the back electrode layer 5 into a plurality of strip patterns, a YAG second harmonic pulse laser is applied from the translucent substrate 1 side.
  • An integrated hybrid thin film photoelectric conversion device in which a back electrode layer separation groove 5a having a width of 60 xm is formed by irradiation, and strip-like hybrid photoelectric conversion devices adjacent to the left and right are electrically connected in series as shown in FIG. was made. This integrated hybrid thin-film photoelectric conversion device has 100 stages of hybrid photoelectric conversion devices with a width of 8.9 mm and a length of 430 mm connected in series.
  • the photoelectric conversion device of Example 2 was fabricated by heat-treating the photoelectric conversion device in the atmosphere at an atmospheric temperature of 190 ° C for 60 minutes.
  • the integrated hybrid thin-film photoelectric conversion device fabricated in Example 2 has a spectral distribution AMI.
  • Table 2 is a table comparing the photoelectric conversion characteristics of the hybrid thin film photoelectric conversion devices manufactured under the conditions of Example 2 and Comparative Examples 3 and 4 described later.
  • Comparative Example 3 In Comparative Example 3, almost the same process as in Example 2 was performed, but the point power was different from Example 1 in which heat treatment was performed in the air at an atmospheric temperature of 150 ° C. after the formation of the back electrode layer 5. Table 2 shows the measurement results.
  • Comparative Example 4 the same process as in Example 2 was performed, but the formation temperature of the p-type a_SiC layer 3p was 180 ° C., which was different from Example 2. Table 2 shows the measurement results.
  • Example 2 The comparison between Example 2 and Comparative Examples 3 and 4 in Table 2 also shows that the results are the same as those obtained by comparing Example 1 and Comparative Examples 1 and 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A process for producing at low cost a thin-film photoelectric converter of high efficiency that even when use is made of a transparent conductive film consisting of zinc oxide with low thermal stability, avoids any increase of resistivity thereof. There is provided a process for producing a thin-film photoelectric converter, the thin-film photoelectric converter composed of a translucent substrate and, sequentially superimposed on one major surface thereof, a transparent conductive film composed mainly of zinc oxide, a photoelectric conversion unit of one or more units including at least a first photoelectric conversion unit and a backside electrode layer, which process is characterized by including the step of providing the first photoelectric conversion unit directly superimposed on the transparent conductive film, the first photoelectric conversion unit comprising a first conductive semiconductor layer of silicon base, wherein the first conductive semiconductor layer of silicon base is formed on the transparent conductive film maintained at ≤ 170°C; and the step of after formation of the backside electrode layer, effecting heating under atmospheric pressure at ≥ 170°C.

