JP5232362B2 - A manufacturing method of an integrated thin film photoelectric conversion device, and an integrated thin film photoelectric conversion device obtainable by the manufacturing method. - Google Patents

A manufacturing method of an integrated thin film photoelectric conversion device, and an integrated thin film photoelectric conversion device obtainable by the manufacturing method. Download PDF

Info

Publication number
JP5232362B2
JP5232362B2 JP2006113567A JP2006113567A JP5232362B2 JP 5232362 B2 JP5232362 B2 JP 5232362B2 JP 2006113567 A JP2006113567 A JP 2006113567A JP 2006113567 A JP2006113567 A JP 2006113567A JP 5232362 B2 JP5232362 B2 JP 5232362B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
transparent
metal oxide
oxide layer
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006113567A
Other languages
Japanese (ja)
Other versions
JP2007287926A (en
Inventor
徹 澤田
憲治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2006113567A priority Critical patent/JP5232362B2/en
Publication of JP2007287926A publication Critical patent/JP2007287926A/en
Application granted granted Critical
Publication of JP5232362B2 publication Critical patent/JP5232362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、薄膜光電変換装置を集積化する場合に、必要な工程数を減らしつつ高性能を発揮できる製造方法、また、その製造方法で得られうる薄膜光電変換装置に関する。   The present invention relates to a manufacturing method capable of exhibiting high performance while reducing the number of necessary steps when integrating thin film photoelectric conversion devices, and to a thin film photoelectric conversion device obtainable by the manufacturing method.

近年、太陽電池の製造コスト低減のために、使用原材料が少なくてすむ薄膜太陽電池が注目され、その開発および生産が精力的に行われている。更に、従来の非晶質薄膜太陽電池に加えて結晶質薄膜太陽電池も開発され、これらを積層したハイブリッド太陽電池と称される積層型薄膜太陽電池も実用化されている。   In recent years, in order to reduce the manufacturing cost of solar cells, thin film solar cells that require less raw materials have attracted attention, and their development and production have been vigorously performed. Further, in addition to the conventional amorphous thin film solar cell, a crystalline thin film solar cell has also been developed, and a laminated thin film solar cell called a hybrid solar cell in which these are laminated has been put into practical use.

薄膜太陽電池は、一般に、透光性基板上に順に積層された透明電極、1以上の半導体薄膜光電変換ユニット、および裏面電極を含む。そして、1つの光電変換ユニットはp型層とn型層でサンドイッチされたi型層を含む。   A thin-film solar cell generally includes a transparent electrode, one or more semiconductor thin-film photoelectric conversion units, and a back electrode that are sequentially stacked on a light-transmitting substrate. One photoelectric conversion unit includes an i-type layer sandwiched between a p-type layer and an n-type layer.

透明電極は、透光性基板側から入射した光を散乱させ有効に光電変換ユニット内に閉じ込めるために、その表面に通常微細な凹凸を多数有し、その高低差は一般的には0.03μm〜0.3μmである。光の散乱の程度を定量的に示す指標として、例えばヘイズ率がある。ヘイズ率は、(拡散透過率/全光線透過率)×100[%]で表される(JIS K7136)。通常、凹凸の高低差を大きくするほど、または凹凸の凸部と凸部の間隔が大きくなるほどヘイズ率が高くなり、光電変換ユニット内に入射された光は有効に閉じ込められる。   The transparent electrode usually has many fine irregularities on its surface in order to scatter light incident from the translucent substrate side and effectively confine it in the photoelectric conversion unit, and its height difference is generally 0.03 μm. ~ 0.3 μm. As an index that quantitatively indicates the degree of light scattering, for example, there is a haze rate. The haze ratio is expressed by (diffuse transmittance / total light transmittance) × 100 [%] (JIS K7136). In general, the haze ratio increases as the height difference between the projections and depressions increases, or as the interval between the projections and depressions of the projections and depressions increases, and the light incident in the photoelectric conversion unit is effectively confined.

i型層は実質的に真性の半導体層であって光電変換ユニットの厚さの大部分を占め、光電変換作用は主としてこのi型層内で生じる。このため、このi型層は通常i型光電変換層または単に光電変換層と呼ばれる。光電変換層は真性半導体層に限らず、ドープされた不純物(ドーパント)によって吸収される光の損失が問題にならない範囲で微量にp型またはn型にドープされた層であってもよい。光電変換層は光吸収のためには厚い方が好ましいが、必要以上に厚くすればその製膜のためのコストと時間が増大する。   The i-type layer is a substantially intrinsic semiconductor layer and occupies most of the thickness of the photoelectric conversion unit, and the photoelectric conversion action mainly occurs in the i-type layer. For this reason, this i-type layer is usually called an i-type photoelectric conversion layer or simply a photoelectric conversion layer. The photoelectric conversion layer is not limited to an intrinsic semiconductor layer, and may be a layer doped in a small amount of p-type or n-type within a range where loss of light absorbed by a doped impurity (dopant) does not become a problem. The photoelectric conversion layer is preferably thicker for light absorption, but if it is thicker than necessary, the cost and time for film formation increase.