Description

明 細 書  Specification
薄膜光電変換装置の製造方法  Method for manufacturing thin film photoelectric conversion device
技術分野  Technical field
[0001] 本発明は酸化亜鉛を主成分とする透明導電膜上に直接シリコン系一導電型半導 体層を形成してなる薄膜光電変換装置の製造方法に関する。  The present invention relates to a method for manufacturing a thin film photoelectric conversion device in which a silicon-based one-conductivity type semiconductor layer is directly formed on a transparent conductive film containing zinc oxide as a main component.
背景技術  Background art
[0002] 近年では薄膜太陽電池に代表される薄膜光電変換装置も多様化し、従来の非晶 質薄膜光電変換装置に加えて結晶質薄膜光電変換装置も開発され、これらを積層 したハイブリッド薄膜光電変換装置も実用化されている。このような薄膜光電変換装 置は、一般に、透光性基板上に順に積層された透明導電膜、 1以上の光電変換ュニ ット、および裏面電極層を含んでいる。  In recent years, thin film photoelectric conversion devices represented by thin film solar cells have also diversified, and in addition to conventional amorphous thin film photoelectric conversion devices, crystalline thin film photoelectric conversion devices have also been developed, and hybrid thin film photoelectric conversions in which these are stacked. The device has also been put into practical use. Such a thin film photoelectric conversion device generally includes a transparent conductive film, one or more photoelectric conversion units, and a back electrode layer, which are sequentially stacked on a light-transmitting substrate.
[0003] そして、 1つの光電変換ユニットは一導電型半導体層と他導電型半導体層でサンド イッチされた光電変換層を含んでいる。一導導電型半導体層としてはシリコン系一導 電型半導体層が用いられることが多い。光電変換層は通常 i型層として形成される。 ここで、例えば、一導電型半導体層とは p型層であり、この場合には他導電型半導体 層とは n型層であり、この逆の場合もある。  [0003] One photoelectric conversion unit includes a photoelectric conversion layer sandwiched between one conductivity type semiconductor layer and another conductivity type semiconductor layer. As the one-conductivity-type semiconductor layer, a silicon-based one-conductivity-type semiconductor layer is often used. The photoelectric conversion layer is usually formed as an i-type layer. Here, for example, the one-conductivity-type semiconductor layer is a p-type layer, and in this case, the other-conductivity-type semiconductor layer is an n-type layer, and vice versa.
[0004] 光電変換層は真性半導体層(i型層)に限らず、ドープされた不純物(ドーパント)に よって吸収される光の損失が問題にならない範囲で微量に p型または n型にドープさ れた層であってもよい。光電変換層は光吸収のためには厚い方が好ましいが、必要 以上に厚くすればその製膜のためのコストと時間が増大することになる。  [0004] The photoelectric conversion layer is not limited to an intrinsic semiconductor layer (i-type layer), but is doped in a small amount to p-type or n-type as long as loss of light absorbed by the doped impurity (dopant) does not become a problem. It may be a layer. The photoelectric conversion layer is preferably thicker for light absorption, but if it is thicker than necessary, the cost and time for film formation will increase.
[0005] 他方、 p型や n型の導電型半導体層は光電変換ユニット内に内部電界を生じさせる 役目を果たし、この内部電界の大きさによって薄膜光電変換装置の重要な特性の 1 つである開放電圧 (Voc)の値が左右される。しかし、これらの導電型半導体層は光 電変換に直接寄与しない不活性な層であり、導電型半導体層にドープされた不純物 によって吸収される光は発電に寄与しない損失となる。したがって、 p型と n型の導電 型半導体層は、十分な内部電界を生じさせ得る範囲内であれば、できるだけ小さな 厚さにとどめておくことが好ましい。導電型半導体層の厚さは一般的には 20nm程度 以下である。 On the other hand, the p-type and n-type conductive semiconductor layers serve to generate an internal electric field in the photoelectric conversion unit, and are one of the important characteristics of the thin film photoelectric conversion device depending on the magnitude of the internal electric field. The value of open circuit voltage (Voc) is affected. However, these conductive semiconductor layers are inactive layers that do not directly contribute to photoelectric conversion, and light absorbed by impurities doped in the conductive semiconductor layer is a loss that does not contribute to power generation. Therefore, it is preferable to keep the p-type and n-type conductive semiconductor layers as small as possible as long as they are within a range in which a sufficient internal electric field can be generated. The thickness of the conductive semiconductor layer is generally about 20 nm It is as follows.
[0006] ここで、光電変換ユニットまたは薄膜光電変換装置は、それに含まれる p型と n型の 導電型半導体層が非晶質か結晶質かにかかわらず、その主要部を占める光電変換 層が非晶質のものは非晶質ユニットまたは非晶質薄膜光電変換装置と称され、光電 変換層が結晶質のものは結晶質ユニットまたは結晶質薄膜光電変換装置と称される  [0006] Here, the photoelectric conversion unit or the thin film photoelectric conversion device has a photoelectric conversion layer that occupies the main part regardless of whether the p-type and n-type conductive semiconductor layers included therein are amorphous or crystalline. Amorphous materials are referred to as amorphous units or amorphous thin film photoelectric conversion devices, and those with a crystalline photoelectric conversion layer are referred to as crystalline units or crystalline thin film photoelectric conversion devices.
[0007] 薄膜光電変換装置の変換効率を向上させる方法として、 2以上の光電変換ユニット を積層してタンデム型にする方法がある。この方法においては、薄膜光電変換装置 の光入射側に大きなバンドギャップを有する光電変換層を含む前方ユニットを配置し 、その後方に順に小さなバンドギャップを有する光電変換層を含む後方ユニットを配 置することにより、入射光の広い波長範囲にわたって光電変換を可能にし、これによ つて光電変換装置全体としての変換効率の向上が図られる。このようなタンデム型光 電変換装置の中でも、特に非晶質光電変換ユニットと結晶質光電変換ユニットを積 層したものはハイブリッド薄膜光電変換装置と称される。 [0007] As a method for improving the conversion efficiency of a thin film photoelectric conversion device, there is a method of stacking two or more photoelectric conversion units into a tandem type. In this method, a front unit including a photoelectric conversion layer having a large band gap is disposed on the light incident side of the thin film photoelectric conversion device, and a rear unit including a photoelectric conversion layer having a small band gap is sequentially disposed behind the front unit. Thus, photoelectric conversion can be performed over a wide wavelength range of incident light, thereby improving the conversion efficiency of the entire photoelectric conversion device. Among such tandem photoelectric conversion devices, those in which an amorphous photoelectric conversion unit and a crystalline photoelectric conversion unit are stacked are called hybrid thin film photoelectric conversion devices.
[0008] 例えば、 i型非晶質シリコンを光電変換層とする非晶質シリコン光電変換ユニットが 光電変換し得る光の波長は長波長側において 800nm程度までであるが、 i型結晶質 シリコンを光電変換層とする結晶質シリコン光電変換ユニットはそれより長い約 1150 nm程度の波長までの光を光電変換することができる。ただし、光吸収係数の大きな 非晶質シリコン光電変換層は光吸収のためには 0. 3 μ m程度以下の厚さでも十分 であるが、光吸収係数の小さな結晶質シリコン光電変換層は長波長の光をも十分に 吸収するためには 1. 5〜3 μ ΐη程度の厚さを有することが好ましい。すなわち、結晶 質光電変換層は、通常は非晶質光電変換層に比べて 5〜: 10倍程度の厚さを有する ことが望まれる。 [0008] For example, the wavelength of light that can be photoelectrically converted by an amorphous silicon photoelectric conversion unit using i-type amorphous silicon as a photoelectric conversion layer is about 800 nm on the long wavelength side. The crystalline silicon photoelectric conversion unit as the photoelectric conversion layer can photoelectrically convert light up to about 1150 nm longer than that. However, an amorphous silicon photoelectric conversion layer with a large light absorption coefficient may have a thickness of about 0.3 μm or less for light absorption, but a crystalline silicon photoelectric conversion layer with a small light absorption coefficient is long. In order to sufficiently absorb light of a wavelength, it is preferable to have a thickness of about 1.5 to 3 μΐη. That is, the crystalline photoelectric conversion layer is usually desired to have a thickness of about 5 to 10 times that of the amorphous photoelectric conversion layer.
[0009] 透光性基板は通常その上に形成される透明導電膜や光電変換ユニットに十分な 光を到達させ、かつ光電変換装置を屋外に設置する際にこれらを衝撃や外気から保 護する役割を果たす。このため、例えば結晶質シリコンを光電変換層とする結晶質光 電変換ユニットを透光性基板上に形成する場合には、透光性基板は 350〜: 1150η m程度の波長の光に対して十分な光線透過率を有することが望まれる。また、透光 性基板としては耐衝撃性ゃ耐候性に優れた材料を用いることが望ましい。 [0009] The translucent substrate usually allows sufficient light to reach the transparent conductive film and the photoelectric conversion unit formed thereon, and protects the photoelectric conversion device from impact and outside air when installed outdoors. Play a role. For this reason, for example, when a crystalline photoelectric conversion unit having crystalline silicon as a photoelectric conversion layer is formed on a light-transmitting substrate, the light-transmitting substrate is used for light having a wavelength of about 350 to 1150 ηm. It is desirable to have sufficient light transmittance. Translucent As the conductive substrate, it is desirable to use a material excellent in impact resistance and weather resistance.
[0010] 透明導電膜は透光性基板を通じて入射された光をできるだけ失うことなく光電変換 ユニット側に透過させると共に、光電変換ユニット内で発生した光電流を効率良く外 部に取り出す役割を果たす。このため、高い透明性と低いシート抵抗を兼ね備えてい ることが望ましい。シート抵抗が高くなると光電変換装置の直列抵抗が大きくなり、結 果的に曲線因子(FF)の低下につながる。  [0010] The transparent conductive film transmits the light incident through the translucent substrate to the photoelectric conversion unit side without losing as much as possible, and efficiently takes out the photocurrent generated in the photoelectric conversion unit to the outside. For this reason, it is desirable to have both high transparency and low sheet resistance. When the sheet resistance increases, the series resistance of the photoelectric conversion device increases, and as a result, the fill factor (FF) decreases.
[0011] 薄膜光電変換装置は、従来のバルタの単結晶や多結晶を使用した光電変換装置 に比べて光電変換層を薄くすることが可能であるが、反面、光吸収が光電変換層の 厚さによって制限されてしまうという問題がある。そこで、光電変換層を含む光電変換 ユニットに入射した光をより有効に利用するために、光電変換ユニットに接する透明 導電膜の表面に微細な凹凸を形成し、その界面で光を散乱した後、光電変換ュニッ ト内へ入射させることで光路長を延長せしめ、光電変換層内での光吸収量を増加さ せる工夫がなされている。この技術は「光閉じ込め」と呼ばれており、高い光電変換効 率を有する薄膜光電変換装置を実用化する上で、重要な要素技術となっている。  The thin film photoelectric conversion device can make the photoelectric conversion layer thinner than conventional photoelectric conversion devices using Balta single crystals or polycrystals, but on the other hand, the light absorption is the thickness of the photoelectric conversion layer. There is a problem that it is limited by this. Therefore, in order to use light incident on the photoelectric conversion unit including the photoelectric conversion layer more effectively, after forming fine irregularities on the surface of the transparent conductive film in contact with the photoelectric conversion unit and scattering the light at the interface, A device has been devised to extend the optical path length by making it enter the photoelectric conversion unit and to increase the amount of light absorption in the photoelectric conversion layer. This technology is called “optical confinement” and has become an important elemental technology for the practical application of thin film photoelectric conversion devices with high photoelectric conversion efficiency.
[0012] その凹凸の高低差は一般的には 0· 05 μ m〜0. 3 μ m程度である。  [0012] The height difference of the irregularities is generally about 0 · 05 μm to 0.3 μm.
[0013] この透明導電膜の凹凸の度合いを表す指標としてヘイズ率がある。これは特定の 光源の光を透明導電膜が付いた透光性基板に入射した際に透過する光のうち、光 路が曲げられた散乱成分を全成分で割ったものに相当し、通常可視光を含む C光源 を用いて測定される。一般的には凹凸の高低差を大きくするほど、または凹凸の凸部 と凸部の間隔が大きくなるほどヘイズ率が高くなり、光電変換ユニット内に入射された 光は有効に閉じ込められ、いわゆる光閉じ込め効果が優れている。  There is a haze ratio as an index representing the degree of unevenness of the transparent conductive film. This is equivalent to the light that is transmitted when the light from a specific light source is incident on a transparent substrate with a transparent conductive film divided by the scattered component whose optical path is bent and divided by all components. Measured using a C light source containing light. Generally, the haze ratio increases as the height difference between the projections and depressions increases, or as the spacing between the projections and depressions of the projections and projections increases, and the light incident on the photoelectric conversion unit is effectively confined. The effect is excellent.
[0014] したがって、非晶質シリコン単層の薄膜光電変換装置にせよ、前述のハイブリッド薄 膜光電変換装置にせよ、透明導電膜の透明性を向上させ、ヘイズ率を高くし、かつ シート抵抗を低く保つことができれば、光電変換層の厚さをより薄くしても高い短絡電 流密度 tisc)を維持できると共に、高い曲線因子 (FF)を得ることができるので薄膜光 電変換装置の性能を向上させることができ、また、製造コストを下げることにつながる  [0014] Therefore, whether the amorphous silicon single-layer thin film photoelectric conversion device or the above-described hybrid thin film photoelectric conversion device, the transparency of the transparent conductive film is improved, the haze ratio is increased, and the sheet resistance is increased. If it can be kept low, a high short-circuit current density (tisc) can be maintained even if the thickness of the photoelectric conversion layer is reduced, and a high fill factor (FF) can be obtained, so that the performance of the thin film photoelectric conversion device can be improved. Can be improved, and also leads to lower manufacturing costs
[0015] 透明導電膜の材料としては酸化錫が古くから一般的に用いられているが、 500°C 以上の熱 CVD法を用いるため、透光性基板に用レ、る材料が限定されることや、形成 条件を調整することにより凹凸の凸部と凸部の間隔を大きくしてヘイズ率を上げてい くと、 Vocを維持するのが困難になるという問題点がある。更に、材料自体の光吸収 損失が大きいため、シート抵抗を通常使用する 10 Ω Ζ口程度の値に保持しようとす れば、薄膜非晶質シリコンゃ結晶質シリコンの重要な吸収領域である 500〜 800nm の吸収損失が無視できなレ、大きさとなる。 [0015] Tin oxide has been generally used as a material for the transparent conductive film since ancient times, but it is 500 ° C. Since the above thermal CVD method is used, the material used for the light-transmitting substrate is limited, and by adjusting the formation conditions, the distance between the convex and concave portions is increased to increase the haze ratio. The problem is that it will be difficult to maintain Voc. Furthermore, since the light absorption loss of the material itself is large, if the sheet resistance is kept at a value of about 10 Ω, which is normally used, the thin film amorphous silicon is an important absorption region of crystalline silicon. Absorption loss of ~ 800nm is negligible.
[0016] このような課題に対して、近年、透明導電膜に 200°C程度の熱 CVD法で形成した 酸化亜鉛を用いる方法が注目されてレ、る。酸化亜鉛から成る透明導電膜は低温で 形成されるため、透光性基板に使用可能な材料の選択肢が広がる上、ヘイズ率を上 げても Vocが維持できるという利点がある。これは酸化錫から成る透明導電膜との表 面形状の違いによるものと考えられる。更に、材料自体の光吸収損失が小さぐ薄膜 光電変換装置の Jscを大きくできるという利点もある。  [0016] To deal with such problems, in recent years, a method using zinc oxide formed by a thermal CVD method at about 200 ° C for a transparent conductive film has attracted attention. Since the transparent conductive film made of zinc oxide is formed at a low temperature, there are advantages in that the choice of materials that can be used for the light-transmitting substrate is widened, and that Voc can be maintained even if the haze ratio is increased. This is thought to be due to the difference in surface shape from the transparent conductive film made of tin oxide. In addition, there is an advantage that Jsc of a thin film photoelectric conversion device in which the light absorption loss of the material itself is small can be increased.
[0017] 薄膜光電変換装置の透明導電膜として CVD法で形成された酸化亜鉛力 なる膜 を用いることは、非特許文献 1に記載されている。具体的には、ボロンを添加した酸 化亜鉛力 成る透明導電膜を 170〜200°Cで形成し、シート抵抗値が 4 Ω /口前後 の透明導電膜とした後その上に、非晶質シリコン層を高周波プラズマ CVDで形成し 、非晶質シリコンのシングノレ光電変換装置を得ている。ここで i型非晶質シリコン層の 厚さが 0. 35 μ ΐηの場合に、 FFが 0. 72〜0. 73、 Jscが 17. 5mA/cm2、変換効率 力 2%であったと記載されている。 [0017] Non-Patent Document 1 describes the use of a film having a zinc oxide force formed by a CVD method as a transparent conductive film of a thin film photoelectric conversion device. Specifically, a transparent conductive film made of zinc oxide with boron added is formed at 170-200 ° C to form a transparent conductive film having a sheet resistance value of about 4 Ω / mouth, and then an amorphous film is formed thereon. A silicon layer is formed by high-frequency plasma CVD to obtain an amorphous silicon single-pole photoelectric conversion device. Here, when the thickness of the i-type amorphous silicon layer is 0.35 μΐη, FF is 0.72 to 0.73, Jsc is 17.5 mA / cm 2 , and conversion efficiency is 2%. Has been.
非特許文 1: J. Meier et al., "Efficiency enhancement of amorphous silicon p_i_n s olar cells by LP-CVD ZnO", Proc. of 28th IEEE Photovoltaic Specialists Conferenc e, Anchorage, 2000, pp.746- 749  Non-Patent Document 1: J. Meier et al., "Efficiency enhancement of amorphous silicon p_i_n solar cells by LP-CVD ZnO", Proc. Of 28th IEEE Photovoltaic Specialists Conferenc e, Anchorage, 2000, pp.746-749
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0018] 上述のような状況に鑑み、本発明は、酸化亜鉛を主成分とする透明導電膜上に直 接シリコン系一導電型半導体層を形成してなる薄膜光電変換装置に関し、さらに、そ の光電変換特性を向上させうる薄膜光電変換装置の製造方法を得ることを課題とし ている。 [0019] 特に熱 CVDで形成された耐熱性の低レ、酸化亜鉛力 成る透明導電膜を用いた場 合に、その抵抗率を変化させることなぐ透明導電膜上に光電変換ユニットを形成す ることにより、前記透明導電膜の潜在的能力を十分に発揮できる薄膜光電変換装置 の製造方法に関するものである。 In view of the situation as described above, the present invention relates to a thin film photoelectric conversion device in which a silicon-based one-conductivity type semiconductor layer is directly formed on a transparent conductive film containing zinc oxide as a main component. It is an object of the present invention to obtain a method for manufacturing a thin film photoelectric conversion device capable of improving the photoelectric conversion characteristics. In particular, when a transparent conductive film having low heat resistance and zinc oxide strength formed by thermal CVD is used, a photoelectric conversion unit is formed on the transparent conductive film without changing its resistivity. Thus, the present invention relates to a method of manufacturing a thin film photoelectric conversion device that can sufficiently exhibit the potential of the transparent conductive film.
課題を解決するための手段  Means for solving the problem
[0020] 本発明による薄膜光電変換装置の製造方法は、透光性基板の一方の主面上に順 に、酸化亜鉛を主成分とする透明導電膜、少なくとも第一光電変換ユニットを含む 1 ユニット以上の光電変換ユニット、及び裏面電極層を備えてなる薄膜光電変換装置 の製造方法であって、前記光電変換ユニットは、前記透光性基板側から順に一導電 型半導体層、光電変換層、及び他導電型半導体層からなり、かつ、前記透明導電膜 上には、直接、前記第一光電変換ユニットが形成されてなり、かつ、前記第一光電変 換ユニットを構成する前記一導電型半導体層はシリコン系であり、前記シリコン系一 導電型半導体層を 170°C以下の温度に保持された前記透明導電膜上に形成する 工程、及び前記裏面電極層形成後に 170°C以上の大気圧下で加熱する工程を含 むことを特徴とする薄膜光電変換装置の製造方法である。透明導電膜上に形成され るシリコン系一導電型半導体層の形成温度を、透明導電膜の加熱による高抵抗化を 防止するために 170°C以下に設定し、さらに、そのシリコン系一導電型半導体層中 のドーパントの活性化率を上げ、また透明導電膜とシリコン系一導電型半導体層、他 導電型半導体層と裏面電極層の各接合界面を確実にォーミック接触とするために、 裏面電極層形成後に前記シリコン系一導電型半導体層の形成温度以上での大気圧 下で加熱している。これらの作用により、光電変換特性が向上した薄膜光電変換装 置を製造することができる。 [0020] A method for producing a thin film photoelectric conversion device according to the present invention includes a transparent conductive film mainly composed of zinc oxide and at least a first photoelectric conversion unit in order on one main surface of a translucent substrate. A method of manufacturing a thin film photoelectric conversion device comprising the above photoelectric conversion unit and a back electrode layer, wherein the photoelectric conversion unit comprises, in order from the translucent substrate side, a one-conductive semiconductor layer, a photoelectric conversion layer, and The one-conductivity-type semiconductor layer comprising another conductive-type semiconductor layer, wherein the first photoelectric conversion unit is directly formed on the transparent conductive film, and which constitutes the first photoelectric-conversion unit Is silicon-based, and the step of forming the silicon-based one-conductivity type semiconductor layer on the transparent conductive film maintained at a temperature of 170 ° C. or lower, and the atmospheric pressure of 170 ° C. or higher after the formation of the back electrode layer Including the step of heating at A method of manufacturing a thin film photoelectric conversion device. The formation temperature of the silicon-based one-conductivity-type semiconductor layer formed on the transparent conductive film is set to 170 ° C or lower to prevent the resistance of the transparent conductive film from being increased by heating. In order to increase the activation rate of the dopant in the semiconductor layer, and to ensure that each junction interface between the transparent conductive film and the silicon-based one-conductivity-type semiconductor layer and the other conductive-type semiconductor layer and the back-electrode layer is in ohmic contact, the back electrode After the layer formation, heating is performed under atmospheric pressure at a temperature equal to or higher than the formation temperature of the silicon-based single conductivity type semiconductor layer. By these actions, a thin film photoelectric conversion device with improved photoelectric conversion characteristics can be manufactured.