他方、p型やn型の導電型半導体層は光電変換ユニット内に内部電界を生じさせる役目を果たし、この内部電界の大きさによって薄膜太陽電池の重要な特性の1つである開放電圧(Voc)の値が左右される。しかし、これらの導電型半導体層は光電変換に直接寄与しない不活性な層であり、導電型半導体層にドープされた不純物によって吸収される光は発電に寄与しない損失となる。したがって、p型とn型の導電型半導体層は、十分な内部電界を生じさせ得る範囲内であれば、できるだけ小さな厚さにとどめておくことが好ましい。導電型半導体層の厚さは一般的には20nm程度以下である。   On the other hand, the p-type and n-type conductive semiconductor layers serve to generate an internal electric field in the photoelectric conversion unit, and the open-circuit voltage (Voc), which is one of the important characteristics of the thin film solar cell, depends on the magnitude of the internal electric field. ) Value is affected. However, these conductive semiconductor layers are inactive layers that do not directly contribute to photoelectric conversion, and light absorbed by impurities doped in the conductive semiconductor layer is a loss that does not contribute to power generation. Therefore, it is preferable that the p-type and n-type conductive semiconductor layers have a thickness as small as possible as long as a sufficient internal electric field can be generated. The thickness of the conductive semiconductor layer is generally about 20 nm or less.

ここで、光電変換ユニットまたは薄膜太陽電池は、それに含まれるp型とn型の導電型半導体層が非晶質か結晶質かにかかわらず、その主要部を占める光電変換層が非晶質のものは非晶質光電変換ユニットまたは非晶質薄膜太陽電池と称され、光電変換層が結晶質のものは結晶質光電変換ユニットまたは結晶質薄膜太陽電池と称される。   Here, the photoelectric conversion unit or the thin-film solar cell has an amorphous photoelectric conversion layer that occupies the main part regardless of whether the p-type and n-type conductive semiconductor layers contained therein are amorphous or crystalline. A thing with an amorphous photoelectric conversion layer or a crystalline thin film solar cell is called a crystalline photoelectric conversion unit or a crystalline thin film solar cell.

薄膜太陽電池の変換効率を向上させる方法として、2以上の光電変換ユニットを積層する方法がある。この場合、薄膜太陽電池の光入射側に大きなバンドギャップを有する光電変換層を含む前方ユニットを配置し、その後方に順に小さなバンドギャップを有する光電変換層を含む後方ユニットを配置することにより、入射光の広い波長範囲にわたって光電変換を可能にし、これによって太陽電池全体としての変換効率の向上が図られる。このような積層型太陽電池の中でも、特に非晶質シリコン光電変換ユニットと結晶質シリコン光電変換ユニットを各々1つずつ積層し電気的に直列接続したものはシリコンハイブリッド太陽電池と称される。例えば、i型非晶質シリコンが光電変換し得る光の波長は長波長側において800nm程度までであるが、i型結晶質シリコンはそれより長い約1150nm程度の波長までの光を光電変換することができる。   As a method of improving the conversion efficiency of a thin film solar cell, there is a method of stacking two or more photoelectric conversion units. In this case, the front unit including the photoelectric conversion layer having a large band gap is disposed on the light incident side of the thin film solar cell, and the rear unit including the photoelectric conversion layer having the small band gap is sequentially disposed behind the front unit. Photoelectric conversion is enabled over a wide wavelength range of light, thereby improving the conversion efficiency of the entire solar cell. Among such stacked solar cells, those in which an amorphous silicon photoelectric conversion unit and a crystalline silicon photoelectric conversion unit are stacked one by one and electrically connected in series are called silicon hybrid solar cells. For example, the wavelength of light that can be photoelectrically converted by i-type amorphous silicon is up to about 800 nm on the long wavelength side, but i-type crystalline silicon photoelectrically converts light up to a wavelength of about 1150 nm longer than that. Can do.

光吸収係数の大きな非晶質シリコン光電変換層は、0.3μm程度の厚さでも十分な短絡電流密度(Jsc)を得ることができるが、光吸収係数の小さな結晶質シリコン光電変換層は長波長の光をも十分に吸収するためには1〜3μm程度の厚さを有することが好ましい。すなわち、結晶質シリコン光電変換層は、通常は非晶質シリコン光電変換層に比べて3〜10倍程度の厚さを有することが望まれる。同様に、シリコンハイブリッド太陽電池においても、両者の厚さの比を概ね3〜10倍とすることが必要である。   An amorphous silicon photoelectric conversion layer with a large light absorption coefficient can obtain a sufficient short-circuit current density (Jsc) even with a thickness of about 0.3 μm, but a crystalline silicon photoelectric conversion layer with a small light absorption coefficient is long. In order to sufficiently absorb light having a wavelength, it is preferable to have a thickness of about 1 to 3 μm. That is, the crystalline silicon photoelectric conversion layer is usually desired to have a thickness of about 3 to 10 times that of the amorphous silicon photoelectric conversion layer. Similarly, in the silicon hybrid solar cell, the thickness ratio between the two needs to be about 3 to 10 times.