[0021] また、本発明による薄膜光電変換装置の製造方法は、前記透明導電膜を元素とし て少なくとも亜鉛、硼素、及び酸素を含む原料ガスを用いて CVD法で形成する工程 をさらに含むことが好ましい。何故なら、本発明の作用効果は、特に亜鉛、硼素、及 び酸素を元素として含む原料ガスを用いて CVD法で形成した酸化亜鉛に対して有 効であるからである。 In addition, the method for manufacturing a thin film photoelectric conversion device according to the present invention further includes a step of forming the transparent conductive film by a CVD method using a source gas containing at least zinc, boron, and oxygen as elements. preferable. This is because the effects of the present invention are particularly effective for zinc oxide formed by CVD using a source gas containing zinc, boron, and oxygen as elements.
発明の効果 [0022] 本発明によれば、耐熱性の低い酸化亜鉛力 成る透明導電膜を用いた場合にも透 明導電膜の抵抗変化を抑制でき、光電変換装置の直列抵抗を小さく保つことができ る。この結果、高効率な薄膜光電変換装置を簡単なプロセスで安価に提供すること ができる。 The invention's effect According to the present invention, even when a transparent conductive film having low heat resistance and zinc oxide strength is used, the resistance change of the transparent conductive film can be suppressed, and the series resistance of the photoelectric conversion device can be kept small. . As a result, a highly efficient thin film photoelectric conversion device can be provided at a low cost with a simple process.
図面の簡単な説明  Brief Description of Drawings
[0023] [図 1]ハイブリッド薄膜光電変換装置の模式的断面図である。  FIG. 1 is a schematic cross-sectional view of a hybrid thin film photoelectric conversion device.
[図 2]非晶質シリコンシングル光電変換装置の模式的断面図である。  FIG. 2 is a schematic cross-sectional view of an amorphous silicon single photoelectric conversion device.
[図 3]実施例 1の条件で作製した非晶質シリコンシングル光電変換装置の、水素、炭 素、酸素および窒素濃度の深さ方向プロファイルである。  FIG. 3 is a depth profile of hydrogen, carbon, oxygen and nitrogen concentrations of an amorphous silicon single photoelectric conversion device fabricated under the conditions of Example 1.
[図 4]比較例 1の条件で作製した非晶質シリコンシングル光電変換装置の、水素、炭 素、酸素および窒素濃度の深さ方向プロファイルである。  FIG. 4 is a depth profile of hydrogen, carbon, oxygen and nitrogen concentrations of an amorphous silicon single photoelectric conversion device fabricated under the conditions of Comparative Example 1.
[図 5]参考例の条件で作製した非晶質シリコンシングル光電変換装置の、水素、炭素 [Fig.5] Hydrogen, carbon of amorphous silicon single photoelectric conversion device fabricated under the conditions of reference example
、酸素および窒素濃度の深さ方向プロファイルである。 2 is a depth profile of oxygen and nitrogen concentrations.
[図 6]集積型ハイブリッド薄膜光電変換装置の模式的断面図である。  FIG. 6 is a schematic cross-sectional view of an integrated hybrid thin film photoelectric conversion device.
符号の説明  Explanation of symbols
1 透光性基板  1 Translucent substrate
2 透明導電膜  2 Transparent conductive film
3 非晶質光電変換ユニット  3 Amorphous photoelectric conversion unit
3p 非晶質 p型シリコンカーバイド層  3p amorphous p-type silicon carbide layer
3i ノンドープ非晶質 i型シリコン光電変換層  3i Non-doped amorphous i-type silicon photoelectric conversion layer
3n n型シリコン層 3n n- type silicon layer
4 結晶質光電変換ユニット  4 Crystalline photoelectric conversion unit
4p P型結晶質シリコン層  4p P-type crystalline silicon layer
4i 結晶質 i型シリコン光電変換層  4i Crystalline i-type silicon photoelectric conversion layer
4n n型結晶質シリコン層  4n n-type crystalline silicon layer
5 袅面電極層  5 Mineral electrode layer
5t 透明反射層  5t transparent reflective layer
2a 透明電極層分離溝 4a 接続溝 2a Transparent electrode layer separation groove 4a Connection groove
5a 裏面電極層分離溝  5a Back electrode layer separation groove
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 本発明者らは、薄膜光電変換装置の透明導電膜として CVD法で形成された酸化 亜鉛力 なる膜を用い、実際に薄膜光電変換装置を形成した。その結果、以下の問 題があることを見出し、本発明を為すに到った。  [0025] The present inventors actually formed a thin film photoelectric conversion device using a zinc oxide-powered film formed by a CVD method as the transparent conductive film of the thin film photoelectric conversion device. As a result, the inventors have found that there are the following problems and arrived at the present invention.
[0026] まず、熱 CVDで形成された酸化亜鉛を用いた透明導電膜は耐熱性が低いという問 題点があることがわかった。具体的には、透明導電膜を形成した後そのままの状態で 大気中に数ケ月放置すると、膜のシート抵抗力 桁以上増大する。また、透明導電膜 を大気中で 200°C程度の温度でァニールすると、同様に膜のシート抵抗が増大する 。また、透明導電膜上に薄膜光電変換装置を形成した場合、同様に透明導電膜が 高抵抗化して光電変換装置の直列抵抗が増大する。  [0026] First, it has been found that a transparent conductive film using zinc oxide formed by thermal CVD has a problem of low heat resistance. Specifically, if the transparent conductive film is formed and left in the atmosphere for several months, the sheet resistance of the film increases by an order of magnitude or more. In addition, when the transparent conductive film is annealed in the atmosphere at a temperature of about 200 ° C., the sheet resistance of the film similarly increases. In addition, when a thin film photoelectric conversion device is formed on a transparent conductive film, the resistance of the transparent conductive film similarly increases and the series resistance of the photoelectric conversion device increases.
[0027] 本発明者らは、このような問題を解決するため、最適な光電変換装置の作製条件を 鋭意検討した。その結果、透明導電膜上に形成されるシリコン系一導電型半導体層 を 170°C以下の温度で形成し、その後、光電変換層、他導電型半導体層、裏面電極 層を形成し、更に前記温度以上の雰囲気温度で大気圧下において加熱することによ り、透明導電膜の高抵抗化を防止できることを見出した。  [0027] In order to solve such problems, the present inventors diligently studied the optimum conditions for producing a photoelectric conversion device. As a result, a silicon-based one-conductivity-type semiconductor layer formed on the transparent conductive film is formed at a temperature of 170 ° C. or lower, and then a photoelectric conversion layer, another conductivity-type semiconductor layer, and a back electrode layer are formed. It has been found that the resistance of the transparent conductive film can be prevented from being increased by heating at atmospheric temperature or higher under atmospheric pressure.
[0028] 本発明は、 CVD法、スパッタ法、蒸着法等のレ、ずれの方法で形成された酸化亜鉛 力 成る透明導電膜にも適用可能であるが、特に亜鉛、硼素、及び酸素を元素として 含む原料ガスを用いて CVD法で形成した酸化亜鉛に対して有効である。  [0028] The present invention can be applied to a transparent conductive film made of zinc oxide and formed by a shift method such as a CVD method, a sputtering method, or a vapor deposition method. In particular, zinc, boron, and oxygen are used as elements. It is effective for zinc oxide formed by the CVD method using source gas containing
[0029] 本発明においては、透明導電膜上に直接形成されるシリコン系一導電型半導体層 を 170°C以下の温度で形成することにより酸化亜鉛からなる透明導電膜の高抵抗化 を防ぐことができる。このメカニズムは明らかではないが、酸化亜鉛膜の導電性には 膜中の酸素欠陥構造が大きく関与しており、これを酸素雰囲気下で加熱した場合、 たとえ減圧下であっても雰囲気中に僅かに含まれる酸素が膜中に取り込まれて、電 子の流路となる酸素欠損が減少し、抵抗率が増大すると考えられる。一方、シリコン 系一導電型半導体層を 170°C以下の温度で形成し、透明導電膜を覆ってしまえば、 その後前記温度よりも高温の工程を経ても、酸素原子が透明導電膜中に取り込まれ ることはなレ、。このことにより、透明導電膜の高抵抗化が防止できていると考えられる [0029] In the present invention, the high resistance of the transparent conductive film made of zinc oxide is prevented by forming the silicon-based one-conductivity-type semiconductor layer directly formed on the transparent conductive film at a temperature of 170 ° C or lower. Can do. Although this mechanism is not clear, the conductivity of the zinc oxide film is largely related to the oxygen defect structure in the film, and when this is heated in an oxygen atmosphere, it is slightly in the atmosphere even under reduced pressure. It is considered that oxygen contained in the film is taken into the film and oxygen deficiency that becomes an electron flow path is reduced, and the resistivity is increased. On the other hand, if the silicon-based one-conductivity-type semiconductor layer is formed at a temperature of 170 ° C or lower and the transparent conductive film is covered, oxygen atoms are taken into the transparent conductive film even after a temperature higher than the above temperature. This That's not possible. This is considered to prevent the high resistance of the transparent conductive film.
[0030] 一方、 170°C以下の形成温度では、シリコンを主成分とする一導電型半導体層中 のドーパントの活性化率が十分上がらない場合があり、また透明導電膜とシリコン系 一導電型半導体層、他導電型半導体層と裏面電極層の各接合界面がォーミック接 触とならない場合がある。この問題は光電変換装置形成後、例えば裏面電極層形成 後に前記 170°C以上の温度で大気圧下で、光電変換装置を加熱する工程を経るこ とによって角军決される。 [0030] On the other hand, at a formation temperature of 170 ° C or lower, the activation rate of the dopant in the one-conductivity-type semiconductor layer mainly composed of silicon may not be sufficiently increased. In some cases, the junction interface between the semiconductor layer, the other conductivity type semiconductor layer, and the back electrode layer does not form ohmic contact. This problem is determined by performing a process of heating the photoelectric conversion device at a temperature of 170 ° C. or higher and atmospheric pressure after the photoelectric conversion device is formed, for example, after the back electrode layer is formed.