ところで、薄膜太陽電池は、透光性基板上に透明電極、光電変換ユニット、裏面電極層をCVD、スパッタ等の気相成長法により形成することから、設備コストの低減を狙って大面積化が進められている。一方で、透明電極はその抵抗率が10-2〜10-4Ωcm程度と金属と比較して大きいことから、大面積化するほど透明電極での抵抗損失が大きくなる。ここで、抵抗率とは体積対抗率のことであり、透明電極のシート抵抗と厚さの積で算出される値である。このため、レーザースクライブ等の手法により、1枚の透光性基板上に複数の短冊状の単位素子を形成し、それらを直列接続する集積化が一般に行われている。さらに、集積化時の信頼性向上のために例えば特許文献1は、光電変換ユニットの表面に連続して透明導電体層を形成してから光電変換ユニットを短冊状に分離するレーザースクライブを行い、その溶断残滓を除去するための洗浄処理を行うことにより、光電変換ユニット表面への自然酸化膜形成による性能低下を防止する方法を開示している。 By the way, since the thin film solar cell is formed on the translucent substrate with the transparent electrode, the photoelectric conversion unit, and the back electrode layer by a vapor phase growth method such as CVD or sputtering, the area of the thin film solar cell can be increased with the aim of reducing the equipment cost. It is being advanced. On the other hand, since the resistivity of the transparent electrode is about 10 −2 to 10 −4 Ωcm, which is larger than that of the metal, the resistance loss at the transparent electrode increases as the area increases. Here, the resistivity is a volume resistance ratio, and is a value calculated by the product of the sheet resistance and the thickness of the transparent electrode. For this reason, integration is generally performed in which a plurality of strip-shaped unit elements are formed on a single translucent substrate by a technique such as laser scribing and connected in series. Furthermore, in order to improve reliability during integration, for example, Patent Document 1 performs laser scribing to separate the photoelectric conversion unit into strips after forming a transparent conductor layer continuously on the surface of the photoelectric conversion unit, It discloses a method of preventing performance degradation due to the formation of a natural oxide film on the surface of the photoelectric conversion unit by performing a cleaning process for removing the fusing residue.

しかしながら、製造工程の簡略化による低コスト化、および1つの工程内における設備状態のゆらぎに伴う製造歩留りの低下を抑制するためには、上記のような溶断残滓を除去するための洗浄処理は行わないことが望ましいと考えられる。ところが、特許文献1にあるようにレーザースクライブ時の溶断残渣の発生は不可避であり、特に、大面積の集積化薄膜光電変換装置の製造工程においては洗浄処理は不可欠とされている。このため、本発明においては、光電変換ユニットのレーザースクライブ後の洗浄処理を行わなくても溶断残渣の発生が抑制され、透明電極と透明導電体層の接触抵抗を減らし、しかも透明導電体層の透明性を向上させることにより、太陽電池のJscと曲線因子(FF)を高め、高い性能を得ることを目的としている。
特開平9−8337号
However, in order to suppress the cost reduction due to the simplification of the manufacturing process and the decrease in the manufacturing yield due to the fluctuation of the equipment state in one process, the cleaning process for removing the fusing residue as described above is performed. It is considered desirable not to. However, as described in Patent Document 1, the occurrence of fusing residue during laser scribing is unavoidable, and in particular, a cleaning process is indispensable in the manufacturing process of a large-area integrated thin film photoelectric conversion device. For this reason, in the present invention, the occurrence of fusing residue is suppressed without performing the cleaning process after laser scribing of the photoelectric conversion unit, the contact resistance between the transparent electrode and the transparent conductor layer is reduced, and the transparent conductor layer The purpose is to increase the Jsc and the fill factor (FF) of the solar cell and improve the transparency by improving the transparency.
JP-A-9-8337

本発明による集積化薄膜光電変換装置の製造方法は、1)基板上に、下部分離溝により分割された複数の透明電極を形成し、2)前記複数の透明電極の各々に接して、光電変換ユニットと、抵抗率が0.01Ωcmより大きい透明金属酸化物層を形成し、3)前記下部分離溝に隣接し、前記光電変換ユニットと透明金属酸化物層を除去して透明電極の一部が露出するように、レーザースクライブにより接続溝を形成し、4)接続溝を形成後に洗浄処理を行うことなく、隣接する2つの透明電極の一方と、接続溝を介して電気的に接続するように、前記透明金属酸化物層上に該透明金属酸化物層と接する、抵抗率が0.01Ωcm以下である透明導電体層と、該透明導電体層上に金属層からなる裏面電極を形成し、5)透明電極と裏面電極とで挟まれる領域からなる単位素子を複数個直列に接続するように、各接続溝の近傍における少なくとも裏面電極と透明導電体層と透明金属酸化物層とを除去して上部分離溝を形成し、裏面電極を複数の単位素子に対応する複数領域に分割する、ことを特徴とする。
The method for manufacturing an integrated thin film photoelectric conversion device according to the present invention includes: 1) forming a plurality of transparent electrodes divided by a lower separation groove on a substrate; and 2) contacting each of the plurality of transparent electrodes to perform photoelectric conversion. Forming a unit and a transparent metal oxide layer having a resistivity greater than 0.01 Ωcm, 3) adjoining the lower separation groove, removing the photoelectric conversion unit and the transparent metal oxide layer, A connection groove is formed by laser scribing so as to be exposed, and 4) so as to be electrically connected to one of the two adjacent transparent electrodes via the connection groove without performing a cleaning process after the connection groove is formed. the contact with the transparent metal oxide layer on a transparent metal oxide layer, forming a transparent conductor layer resistivity is less than or equal to 0.01? cm, and a back electrode made of metallic layers on the transparent Akirashirube collector layer 5) With a transparent electrode and a back electrode At least the back surface electrode, the transparent conductor layer, and the transparent metal oxide layer in the vicinity of each connection groove are removed to form an upper separation groove so that a plurality of unit elements including the sandwiched region are connected in series. The electrode is divided into a plurality of regions corresponding to a plurality of unit elements.

すなわち、本発明は、図1を説明しながら表現すると、透光性基板1と、透明電極2と、光電変換ユニット3と、透明金属酸化物層5cと、透明導電体層5tと、裏面電極5mを備え、複数の単位素子が直列接続された構造を有する集積化薄膜光電変換装置の製造方法、であり、少なくとも下記の工程をこの順に有する。
透光性基板1上に、下部分離溝12によりそれぞれが分割された複数の透明電極2を形成する工程
複数の該透明電極2の各々に接して、光電変換ユニット3を形成する工程;
該光電変換ユニット3上に、抵抗率が0.01Ωcmより大きい透明金属酸化物層5cを形成する工程
該下部分離溝12の近傍の該光電変換ユニット3と該透明金属酸化物層5cの一部を除去して、該透明電極2の一部が露出するように、かつ、該下部分離溝12に接することなく配置された接続溝13を、レーザースクライブにより形成する工程
該接続溝13を形成後に洗浄処理を行うことなく、該透明金属酸化物層5c上に、
該透明金属酸化物層5cと接する抵抗率が0.01Ωcm以下である透明導電体層5t、および
該透明導電体層5t上の金属層からなる裏面電極5mを、
最近隣の2つの該透明電極2の一方と該接続溝13を介して電気的に接続するように形成する工程;および
該透明電極2と該裏面電極5mとで挟まれる領域からなる単位素子を複数個直列に接続するように、各該接続溝13の近傍の該裏面電極5mと該透明導電体層5tと該透明金属酸化物層5cと光電変換ユニット3の一部を除去して、該透明電極2の一部が露出するように上部分離溝15を形成し、該裏面電極5mを複数の単位素子に対応する複数領域にそれぞれ分割する工程。
That is, the present invention is expressed with description of FIG. 1, a light transmitting substrate 1, a transparent electrode 2, the photoelectric conversion unit 3, a transparent metal oxide layer 5c, and a transparent conductor layer 5t, back electrode comprising a 5 m, production method of an integrated thin film photoelectric conversion device in which unit elements of multiple has a series-connected structure state, and are, at least following the step in this order.
Forming a plurality of transparent electrodes 2 each divided by a lower separation groove 12 on the translucent substrate 1 ;
Forming a photoelectric conversion unit 3 in contact with each of the plurality of transparent electrodes 2 ;
Forming a transparent metal oxide layer 5c having a resistivity greater than 0.01 Ωcm on the photoelectric conversion unit 3 ;
A part of the photoelectric conversion unit 3 and the transparent metal oxide layer 5c in the vicinity of the lower separation groove 12 is removed so that a part of the transparent electrode 2 is exposed and in the lower separation groove 12 the connection groove 13 Ku is placed such that the contact, forming by laser scribing;
Without performing a cleaning treatment after forming the connection groove 13, on the transparent metal oxide layer 5c,
Transparent conductor layer 5t resistivity in contact with the transparent metal oxide layer 5c is less than 0.01? Cm, and a back electrode 5m consisting metallic layer on the transparent Akirashirube collector layer 5t,
Forming a unit element comprising a region sandwiched between the transparent electrode 2 and the back electrode 5m; and a step of electrically connecting to one of the two adjacent transparent electrodes 2 via the connection groove 13 ; to connect to each other in series, by removing a portion of the back surface electrode 5m and the transparent Akirashirube collector layer 5t and transparent metal oxide layer 5c and the photoelectric conversion unit 3 in the vicinity of each said connection groove 13, step a portion of the transparent electrode 2 is a top portion Hanaremizo 15 formed so as to expose, respectively divided into a plurality of areas corresponding to rear surface electrode 5m into a plurality of unit elements.

本発明は、また、前記光電変換ユニットはシリコンを主成分とする、集積化薄膜光電変換装置の製造方法、である。   The present invention is also a method for manufacturing an integrated thin film photoelectric conversion device, wherein the photoelectric conversion unit is mainly composed of silicon.

本発明は、また、前記透明金属酸化物層は酸化亜鉛を主成分とする、集積化薄膜光電変換装置の製造方法、である。   The present invention is also a method for manufacturing an integrated thin film photoelectric conversion device, wherein the transparent metal oxide layer contains zinc oxide as a main component.

本発明は、また、前記透明金属酸化物層は、有機金属蒸気を含みIII族(3族)元を含まないガスを用いたCVD法、またはIII族(3族)元素の添加量が0.2重量%以下のスパッタターゲットを用いたスパッタリング法によって形成された、集積化薄膜光電変換装置の製造方法、である。   In the present invention, the transparent metal oxide layer may be formed by a CVD method using a gas containing an organometallic vapor and not containing a group III (group 3) element, or the amount of group III (group 3) element added is 0.1. It is a manufacturing method of the integrated thin film photoelectric conversion apparatus formed by the sputtering method using the sputtering target of 2 weight% or less.

本発明によれば、透明電極と電気的に接続される透明導電体層の抵抗率は0.01Ωcm以下である。このため、接続溝形成後の溝内に溶断残滓が存在しても、透明電極と透明導電体層の接触抵抗は小さく保持される。さらに、光電変換ユニットと接する透明金属酸化物層の抵抗率が0.01Ωcmより大きくなるように設計した。
これらを総合すると、接続溝形成後の洗浄を行わなくても十分に高いFFが得られた。
これにより、接続溝形成後の洗浄工程を省略することができる。一方で、先に示した通り透明金属酸化物層は0.01Ωcmより大きいため、赤色光から近赤外域の波長の光に対する透明性が優れる。このため、光電変換ユニットを通り抜けて裏面側に到達した光が透明金属酸化物層で吸収され損失となることが防止できる。このため、薄膜光電変換装置のJscとFFを同時に高め、高い光電変換性能を得ることができる。
According to the present invention, the resistivity of the transparent conductor layer electrically connected to the transparent electrode is 0.01 Ωcm or less. For this reason, even if a fusing residue is present in the groove after the connection groove is formed, the contact resistance between the transparent electrode and the transparent conductor layer is kept small. Furthermore, it designed so that the resistivity of the transparent metal oxide layer which contact | connects a photoelectric conversion unit might become larger than 0.01 ohm-cm.
In summary, a sufficiently high FF was obtained without performing cleaning after forming the connection grooves.
Thereby, the washing | cleaning process after connection groove formation can be skipped. On the other hand, since the transparent metal oxide layer is larger than 0.01 Ωcm as described above, the transparency to light having a wavelength in the range from red light to the near infrared region is excellent. For this reason, it can prevent that the light which passed through the photoelectric conversion unit and reached | attained the back surface side is absorbed by a transparent metal oxide layer, and becomes loss. For this reason, Jsc and FF of the thin film photoelectric conversion device can be simultaneously increased, and high photoelectric conversion performance can be obtained.