[0031] 加熱雰囲気に用いられる気体としては、大気、窒素、窒素と酸素の混合物等が好ま しく用レ、られる。また、大気圧に限らず多少の減圧下または加圧下でも同様の効果が 認められる。具体的には少なくとも 0. 5〜: 1. 5気圧の範囲で効果を有する。  [0031] The gas used in the heating atmosphere is preferably air, nitrogen, a mixture of nitrogen and oxygen, or the like. Moreover, the same effect is recognized not only at atmospheric pressure but also under some reduced pressure or increased pressure. Specifically, it has an effect in a range of at least 0.5 to: 1.5 atm.
[0032] 以下に、本発明の実施の形態としての薄膜光電変換装置を、図 1および図 2を参照 しつつ説明する。  Hereinafter, a thin film photoelectric conversion device as an embodiment of the present invention will be described with reference to FIG. 1 and FIG.
[0033] 透光性基板 1の上に透明導電膜 2が形成されている。透光性基板 1としては、ガラス 、透明樹脂等力 成る板状部材ゃシート状部材が用いられる。透光性基板 1としてガ ラスを用いる場合には、光照射による可視域の透過率低下を抑制するために、ガラス 中に含まれる Fe〇に換算した全酸化鉄ができるだけ少ないことが望ましぐ具体的 には 0. 02重量%以下であることが望ましい。  A transparent conductive film 2 is formed on the translucent substrate 1. As the translucent substrate 1, a plate-like member made of glass, transparent resin or the like or a sheet-like member is used. When glass is used as the translucent substrate 1, it is desirable that the total iron oxide converted to FeO contained in the glass be as small as possible in order to suppress the decrease in visible transmittance due to light irradiation. Specifically, it is desirable to be 0.02% by weight or less.
[0034] 透明導電膜 2としては酸化亜鉛が用いられる。透明導電膜 2は CVD、スパッタ、蒸 着等の方法を用いて形成されることが好ましぐ特に形成温度 200°C程度の CVD法 で形成されることが望ましい。また、ドーピング原料としてはボロンを用いることが望ま しい。透明導電膜 2は、形成条件の工夫によりその表面に微細な凹凸を生じさせて 入射光の散乱を増大させる効果を有している。凹凸の高低差は 0. 05〜0. 程 度であり、シート抵抗は 5〜20 Ω Z口程度に設定される。  [0034] As the transparent conductive film 2, zinc oxide is used. The transparent conductive film 2 is preferably formed by a method such as CVD, sputtering, or vapor deposition. In particular, the transparent conductive film 2 is preferably formed by a CVD method having a formation temperature of about 200 ° C. In addition, it is desirable to use boron as a doping material. The transparent conductive film 2 has the effect of increasing the scattering of incident light by producing fine irregularities on the surface by devising the formation conditions. The height difference of the unevenness is about 0.05 to 0. The sheet resistance is set to about 5 to 20 Ω Z port.
[0035] 酸化亜鉛を主成分とする透明導電膜 2の上には、 1以上の光電変換ユニットが形成 される。光電変換ユニットは非晶質光電変換ユニット、結晶質光電変換ユニットの単 ユニットでもよく、これらを積層したハイブリッド型でも良レ、。さらにこれらが 3ユニット以 上積層されていてもよい。また、光電変換ユニットに用いられる材料には、シリコン、 シリコンカーバイド、シリコンゲルマニウム等のシリコン合金や、銅一インジウムーセレ ン、ガリウム—砒素等の化合物系材料も好ましく用いられる。 [0035] One or more photoelectric conversion units are formed on the transparent conductive film 2 mainly composed of zinc oxide. The photoelectric conversion unit may be an amorphous photoelectric conversion unit or a single unit of a crystalline photoelectric conversion unit, or a hybrid type in which these are laminated. Further, three or more units of these may be laminated. In addition, materials used for the photoelectric conversion unit include silicon, Silicon alloys such as silicon carbide and silicon germanium, and compound materials such as copper-indium-selenium and gallium-arsenic are also preferably used.
[0036] 例えば、光電変換ユニットとして非晶質光電変換ユニットの単ユニットを用い、材料 としてシリコンを用いる場合には、図 2に示すような構成となる。すなわち、透明導電 膜 2上に一導電型半導体層である非晶質 p型シリコンカーバイド層 3p、ノンドープ非 晶質 i型シリコン光電変換層 3i、 n型シリコン層 3nから成る非晶質光電変換ユニット 3 が形成される。非晶質 p型シリコンカーバイド層 3pは、透明導電膜 2の加熱による高 抵抗化を防止するため、基板温度 170°C以下で形成される。  For example, when a single unit of an amorphous photoelectric conversion unit is used as the photoelectric conversion unit and silicon is used as the material, the structure is as shown in FIG. That is, an amorphous photoelectric conversion unit comprising an amorphous p-type silicon carbide layer 3p, a non-doped amorphous i-type silicon photoelectric conversion layer 3i, and an n-type silicon layer 3n on the transparent conductive film 2 as a one-conductivity type semiconductor layer. 3 is formed. The amorphous p-type silicon carbide layer 3p is formed at a substrate temperature of 170 ° C. or less in order to prevent the transparent conductive film 2 from being increased in resistance by heating.
[0037] 一方、例えば、ノ、イブリツド薄膜光電変換装置においては、図 1に示すように非晶 質光電変換ユニット 3の上に結晶質光電変換ユニット 4が形成される。結晶質光電変 換ユニット 4は結晶質 p型シリコン層 4p、結晶質 i型シリコン光電変換層 4i、および結 晶質 n型シリコン層 4nから成り立つている。非晶質光電変換ユニット 3、および結晶質 光電変換ユニット 4の形成には高周波プラズマ CVD法が適している。光電変換ュニ ットの形成条件としては、基板温度 100〜250°C (ただし、非晶質 p型シリコンカーバ イド層 3pは 170°C以下)、圧力 30〜: 1500Pa、高周波パワー密度 0· 01〜0. 5W/ cm2が好ましく用いられる。光電変換ユニット形成に使用する原料ガスとしては、 SiHOn the other hand, for example, in a hybrid semiconductor thin film photoelectric conversion device, a crystalline photoelectric conversion unit 4 is formed on an amorphous photoelectric conversion unit 3 as shown in FIG. The crystalline photoelectric conversion unit 4 includes a crystalline p-type silicon layer 4p, a crystalline i-type silicon photoelectric conversion layer 4i, and a crystalline n-type silicon layer 4n. A high-frequency plasma CVD method is suitable for forming the amorphous photoelectric conversion unit 3 and the crystalline photoelectric conversion unit 4. The formation conditions of the photoelectric conversion unit are: substrate temperature 100 to 250 ° C (however, amorphous p-type silicon carbide layer 3p is 170 ° C or less), pressure 30 to: 1500Pa, high frequency power density 0 · 01 to 0.5 W / cm 2 is preferably used. The source gas used to form the photoelectric conversion unit is SiH
、 Si H等のシリコン含有ガスまたは、それらのガスと水素を混合したものが用いられ る。光電変換ユニットにおける p型または n型層を形成するためのドーパントガスとして は、 B Hまたは PH等が好ましく用いられる。 A silicon-containing gas such as SiH or a mixture of these gases and hydrogen is used. B H or PH is preferably used as the dopant gas for forming the p-type or n-type layer in the photoelectric conversion unit.
[0038] 図 2における n型シリコン層 3n、または図 1における n型シリコン層 4nの上には裏面 電極層 5が形成される。裏面電極層 5には Ag、 Aほたはそれらの合金が好ましく用い られる。裏面電極層 5と n型シリコン層 4nとの間には、裏面電極層 5から n型シリコン層 4nへの金属の拡散を防止するため、透明反射層 5tを揷入してもよい。透明反射層 5 tには ZnO、 ITO等の高抵抗で透明性の優れた金属酸化物が用いられる。透明反射 層 5tおよび裏面電極層 5の形成においては、スパッタ、蒸着等の方法が好ましく用い られる。  A back electrode layer 5 is formed on the n-type silicon layer 3n in FIG. 2 or the n-type silicon layer 4n in FIG. For the back electrode layer 5, Ag, A or an alloy thereof is preferably used. Between the back electrode layer 5 and the n-type silicon layer 4n, a transparent reflective layer 5t may be inserted in order to prevent diffusion of metal from the back electrode layer 5 to the n-type silicon layer 4n. For the transparent reflective layer 5t, a metal oxide having high resistance and excellent transparency such as ZnO or ITO is used. In forming the transparent reflective layer 5t and the back electrode layer 5, methods such as sputtering and vapor deposition are preferably used.
[0039] 裏面電極層 5の形成後、前述したように、シリコン系一導電型半導体層である、例え ば非晶質 P型シリコンカーバイド層 3pの形成温度以上の雰囲気温度で大気圧下で 光電変換装置を加熱することにより、本発明の薄膜光電変換装置の製造方法となる 実施例 [0039] After the back electrode layer 5 is formed, as described above, the silicon-based one-conductivity-type semiconductor layer, for example, the amorphous P-type silicon carbide layer 3p is formed under atmospheric pressure at an atmospheric temperature equal to or higher than the formation temperature. Example of manufacturing method of thin film photoelectric conversion device of the present invention by heating photoelectric conversion device
[0040] 以下に、本発明による薄膜光電変換装置の製造方法について実施例 1、 2を、図 2 [0040] Hereinafter, Examples 1 and 2 of the method for manufacturing a thin film photoelectric conversion device according to the present invention will be described with reference to FIG.
、図 3を参照しつつ、比較例 1〜4と比較しながら説明する。 Referring to FIG. 3, the description will be made in comparison with Comparative Examples 1 to 4.
[0041] (実施例 1) [Example 1]
図 2は、実施例 1で作製した非晶質シリコンシングル光電変換装置を模式的に示す 断面図である。  FIG. 2 is a cross-sectional view schematically showing the amorphous silicon single photoelectric conversion device manufactured in Example 1.
[0042] まず、 0. 7mm厚の白板ガラスから成る透光性基板 1の一主面上に、酸化亜鉛から なる表面に微細な凹凸構造を有する透明導電膜 2を熱 CVD法により形成した。形成 条件としては、基板 1の表面温度を 160〜180°C、圧力 lOOPaに設定し、ジェチル 亜鉛、水、 B H、アルゴン、水素を原料ガスに用いた。得られた透明導電膜 2の厚さ は 1 · 5 μ ΐη,ヘイズ率は 22%、シート抵抗は 10 Ω /口であった。  [0042] First, a transparent conductive film 2 having a fine concavo-convex structure on a surface made of zinc oxide was formed on one main surface of a light-transmitting substrate 1 made of white plate glass having a thickness of 0.7 mm by a thermal CVD method. As the formation conditions, the surface temperature of the substrate 1 was set to 160 to 180 ° C., the pressure was lOOPa, and jetyl zinc, water, BH, argon, and hydrogen were used as source gases. The obtained transparent conductive film 2 had a thickness of 1 · 5 μΐη, a haze ratio of 22%, and a sheet resistance of 10 Ω / mouth.
[0043] 次に、第一光電変換ユニットとして非晶質光電変換ユニット 3を形成するために、透 明導電膜 2が形成された透光性基板 1を高周波プラズマ CVD装置内に導入し、基 板 1の表面温度が 170°Cになるように加熱した後、シリコン系一導電型半導体層とし て厚さ 20 Aの非晶質 p型シリコンカーバイド (p型 a_SiC)層(図示せず)、厚さ 50 A の微結晶 p型シリコン層(図示せず)、および厚さ 150Aの p型 a_ SiC層 3pを順次形 成した。引き続いて基板 1の表面温度を所定温度に加熱した後、光電変換層として 厚さ 3000Aのノンドープ非晶質 i型シリコン光電変換層 3iを、さらに、他導電型半導 体層として厚さ 150 Aの n型シリコン層 3nを順次積層した。 Next, in order to form the amorphous photoelectric conversion unit 3 as the first photoelectric conversion unit, the transparent substrate 1 on which the transparent conductive film 2 is formed is introduced into a high-frequency plasma CVD apparatus, After heating so that the surface temperature of the plate 1 becomes 170 ° C, an amorphous p-type silicon carbide (p-type a_SiC) layer (not shown) having a thickness of 20 A as a silicon-based one-conductivity semiconductor layer, A microcrystalline p-type silicon layer (not shown) with a thickness of 50 A and a p-type a_SiC layer 3p with a thickness of 150 A were sequentially formed. Subsequently, after the surface temperature of the substrate 1 is heated to a predetermined temperature, a non-doped amorphous i-type silicon photoelectric conversion layer 3i having a thickness of 3000 A is formed as a photoelectric conversion layer, and a thickness of 150 A is provided as another conductive type semiconductor layer. The n-type silicon layer 3n was sequentially laminated.
[0044] このとき、 p型 a_SiC層 3pの形成条件は、圧力 150〜400Pa、高周波電力のパヮ 一密度 0. 02〜0. 05WZcm2、 SiH:水素:水素で 0. 1 %に希釈された B H: CH のガス比が 1 : 30 : 10 : 1. 6であり、その層の厚さが 80A相当となった時点で放電を 維持したまま、水素で 0. 1 %に希釈された B Hおよび CHの供給を止め、代わりに 水素の SiHに対するガス比を 30から 40に増やして残り 70 Aの製膜を行った。 At this time, the formation conditions of the p-type a_SiC layer 3p were as follows: the pressure was 150 to 400 Pa, the high frequency power density was 0.02 to 0.05 WZcm 2 , and SiH: hydrogen: hydrogen was diluted to 0.1%. BH: CH gas ratio is 1: 30: 10: 1.6, and BH diluted to 0.1% with hydrogen while maintaining the discharge when the layer thickness reaches 80A The supply of CH was stopped, and instead, the gas ratio of hydrogen to SiH was increased from 30 to 40, and the remaining 70 A was formed.
[0045] 次に、裏面電極層として厚さ 900Aの Zn〇から成る透明反射層 5tと厚さ 2000Aの Agから成る裏面電極層 5を DCスパッタ法によって形成した。さらに、 YAG第 2高調 波パルスレーザーを透光性基板 1側から照射することにより、透明導電膜 2のみを残 し、非晶質光電変換ユニット 3、透明反射層 5t、および裏面電極層 5を幅 50 / mの線 状に除去することにより、 1cm角の島状の光電変換装置領域を形成した。 Next, a transparent reflective layer 5t made of ZnO having a thickness of 900A and a back electrode layer 5 made of Ag having a thickness of 2000A were formed as a back electrode layer by a DC sputtering method. In addition, YAG second harmonic By irradiating a wave pulse laser from the translucent substrate 1 side, only the transparent conductive film 2 is left, and the amorphous photoelectric conversion unit 3, the transparent reflective layer 5t, and the back electrode layer 5 are lines having a width of 50 / m. As a result, a 1 cm square island-shaped photoelectric conversion device region was formed.
[0046] その後、大気中で雰囲気温度 170°Cにて 90分間熱処理することにより、実施例 1の 光電変換装置が作製された。  [0046] Thereafter, the photoelectric conversion device of Example 1 was manufactured by performing heat treatment in the atmosphere at an atmospheric temperature of 170 ° C for 90 minutes.
[0047] 実施例 1で作製した非晶質シリコンシングノレ光電変換装置に、スペクトル分布 AMI . 5、エネルギー密度 lOOmW/cm2の擬似太陽光を、測定雰囲気及び光電変換装 置の温度が 25 ± 1°Cの下で照射し薄膜光電変換装置の出力特性を測定した。 Voc 、 Jsc、 F. F.、変換効率 (Eff. )、直列抵抗 (Rs)の測定結果を表 1に示す。なお、先 の熱処理時の圧力を 0. 5〜: 1. 5気圧の範囲で変化させた場合、得られた光電変換 装置特性は同一であった。 [0047] amorphous silicon single Honoré photovoltaic device manufactured in Example 1, the spectral distribution AMI. 5, a pseudo solar light energy density lOOmW / cm 2, the temperature of the measurement atmosphere and the photoelectric conversion equipment is 25 ± Irradiation was performed at 1 ° C, and the output characteristics of the thin film photoelectric conversion device were measured. Table 1 shows the measurement results of Voc, Jsc, FF, conversion efficiency (Eff.), And series resistance (Rs). When the pressure during the previous heat treatment was changed in the range of 0.5 to 1.5 atm, the obtained photoelectric conversion device characteristics were the same.
[0048] なお、表 1は、実施例 1、及び後述する比較例 1、 2、参考例の条件で作製した非晶 質シリコンシングル光電変換装置の光電変換特性を比較した表である。  [0048] Table 1 is a table comparing the photoelectric conversion characteristics of amorphous silicon single photoelectric conversion devices manufactured under the conditions of Example 1 and Comparative Examples 1 and 2 and Reference Examples described later.
[0049] [表 1]  [0049] [Table 1]
Figure imgf000013_0001
Figure imgf000013_0001
[0050] (比較例 1)  [0050] (Comparative Example 1)
比較例 1においては、実施例 1とほぼ同様の工程を実施したが、裏面電極層 5形成 後に大気中において雰囲気温度 150°Cで熱処理を行った点力 実施例 1とは異なつ ていた。測定結果を表 1に示す。  In Comparative Example 1, almost the same process as in Example 1 was performed, but the point power was different from that in Example 1 in which heat treatment was performed in the atmosphere at an atmospheric temperature of 150 ° C. after the back electrode layer 5 was formed. Table 1 shows the measurement results.
[0051] (比較例 2) [0051] (Comparative Example 2)
比較例 1においては、実施例 1とほぼ同様の工程を実施したが、 p型 a— SiC層 3p の形成温度が 185°Cであった点が、実施例 1とは異なっていた。測定結果を表 1に示 す。  In Comparative Example 1, almost the same process as in Example 1 was performed, but the formation temperature of the p-type a-SiC layer 3p was 185 ° C, which was different from Example 1. Table 1 shows the measurement results.
[0052] 表 1の実施例 1と比較例 1の比較から、大気中で熱処理を行う雰囲気温度を 150°C 力、ら p型 a_SiC層の形成温度と同じ 170°Cとすることにより、 Eff.が 0. 3%向上して レ、ることがわかる。これは、 p型 a— SiC層のドーパントの活性化率が向上し、また導電 型半導体層と電極間のォーミック接触が改善されたことによるものと考えられる。また 、実施例 1におレ、ては透明導電膜のシート抵抗は 10 Ω /口と比較的高レ、値でありな がら、 0. 74近い F. F.が得られており、先に示した非特許文献 1の F. F.と比べても 大きい値となっている。 [0052] From the comparison between Example 1 and Comparative Example 1 in Table 1, it was found that the atmospheric temperature for heat treatment in the atmosphere was 150 ° C force, and 170 ° C, the same as the formation temperature of the p-type a_SiC layer. Improved by 0.3% I understand that. This is thought to be due to the improved dopant activation rate of the p-type a-SiC layer and the improved ohmic contact between the conductive semiconductor layer and the electrode. In addition, in Example 1, the sheet resistance of the transparent conductive film was 10 Ω / mouth, which was relatively high and the value was close to 0.74 FF. Compared to FF in Patent Document 1, it is a large value.
[0053] 一方、実施例 1と比較例 2の比較から、 p型 a_ SiC層の形成温度を 185°Cとすると 、透明導電膜が高抵抗化することにより光電変換装置のシリーズ抵抗 (Rs)が増大し 、F. F.が低下して Eff.の差は 0. 8%にも達する。  [0053] On the other hand, from the comparison between Example 1 and Comparative Example 2, when the formation temperature of the p-type a_SiC layer is 185 ° C, the transparent conductive film increases in resistance, so that the series resistance (Rs) of the photoelectric conversion device is increased. Increases, FF decreases and the difference in Eff. Reaches 0.8%.
[0054] (参考例)  [0054] (Reference example)
参考例においては、比較例 1とほぼ同様の工程を実施したが、透明電極膜 2を形成 した後、一旦透光性基板 1を大気中で雰囲気温度 200°Cで 90分熱処理してから、高 周波プラズマ CVD装置内に導入した点が、比較例 1とは異なっていた。測定結果を 表 1に示す。この参考例においては、大気中での 200°Cでの加熱処理の影響で酸化 亜鉛膜の抵抗率が増大したため力、あるいは、この処理により酸化亜鉛膜に取り込ま れた酸素原子が光電変換ユニット、特に p型層に拡散したため力、特にシリーズ抵抗 Rsが大きくなり、実施例 1や各比較例より低い光電変換特性 Eff.となった。  In the reference example, substantially the same process as in Comparative Example 1 was performed, but after forming the transparent electrode film 2, the translucent substrate 1 was once heat-treated in the atmosphere at an atmospheric temperature of 200 ° C. for 90 minutes, It was different from Comparative Example 1 in that it was introduced into the high-frequency plasma CVD apparatus. Table 1 shows the measurement results. In this reference example, the resistivity of the zinc oxide film increased due to the influence of heat treatment at 200 ° C in the atmosphere, or the oxygen atoms taken into the zinc oxide film by this treatment are converted into photoelectric conversion units, In particular, the force, especially the series resistance Rs, increased due to diffusion in the p-type layer, resulting in a lower photoelectric conversion characteristic Eff. Than Example 1 and each comparative example.
[0055] また、実施例 1、比較例 1および参考例の条件で作製した非晶質シリコンシングル 光電変換装置の各々について、裏面電極層 5側から透光性基板 1側に向かってィォ ンスパッタリングしながら SIMSで水素、炭素、酸素および窒素濃度の深さ方向プロ ファイルを測定した。実施例 1、比較例 1、及び参考例の測定結果を各々、図 3、図 4 、及び図 5に示す。各図において、横軸 0. 6 μ ΐηは p型層である a— SiCと光電変換 層の i型層である a_ S纏との界面に相当し、透明導電膜の表面凹凸により界面自体 は平面でなく平均的な値ではあるものの、その地点での酸素量は各図の横線で示す ように、実施例 1、及び比較例 1が 1021atoms/cc半ば程度なのに対し、参考例では 1022atomsZcc程度で数倍参考例の方が高くなつており、前記推定を裏付ける結果 が得られた。 [0055] In addition, for each of the amorphous silicon single photoelectric conversion devices manufactured under the conditions of Example 1, Comparative Example 1, and Reference Example, the ion is directed from the back electrode layer 5 side toward the translucent substrate 1 side. The depth profiles of hydrogen, carbon, oxygen and nitrogen concentrations were measured by SIMS while sputtering. The measurement results of Example 1, Comparative Example 1, and Reference Example are shown in FIG. 3, FIG. 4, and FIG. 5, respectively. In each figure, the horizontal axis 0.6 μ ΐη corresponds to the interface between the a- SiC that is the p-type layer and the a_S layer that is the i-type layer of the photoelectric conversion layer. Is an average value rather than a plane, but the oxygen amount at that point is about 10 21 atoms / cc in Example 1 and Comparative Example 1 as shown by the horizontal line in each figure, whereas in the reference example The reference example was several times higher at about 10 22 atoms Zcc, and the results supporting the above estimation were obtained.
[0056] (実施例 2)  [0056] (Example 2)
図 6は、実施例 2で作製した集積型ハイブリッド薄膜光電変換装置を模式的に示す 断面図である。 FIG. 6 schematically shows the integrated hybrid thin film photoelectric conversion device fabricated in Example 2. It is sectional drawing.