以下に、本発明の実施の形態としての集積化非晶質シリコン太陽電池を、図1を参照しつつ説明する。   Hereinafter, an integrated amorphous silicon solar cell as an embodiment of the present invention will be described with reference to FIG.

透光性基板1の上に透明電極2が形成される。   A transparent electrode 2 is formed on the translucent substrate 1.

透光性基板1としては、ガラス、透明樹脂等から成る板状部材やシート状部材が用いられる。   As the translucent substrate 1, a plate-like member or a sheet-like member made of glass, transparent resin or the like is used.

透明電極2には酸化錫、酸化亜鉛等の金属酸化物が用いられ、CVD、スパッタ、蒸着等の方法を用いて形成される。透明電極2は、形成条件の工夫によりその表面に微細な凹凸を生じさせて入射光の散乱を増大させる効果を有している。凹凸の高低差は0.03〜0.3μm程度であり、ヘイズ率は5〜30%程度であり、シート抵抗は5〜20Ω/□程度に設定される。透明電極2は、レーザースクライブを用いた直線状の下部分離溝12により、複数の短冊状の領域に分割される。   The transparent electrode 2 is made of a metal oxide such as tin oxide or zinc oxide, and is formed using a method such as CVD, sputtering, or vapor deposition. The transparent electrode 2 has the effect of increasing the scattering of incident light by producing fine irregularities on the surface by devising the formation conditions. The height difference of the unevenness is about 0.03 to 0.3 μm, the haze ratio is about 5 to 30%, and the sheet resistance is set to about 5 to 20 Ω / □. The transparent electrode 2 is divided into a plurality of strip-shaped regions by a linear lower separation groove 12 using laser scribing.

透明電極2の上には非晶質シリコン光電変換ユニット3が形成される。非晶質シリコン光電変換ユニット3は非晶質p型シリコンカーバイド層3p、非晶質i型シリコン光電変換層3i、n型シリコン層3nから成り立っている。非晶質i型シリコン光電変換層3iの材料はシリコンのみならず、炭素、ゲルマニウム等のバンドギャップ調整元素を含んでいてもよい。n型シリコン層3nは、非晶質でもよく結晶質を含んでいてもよく、酸素、窒素、炭素等の元素を含んでいてもよい。   An amorphous silicon photoelectric conversion unit 3 is formed on the transparent electrode 2. The amorphous silicon photoelectric conversion unit 3 includes an amorphous p-type silicon carbide layer 3p, an amorphous i-type silicon photoelectric conversion layer 3i, and an n-type silicon layer 3n. The material of the amorphous i-type silicon photoelectric conversion layer 3i may contain not only silicon but also a band gap adjusting element such as carbon and germanium. The n-type silicon layer 3n may be amorphous or may contain a crystalline material, and may contain elements such as oxygen, nitrogen and carbon.

非晶質シリコン光電変換ユニット3の形成には高周波プラズマCVD法が適している。その形成条件としては、基板温度100〜250℃、圧力30〜1500Pa、高周波パワー密度0.01〜0.5W/cm2が好ましく用いられる。光電変換ユニット形成に使用する原料ガスとしては、SiH4、Si26等のシリコン含有ガスまたは、それらのガスと水素を混合したものが用いられる。光電変換ユニットにおけるp型またはn型層を形成するためのドーパントガスとしては、B26またはPH3等が好ましく用いられる。また、n型層に酸素または窒素元素を含ませる場合には、上記のガスに加えて二酸化炭素またはアンモニアが好ましく用いられる。 A high frequency plasma CVD method is suitable for forming the amorphous silicon photoelectric conversion unit 3. As the formation conditions, a substrate temperature of 100 to 250 ° C., a pressure of 30 to 1500 Pa, and a high frequency power density of 0.01 to 0.5 W / cm 2 are preferably used. As a source gas used for forming the photoelectric conversion unit, a silicon-containing gas such as SiH 4 or Si 2 H 6 or a mixture of these gases and hydrogen is used. B 2 H 6 or PH 3 is preferably used as the dopant gas for forming the p-type or n-type layer in the photoelectric conversion unit. In addition, when oxygen or nitrogen is contained in the n-type layer, carbon dioxide or ammonia is preferably used in addition to the above gas.