[0057] まず、 910mm X 455mm X 4mm厚の白板ガラスから成る透光性基板 1の一主面 上に、酸化亜鉛からなる表面に微細な凹凸構造を有する透明導電膜 2を熱 CVD法 により形成した。形成条件としては、透光性基板 1の表面温度を 150〜: 180°C、圧力 l OOPaに設定し、ジェチル亜鉛、水、 B H、アルゴン、水素を原料ガスに用いた。得 られた透明導電膜 2の厚さは 1. 7 x m、ヘイズ率は 25%、シート抵抗は 9. 5 Ω / Π であった。次に、透明電極層 2を複数の帯状パターンへと分割するために YAG基本 波パルスレーザーを透光性基板 1に照射することにより、幅 50 μ mの透明電極層分 離溝 2aを形成し、超音波洗浄および乾燥を行った。  [0057] First, a transparent conductive film 2 having a fine concavo-convex structure on a surface made of zinc oxide is formed on one main surface of a translucent substrate 1 made of 910 mm x 455 mm x 4 mm thick white glass by a thermal CVD method. did. As formation conditions, the surface temperature of the translucent substrate 1 was set to 150 to: 180 ° C., pressure lOOPa, and jetyl zinc, water, BH, argon, and hydrogen were used as source gases. The obtained transparent conductive film 2 had a thickness of 1.7 × m, a haze ratio of 25%, and a sheet resistance of 9.5 Ω / Π. Next, a transparent electrode layer separation groove 2a having a width of 50 μm is formed by irradiating the transparent substrate 1 with a YAG fundamental pulse laser to divide the transparent electrode layer 2 into a plurality of strip patterns. Then, ultrasonic cleaning and drying were performed.
[0058] 次に、、第一光電変換ユニットとして非晶質光電変換ユニット 3を形成するために、 透明導電膜 2が形成された透光性基板 1を高周波プラズマ CVD装置内に導入し、 基板 1の表面温度が 165°Cになるように加熱した後、シリコン系一導電型半導体層と して厚さ 20 Aの非晶質 p型シリコンカーバイド (p型 a— SiC)層(図示せず)、厚さ 50 Aの微結晶 p型シリコン層(図示せず)、および厚さ 150Aの p型 a— SiC層 3pを順次 形成した。引き続いて基板 1の表面温度を所定温度に加熱した後、光電変換層とし て厚さ 3000Aのノンドープ非晶質 i型シリコン光電変換層 3iを、さらに、他導電型半 導体層として厚さ 300 Aの n型シリコン層 3nを順次積層した。  Next, in order to form the amorphous photoelectric conversion unit 3 as the first photoelectric conversion unit, the translucent substrate 1 on which the transparent conductive film 2 is formed is introduced into a high-frequency plasma CVD apparatus, and the substrate After heating so that the surface temperature of 1 becomes 165 ° C, an amorphous p-type silicon carbide (p-type a-SiC) layer (not shown) having a thickness of 20 A is formed as a silicon-based one-conductivity-type semiconductor layer. ), A microcrystalline p-type silicon layer (not shown) having a thickness of 50 A, and a p-type a-SiC layer 3p having a thickness of 150 A were sequentially formed. Subsequently, after the surface temperature of the substrate 1 is heated to a predetermined temperature, a non-doped amorphous i-type silicon photoelectric conversion layer 3i having a thickness of 3000 A is formed as a photoelectric conversion layer, and a thickness of 300 A is formed as another conductive type semiconductor layer. The n-type silicon layer 3n was sequentially laminated.
[0059] このとき、 p型 a— SiC層 3pの形成条件は、圧力 120〜200Pa、高周波電力のパヮ 一密度 0. 01〜0. 02W/cm2、 SiH:水素:水素で 0· 1 %に希釈された Β Η: CH のガス比が 1 : 1 1 : 1. 6 : 1. 8であり、その層の厚さが 80Α相当となった時点で放電を 維持したまま、水素で 0. 1 %に希釈された Β Ηおよび CHの供給を止めて残り 70Α の製莫を行った。 [0059] At this time, the formation conditions of the p-type a-SiC layer 3p are as follows: pressure 120 to 200 Pa, high frequency power density of 0.01 to 0.02 W / cm 2 , SiH: hydrogen: hydrogen 0.1% When the gas ratio of CH is 1: 1 1: 1. 6: 1. 8 and the thickness of the layer is equivalent to 80 mm, the discharge is maintained and 0. The supply of ΗΒ and CH diluted to 1% was stopped, and the remaining 70Α was produced.
[0060] さらに、第二の光電変換ユニットとして結晶質光電変換ユニット 4を形成するために 、引き続きプラズマ CVD装置を用いて、一導電型半導体層として厚さ 150Aの p型 結晶質シリコン層 4p、光電変換層として厚さ 1. 5 z mの結晶質 i型シリコン光電変換 層 4i、他導電型半導体層として厚さ 100Aの n型結晶質シリコン層 4nを順次積層し た。  [0060] Furthermore, in order to form the crystalline photoelectric conversion unit 4 as the second photoelectric conversion unit, the p-type crystalline silicon layer 4p having a thickness of 150A as the one-conductivity-type semiconductor layer is continuously used using a plasma CVD apparatus. A crystalline i-type silicon photoelectric conversion layer 4i having a thickness of 1.5 zm was sequentially stacked as a photoelectric conversion layer, and an n-type crystalline silicon layer 4n having a thickness of 100 A was sequentially stacked as another conductive semiconductor layer.
[0061] その後、非晶質光電変換ユニット 3及び結晶質光電変換ユニット 4を複数の帯状パ ターンへと分割するために YAG第 2高調波パルスレーザーを透光性基板 1側から照 射することにより幅 60 μ mの接続溝 4aを形成した。 [0061] Thereafter, the amorphous photoelectric conversion unit 3 and the crystalline photoelectric conversion unit 4 are connected to a plurality of strip-shaped filters. In order to divide it into turns, a YAG second harmonic pulse laser was irradiated from the translucent substrate 1 side to form a connection groove 4a having a width of 60 μm.
[0062] 次に、裏面電極層として厚さ 900Aの Zn〇から成る透明反射層(図示せず)と厚さ 2 000Aの Agから成る裏面電極層 5を DCスパッタ法によって形成した。さらに、非晶 質光電変換ユニット 3、結晶質光電変換ユニット 4、及び裏面電極層 5を複数の帯状 パターンへと分割するために、 YAG第 2高調波パルスレーザーを透光性基板 1側か ら照射することにより、幅 60 x mの裏面電極層分離溝 5aを形成し、図 3に示すような 左右に隣接する短冊状ハイブリッド光電変換装置が電気的に直列接続された集積 型ハイブリッド薄膜光電変換装置を作製した。この集積型ハイブリッド薄膜光電変換 装置は、幅 8. 9mm X長さ 430mmのハイブリッド光電変換装置が 100段直列接続さ れている。 Next, a transparent reflective layer (not shown) made of ZnO having a thickness of 900A and a back electrode layer 5 made of Ag having a thickness of 20000A were formed as a back electrode layer by a DC sputtering method. Furthermore, in order to divide the amorphous photoelectric conversion unit 3, the crystalline photoelectric conversion unit 4, and the back electrode layer 5 into a plurality of strip patterns, a YAG second harmonic pulse laser is applied from the translucent substrate 1 side. An integrated hybrid thin film photoelectric conversion device in which a back electrode layer separation groove 5a having a width of 60 xm is formed by irradiation, and strip-like hybrid photoelectric conversion devices adjacent to the left and right are electrically connected in series as shown in FIG. Was made. This integrated hybrid thin-film photoelectric conversion device has 100 stages of hybrid photoelectric conversion devices with a width of 8.9 mm and a length of 430 mm connected in series.
[0063] 最後に、この光電変換装置を大気中で雰囲気温度 190°Cにて 60分間熱処理する ことにより、実施例 2の光電変換装置が作製された。  [0063] Finally, the photoelectric conversion device of Example 2 was fabricated by heat-treating the photoelectric conversion device in the atmosphere at an atmospheric temperature of 190 ° C for 60 minutes.
[0064] 実施例 2で作製した集積型ハイブリッド薄膜光電変換装置にスペクトル分布 AMI .  [0064] The integrated hybrid thin-film photoelectric conversion device fabricated in Example 2 has a spectral distribution AMI.
5、エネルギー密度 100mW/cm2の擬似太陽光を、測定雰囲気及び光電変換装置 の温度が 25 ± 1°Cの下で照射し、薄膜光電変換装置の出力特性を測定した。 Voc、 Jsc、 F. F. 、 Eff. の測定結果を表 2に示す。なお、表 2においては、 Vocは実際に 得られた値を直列段数(100)で割ったもの、 Jscは実際に得られた短絡電流値を光 電変換装置 1段の面積で割ったものとした。 5. Simulated sunlight with an energy density of 100 mW / cm 2 was irradiated under the measurement atmosphere and the temperature of the photoelectric conversion device of 25 ± 1 ° C, and the output characteristics of the thin film photoelectric conversion device were measured. Table 2 shows the measurement results for Voc, Jsc, FF, and Eff. In Table 2, Voc is obtained by dividing the actually obtained value by the number of series stages (100), and Jsc is obtained by dividing the actually obtained short-circuit current value by the area of one stage of the photoelectric conversion device. did.
[0065] なお、表 2は、実施例 2および後述する比較例 3、 4の条件で作製したハイブリッド薄 膜光電変換装置の光電変換特性を比較表した表である。  [0065] Table 2 is a table comparing the photoelectric conversion characteristics of the hybrid thin film photoelectric conversion devices manufactured under the conditions of Example 2 and Comparative Examples 3 and 4 described later.
[0066] [表 2]  [0066] [Table 2]
Figure imgf000016_0001
Figure imgf000016_0001
[0067] (比較例 3) 比較例 3においては、実施例 2とほぼ同様の工程を実施したが、裏面電極層 5形成 後に大気中において雰囲気温度 150°Cで熱処理を行った点力 実施例 1とは異なつ ていた。測定結果を表 2に示す。 [0067] (Comparative Example 3) In Comparative Example 3, almost the same process as in Example 2 was performed, but the point power was different from Example 1 in which heat treatment was performed in the air at an atmospheric temperature of 150 ° C. after the formation of the back electrode layer 5. Table 2 shows the measurement results.
[0068] (比較例 4) [0068] (Comparative Example 4)
比較例 4においては、実施例 2とほぼ同様の工程を実施したが、 p型 a_SiC層 3p の形成温度が 180°Cであった点が、実施例 2とは異なっていた。測定結果を表 2に示 す。  In Comparative Example 4, the same process as in Example 2 was performed, but the formation temperature of the p-type a_SiC layer 3p was 180 ° C., which was different from Example 2. Table 2 shows the measurement results.
[0069] 表 2の実施例 2と比較例 3、 4の比較からも実施例 1と比較例 1、 2の比較で得られた ものと同様のことがわかる。  [0069] The comparison between Example 2 and Comparative Examples 3 and 4 in Table 2 also shows that the results are the same as those obtained by comparing Example 1 and Comparative Examples 1 and 2.
[0070] 以上のことから、本発明の薄膜光電変換装置の製造方法によれば耐熱性の低い 酸化亜鉛力 成る透明導電膜を用いた場合であっても、その抵抗率を変化させること なぐその上に直接形成されるシリコン系一導電型半導体層のドーパントの活性化率 を向上させ、また透明導電膜とシリコン系一導電型半導体層、他導電型半導体層と 裏面電極層の各接合界面を確実にォーミック接触とすることができる。この結果、高 性能を発揮する薄膜光電変換装置を安価に提供することができる。  From the above, according to the method for manufacturing a thin film photoelectric conversion device of the present invention, even when a transparent conductive film having low heat resistance and zinc oxide power is used, its resistivity is not changed. Improve the dopant activation rate of the silicon-based one-conductivity-type semiconductor layer directly formed on the transparent conductive film and the silicon-based one-conductivity-type semiconductor layer, and each junction interface between the other-conductivity-type semiconductor layer and the back electrode layer. An ohmic contact can be ensured. As a result, a thin film photoelectric conversion device exhibiting high performance can be provided at low cost.