n型シリコン層3nの上には、抵抗率が0.01Ωcmより大きい透明金属酸化物層5cが形成される。上記の抵抗率が望ましい要因は必ずしも明らかではないが、抵抗率が0.01Ωcmより大きいと透明金属酸化物層5cでのレーザー光吸収が殆どなくなり、光電変換ユニットでのレーザー光吸収が効率的に行われるか、あるいは透明金属酸化物層が昇華されて接続溝付近へ再付着することが防止されることにより、接続溝内の溶断残滓あるいは接続溝断面へのバリが発生しにくい状況になるためと推定される。また、透明金属酸化物層5cの抵抗率の上限値は100Ωcm程度である。透明金属酸化物層を有機金属蒸気含有ガスを用いたCVD法で形成する場合、III族(3族)のドーピングガスを添加しなければ、得られる膜の抵抗率は上記のオーダーであるし、スパッタ法で形成する場合にも、透明金属酸化物層内の酸素欠損を減らす操作を行うと得られる膜の抵抗率は上記のオーダーとなるためである。透明金属酸化物層5cにはZnO、ITO等の透明性の優れた金属酸化物が用いられ、その形成においては、ジエチル亜鉛等の有機金属蒸気を含みIII族(3族)元素を含まないガスを用いたCVD法、またはB、Al、Ga、In、Y等のIII族(3族)元素の添加量が0.2重量%以下のスパッタターゲットを用いたスパッタリング法が好ましく用いられる。スパッタガスとしては通常Arが用いられる。透明金属酸化物層5cはn型シリコン層3nを形成した後、真空を破らずに形成することがタクト短縮の点およびn型シリコン層3nの表面の汚染を防止する点からは望ましいが、n型シリコン層3n表面を一旦大気に晒してもよい。   A transparent metal oxide layer 5c having a resistivity greater than 0.01 Ωcm is formed on the n-type silicon layer 3n. The reason why the above resistivity is desirable is not necessarily clear, but if the resistivity is greater than 0.01 Ωcm, the laser light absorption in the transparent metal oxide layer 5c is almost eliminated, and the laser light absorption in the photoelectric conversion unit is efficiently performed. Since it is performed or the transparent metal oxide layer is sublimated and prevented from re-adhering to the vicinity of the connection groove, it becomes difficult to cause a fusing residue in the connection groove or a burr to the cross section of the connection groove. It is estimated to be. Moreover, the upper limit of the resistivity of the transparent metal oxide layer 5c is about 100 Ωcm. When the transparent metal oxide layer is formed by a CVD method using an organic metal vapor-containing gas, the resistivity of the obtained film is in the above order unless a Group III (Group 3) doping gas is added. This is because the resistivity of the obtained film is in the above order when an operation for reducing oxygen vacancies in the transparent metal oxide layer is performed even when the sputtering method is used. For the transparent metal oxide layer 5c, a metal oxide having excellent transparency such as ZnO or ITO is used. In forming the transparent metal oxide layer 5c, a gas containing an organometallic vapor such as diethyl zinc and not containing a group III (group 3) element is used. A sputtering method using a sputtering target or a sputtering method using a sputtering target in which the addition amount of a group III (group 3) element such as B, Al, Ga, In, or Y is 0.2 wt% or less is preferably used. Ar is usually used as the sputtering gas. The transparent metal oxide layer 5c is preferably formed without breaking the vacuum after forming the n-type silicon layer 3n from the viewpoint of shortening tact time and preventing contamination of the surface of the n-type silicon layer 3n. The surface of the mold silicon layer 3n may be once exposed to the atmosphere.

非晶質シリコン光電変換ユニット3および透明金属酸化物層5cは、下部分離溝12に隣接して形成された接続溝13により、複数の短冊状の領域に分割される。   The amorphous silicon photoelectric conversion unit 3 and the transparent metal oxide layer 5 c are divided into a plurality of strip-shaped regions by connection grooves 13 formed adjacent to the lower separation grooves 12.

透明金属酸化物層5cの上には、抵抗率が0.01Ωcm以下である透明導電体層5tと、該透明導電体層5t上に形成される金属層からなる裏面電極5mが形成される。透明導電体層5tの抵抗率が上記の範囲にあるほうが、透明導電体層5tと透明電極2のコンタクトが取りやすくなり集積化された太陽電池のFFが向上する。透明導電体層5tには、ZnO、ITO等の導電性および透明性の優れた金属酸化物が用いられ、裏面電極5mにはAg、Alまたはそれらの合金が好ましく用いられる。透明導電体層5tおよび裏面電極5mの形成においては、スパッタリング、蒸着等の方法が好ましく用いられる。   On the transparent metal oxide layer 5c, a transparent conductor layer 5t having a resistivity of 0.01 Ωcm or less and a back electrode 5m made of a metal layer formed on the transparent conductor layer 5t are formed. When the resistivity of the transparent conductor layer 5t is in the above range, the contact between the transparent conductor layer 5t and the transparent electrode 2 can be easily made, and the FF of the integrated solar cell is improved. For the transparent conductor layer 5t, a metal oxide having excellent conductivity and transparency such as ZnO and ITO is used, and for the back electrode 5m, Ag, Al or an alloy thereof is preferably used. In forming the transparent conductor layer 5t and the back electrode 5m, methods such as sputtering and vapor deposition are preferably used.

少なくとも裏面電極5m、透明導電体層5t、透明金属酸化物層5cの3つの層(好ましくはそれらに加えて非晶質シリコン光電変換ユニット3)は、接続溝13に隣接して形成された上部電極溝15により、複数の短冊状の領域に分割される。これにより、短冊状の隣り合う2つの単位素子10a、10bは接続溝13を通じて直列に接続される。   At least three layers (preferably the amorphous silicon photoelectric conversion unit 3 in addition to the back electrode 5m, the transparent conductor layer 5t, and the transparent metal oxide layer 5c) are formed adjacent to the connection groove 13. The electrode grooves 15 are divided into a plurality of strip-shaped regions. Thereby, two adjacent strip-shaped unit elements 10 a and 10 b are connected in series through the connection groove 13.

以上の説明は、非晶質シリコン光電変換ユニットのみの単層型太陽電池について行ったが、結晶質シリコン光電変換ユニットのみの単層型太陽電池でもよいし、非晶質シリコン光電変換ユニットと結晶質シリコン光電変換ユニットを積層したハイブリッド型の積層型太陽電池であってもよい。また、非晶質シリコン光電変換ユニット、結晶質シリコン光電変換ユニットの上に更に結晶質シリコン光電変換ユニットを積層した3段の積層型太陽電池としてもよい。さらに、光電変換ユニットの材料として、シリコン以外の銅インジウムガリウムセレナイド(CIGS)、カドミウムテルル(CdTe)等が主成分として含まれていてもよい。   Although the above description has been made for a single-layer solar cell having only an amorphous silicon photoelectric conversion unit, a single-layer solar cell having only a crystalline silicon photoelectric conversion unit may be used, or an amorphous silicon photoelectric conversion unit and a crystal It may be a hybrid stacked solar cell in which porous silicon photoelectric conversion units are stacked. Alternatively, a three-layer stacked solar cell in which a crystalline silicon photoelectric conversion unit is further stacked on an amorphous silicon photoelectric conversion unit or a crystalline silicon photoelectric conversion unit may be used. Further, as a material of the photoelectric conversion unit, copper indium gallium selenide (CIGS) other than silicon, cadmium tellurium (CdTe), or the like may be contained as a main component.

以下に、本発明による集積化非晶質シリコン太陽電池として実施例1〜2を、図1を参照しつつ、比較例1〜4と比較しながら説明する。   Below, Examples 1-2 are demonstrated as an integrated amorphous silicon solar cell by this invention, comparing with Comparative Examples 1-4, referring FIG.

(実施例1)
図1は、実施例1で作製した集積化非晶質シリコン太陽電池を模式的に示す断面図である。
Example 1
1 is a cross-sectional view schematically showing an integrated amorphous silicon solar cell manufactured in Example 1. FIG.

まず、透光性基板1として910mm×455mm×4mm厚の白板ガラスを用いた。透光性基板1の一主面上に、酸化錫からなる表面に微細な凹凸構造を有する、透明電極2を熱CVD法により形成した。得られた透明電極2の厚さは0.8μm、日本電色社製ヘイズメーターNDH5000W型にて透明電極2側よりC光源で測定したヘイズ率は11%、シート抵抗は8Ω/□であった。次に、透明電極2を複数の帯状パタ−ンへと分割するためにYAG基本波パルスレーザーを透光性基板1に照射することにより、幅50μmの下部分離溝12を形成し、超音波洗浄および乾燥を行った。   First, 910 mm × 455 mm × 4 mm thick white plate glass was used as the translucent substrate 1. On one main surface of the translucent substrate 1, a transparent electrode 2 having a fine uneven structure on the surface made of tin oxide was formed by a thermal CVD method. The thickness of the obtained transparent electrode 2 was 0.8 μm, the haze ratio measured with a C light source from the transparent electrode 2 side in a haze meter NDH5000W type manufactured by Nippon Denshoku was 11%, and the sheet resistance was 8Ω / □. . Next, in order to divide the transparent electrode 2 into a plurality of belt-like patterns, a YAG fundamental wave pulse laser is irradiated onto the translucent substrate 1 to form a lower separation groove 12 having a width of 50 μm and ultrasonic cleaning. And drying.

次に、非晶質シリコン光電変換ユニット3を形成するために、透明電極2が形成された透光性基板1を高周波プラズマCVD装置内に導入し、厚さ150Åの非晶質p型シリコンカーバイド(p型a−SiC)層3pを形成した。p型a−SiC層3pの形成においては、SiH4、水素、水素希釈されたB26、CH4を反応ガスとして用い、p型a−SiC層3pの厚さが80Å相当となった時点で放電を維持したまま、水素希釈されたB26およびCH4の供給を止めて残り70Åの製膜を行った。引き続いて厚さ0.27μmの非晶質i型シリコン光電変換層3iを、さらに、厚さ150Åのn型微結晶シリコン層3nを順次積層した。さらに、透光性基板1を高周波プラズマCVD装置から真空中で高周波スパッタ装置に搬送し、厚さ600ÅのZnOから成る透明金属酸化物層5cを形成した。透明金属酸化物層5cの形成においては、ZnO中に0.1重量%のAlまたはInをドープしたスパッタターゲットを用い、Arガスをスパッタガスとして、圧力を0.7〜1.5Paとした。なお、透明金属酸化物層5cをガラス上に同一条件で厚さ600Å形成して測定したシート抵抗値から算出した抵抗率は0.1Ωcmであった。また、III族(3族)元素をドープしない純度99.99%のZnOターゲットを用いた場合においても、ほぼ同等の抵抗率が得られた。 Next, in order to form the amorphous silicon photoelectric conversion unit 3, the transparent substrate 1 on which the transparent electrode 2 is formed is introduced into a high-frequency plasma CVD apparatus, and an amorphous p-type silicon carbide having a thickness of 150 mm is introduced. A (p-type a-SiC) layer 3p was formed. In the formation of the p-type a-SiC layer 3p, SiH 4 , hydrogen, B 2 H 6 diluted with hydrogen, and CH 4 were used as reaction gases, and the thickness of the p-type a-SiC layer 3p became 80 mm. While maintaining the discharge at that time, the supply of hydrogen-diluted B 2 H 6 and CH 4 was stopped, and the remaining 70 mm of film was formed. Subsequently, an amorphous i-type silicon photoelectric conversion layer 3i having a thickness of 0.27 μm and an n-type microcrystalline silicon layer 3n having a thickness of 150 mm were sequentially stacked. Further, the translucent substrate 1 was transferred from the high-frequency plasma CVD apparatus to a high-frequency sputtering apparatus in a vacuum to form a transparent metal oxide layer 5c made of ZnO having a thickness of 600 mm. In forming the transparent metal oxide layer 5c, a sputtering target doped with 0.1% by weight of Al or In in ZnO was used, Ar gas was used as a sputtering gas, and the pressure was set to 0.7 to 1.5 Pa. The resistivity calculated from the sheet resistance value measured by forming the transparent metal oxide layer 5c on the glass under the same conditions with a thickness of 600 mm was 0.1 Ωcm. Further, even when a 99.99% pure ZnO target not doped with a group III (group 3) element was used, almost the same resistivity was obtained.