Claims

請求の範囲 The scope of the claims
[1] 透光性基板の一方の主面上に順に、酸化亜鉛を主成分とする透明導電膜、少なく とも第一光電変換ユニットを含む 1ユニット以上の光電変換ユニット、及び裏面電極 層を備えてなる薄膜光電変換装置の製造方法であって、  [1] A transparent conductive film mainly composed of zinc oxide, one or more photoelectric conversion units including at least a first photoelectric conversion unit, and a back electrode layer are sequentially provided on one main surface of the translucent substrate. A method of manufacturing a thin film photoelectric conversion device comprising:
該光電変換ユニットは、該透光性基板側から順に一導電型半導体層、光電変換層 、及び他導電型半導体層からなり、  The photoelectric conversion unit is composed of one conductive semiconductor layer, a photoelectric conversion layer, and another conductive semiconductor layer in order from the light transmitting substrate side.
かつ、該透明導電膜上には、直接、該第一光電変換ユニットが形成されてなり、 力つ、該第一光電変換ユニットを構成する該ー導電型半導体層はシリコン系であり 該シリコン系一導電型半導体層を 170°C以下の温度に保持された該透明導電膜 上に形成する工程、  In addition, the first photoelectric conversion unit is formed directly on the transparent conductive film, and the -conductivity-type semiconductor layer constituting the first photoelectric conversion unit is silicon-based and the silicon-based semiconductor Forming one conductive type semiconductor layer on the transparent conductive film maintained at a temperature of 170 ° C. or lower;
及び該裏面電極層形成後に 170°C以上の大気圧下で加熱する工程  And heating at 170 ° C or higher atmospheric pressure after the back electrode layer is formed
を含むことを特徴とする薄膜光電変換装置の製造方法。  The manufacturing method of the thin film photoelectric conversion apparatus characterized by including.
[2] 請求項 1に記載の薄膜光電変換装置の製造方法であって、前記透明導電膜を元 素として少なくとも亜鉛、硼素、及び酸素を含む原料ガスを用いて CVD法で形成す る工程をさらに含むことを特徴とする薄膜光電変換装置の製造方法。 [2] The method for producing a thin film photoelectric conversion device according to claim 1, wherein the thin film photoelectric conversion device is formed by a CVD method using the transparent conductive film as an element and a source gas containing at least zinc, boron, and oxygen. Furthermore, the manufacturing method of the thin film photoelectric conversion apparatus characterized by the above-mentioned.
PCT/JP2005/018930 2004-11-04 2005-10-14 Process for producing thin-film photoelectric converter WO2006049003A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006542938A JPWO2006049003A1 (en) 2004-11-04 2005-10-14 Method for manufacturing thin film photoelectric conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004320997 2004-11-04
JP2004-320997 2004-11-04

Publications (1)

Publication Number Publication Date
WO2006049003A1 true WO2006049003A1 (en) 2006-05-11

Family

ID=36319017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018930 WO2006049003A1 (en) 2004-11-04 2005-10-14 Process for producing thin-film photoelectric converter

Country Status (2)

Country Link
JP (1) JPWO2006049003A1 (en)
WO (1) WO2006049003A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111183A (en) * 2007-10-30 2009-05-21 Kaneka Corp Transparent conductive film for photoelectric conversion device, and manufacturing method therefor
JP2009164251A (en) * 2007-12-28 2009-07-23 Mitsubishi Heavy Ind Ltd Method of producing photoelectric converting apparatus
JP2013229620A (en) * 2013-06-18 2013-11-07 Kaneka Corp Transparent conductive film for photoelectric conversion device, photoelectric conversion device and manufacturing method of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175528A (en) * 1991-12-26 1993-07-13 Showa Shell Sekiyu Kk Manufacture of amorphous silicon solar cell
JP2001060707A (en) * 1999-06-18 2001-03-06 Nippon Sheet Glass Co Ltd Photoelectric transfer device
JP2002083984A (en) * 2000-09-08 2002-03-22 National Institute Of Advanced Industrial & Technology Solar battery and its manufacturing method
JP2002141525A (en) * 2000-10-31 2002-05-17 National Institute Of Advanced Industrial & Technology Substrate for solar cell and thin film solar cell
JP2003197542A (en) * 2001-12-26 2003-07-11 Mitsubishi Heavy Ind Ltd Plasma enhanced cvd system, photoelectric conversion element, and method of manufacturing photoelectric conversion element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175528A (en) * 1991-12-26 1993-07-13 Showa Shell Sekiyu Kk Manufacture of amorphous silicon solar cell
JP2001060707A (en) * 1999-06-18 2001-03-06 Nippon Sheet Glass Co Ltd Photoelectric transfer device
JP2002083984A (en) * 2000-09-08 2002-03-22 National Institute Of Advanced Industrial & Technology Solar battery and its manufacturing method
JP2002141525A (en) * 2000-10-31 2002-05-17 National Institute Of Advanced Industrial & Technology Substrate for solar cell and thin film solar cell
JP2003197542A (en) * 2001-12-26 2003-07-11 Mitsubishi Heavy Ind Ltd Plasma enhanced cvd system, photoelectric conversion element, and method of manufacturing photoelectric conversion element

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NASUNO Y, KONDO M, MATSUDA A.: "Microcrystalline silicon thin-film solar cells prepared at low temperature using RF-PECVD.", PHOTOVOLTAIC SPECIALISTS CONFERENCE., 15 September 2000 (2000-09-15) - 22 September 2000 (2000-09-22), pages 142 - 145, XP008057172 *
NOO T, KASE T, SICHANUGRIST P.: "High efficiency a-Si: H solar cells by single chamber method.", PHOTOVOLTAIC SPEC CONF., 10 May 1993 (1993-05-10) - 14 May 1993 (1993-05-14), pages 941 - 945, XP010113319 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111183A (en) * 2007-10-30 2009-05-21 Kaneka Corp Transparent conductive film for photoelectric conversion device, and manufacturing method therefor
JP2009164251A (en) * 2007-12-28 2009-07-23 Mitsubishi Heavy Ind Ltd Method of producing photoelectric converting apparatus
JP2013229620A (en) * 2013-06-18 2013-11-07 Kaneka Corp Transparent conductive film for photoelectric conversion device, photoelectric conversion device and manufacturing method of the same

Also Published As

Publication number Publication date
JPWO2006049003A1 (en) 2008-05-29

Similar Documents

Publication Publication Date Title
US8120132B2 (en) Holey electrode grids for photovoltaic cells with subwavelength and superwavelength feature sizes
JPWO2005011002A1 (en) Silicon-based thin film solar cell
JP4940290B2 (en) Photoelectric conversion device and manufacturing method thereof
JP5314697B2 (en) Silicon-based thin film solar cell and method for manufacturing the same
AU2008200051A1 (en) Method and apparatus for a semiconductor structure forming at least one via
JP2010283161A (en) Solar cell and manufacturing method thereof
JP2001267598A (en) Laminated solar cell
JP2004260014A (en) Multilayer type thin film photoelectric converter
JP5400322B2 (en) Silicon-based thin film solar cell and method for manufacturing the same
JP2019033201A (en) Crystalline silicon type solar cell
JP5232362B2 (en) A manufacturing method of an integrated thin film photoelectric conversion device, and an integrated thin film photoelectric conversion device obtainable by the manufacturing method.
TWI608629B (en) Solar cells and methods of fabrication thereof
JP4222910B2 (en) Photovoltaic device manufacturing method
WO2006049003A1 (en) Process for producing thin-film photoelectric converter
JP4215697B2 (en) Photoelectric conversion device and manufacturing method thereof
JP2011014618A (en) Solar cell and method of manufacturing the same
KR20100096747A (en) Solar cell and method for manufacturing thereof
TW200933908A (en) A silicon-based thin film solar-cell
JP4441298B2 (en) Photoelectric conversion device and manufacturing method thereof
JP5763411B2 (en) Stacked photoelectric conversion device
JPH0586677B2 (en)
JP2010283162A (en) Solar cell and method for manufacturing the same
JP2011176084A (en) Photoelectric conversion module, and method for manufacturing same
JP5373045B2 (en) Photoelectric conversion device
JP5339294B2 (en) Method for manufacturing photoelectric conversion device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006542938

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05793217

Country of ref document: EP

Kind code of ref document: A1