その後、非晶質シリコン光電変換ユニット3を複数の帯状パターンへと分割するために大気中に基板を取り出し、YAG第2高調波パルスレーザーを透光性基板1に照射することにより幅60μmの接続溝13を形成した。引き続いて洗浄処理を行うことなく、厚さ300ÅのZnOから成る透明導電体層5tと厚さ2000ÅのAgから成る裏面電極5mをDCスパッタ法によって形成した。透明導電体層5tの形成においては、ZnO中に3.2重量%のAlをドープしたスパッタターゲットを用い、Arガスをスパッタガスとして、圧力を0.27Paとした。なお、透明導電体層5tをガラス上に同一条件で厚さ300Å形成して測定したシート抵抗値から算出した抵抗率は0.003Ωcmであった。
最後に、非晶質シリコン光電変換ユニット3、透明金属酸化物層5c、透明導電体層5t及び裏面電極5mを複数の帯状パターンへと分割するために、YAG第2高調波パルスレーザーを透光性基板1に照射することにより、幅60μmの上部分離溝15を形成し、図1に示すような左右に隣接する短冊状非晶質シリコン太陽電池が電気的に直列接続された集積化非晶質シリコン太陽電池を作製した。この集積化非晶質シリコン太陽電池は、幅8.9mm×長さ430mmの非晶質シリコン太陽電池が100段直列接続されて構成されている。同様の方法で計10枚の集積化非晶質シリコン太陽電池を作製した。こうして得られた集積化非晶質シリコン太陽電池に、エアマス1.5に近似されたスペクトルでエネルギー密度100mW/cm2の擬似太陽光を、測定雰囲気及び太陽電池の温度25±1℃の条件下で照射し、電流−電圧特性を測定した。得られた開放電圧を100で割って1段当りに換算した開放電圧Voc、短絡電流密度Jsc、曲線因子FF、変換効率Eff(10枚の平均値)の測定結果を表1に示す。
Thereafter, in order to divide the amorphous silicon photoelectric conversion unit 3 into a plurality of strip patterns, the substrate is taken out into the atmosphere, and the translucent substrate 1 is irradiated with a YAG second harmonic pulse laser to thereby connect the substrate 60 μm in width. A groove 13 was formed. Subsequently, a transparent conductor layer 5t made of ZnO having a thickness of 300 mm and a back electrode 5m made of Ag having a thickness of 2000 mm were formed by DC sputtering without performing a cleaning process. In the formation of the transparent conductor layer 5t, a sputtering target doped with 3.2% by weight of Al in ZnO was used, Ar gas was used as the sputtering gas, and the pressure was 0.27 Pa. The resistivity calculated from the sheet resistance value measured by forming the transparent conductor layer 5t on the glass with a thickness of 300 mm under the same conditions was 0.003 Ωcm.
Finally, in order to divide the amorphous silicon photoelectric conversion unit 3, the transparent metal oxide layer 5c, the transparent conductor layer 5t, and the back electrode 5m into a plurality of strip patterns, a YAG second harmonic pulse laser is transmitted. Irradiating the conductive substrate 1, an upper separation groove 15 having a width of 60 μm is formed, and an integrated amorphous crystal in which strip-like amorphous silicon solar cells adjacent to the left and right as shown in FIG. 1 are electrically connected in series. Quality silicon solar cells were fabricated. This integrated amorphous silicon solar cell is configured by 100 stages of amorphous silicon solar cells having a width of 8.9 mm and a length of 430 mm connected in series. A total of 10 integrated amorphous silicon solar cells were produced by the same method. The integrated amorphous silicon solar cell thus obtained was subjected to simulated sunlight having an energy density of 100 mW / cm 2 in a spectrum approximated to an air mass of 1.5, under the conditions of the measurement atmosphere and the temperature of the solar cell of 25 ± 1 ° C. The current-voltage characteristics were measured. Table 1 shows the measurement results of the open circuit voltage Voc, short circuit current density Jsc, fill factor FF, and conversion efficiency Eff (average value of 10 sheets) obtained by dividing the obtained open circuit voltage by 100 and converted per stage.

表1は、実施例1〜2および比較例1〜4で示した集積化非晶質シリコン太陽電池の特性を示した表である。 Table 1 is a table showing the characteristics of the integrated amorphous silicon solar cells shown in Examples 1-2 and Comparative Examples 1-4.

(比較例1)
比較例1においては、実施例1と比較して、透明金属酸化物層5cの抵抗率を0.005Ωcm(ガラス上に600Å形成して測定したシート抵抗値から算出)に変更したことのみが異なっていた。得られた太陽電池の測定結果を表1に示す。実施例1と比較例1を比較すると、透明金属酸化物層5cの抵抗率を下げるだけで平均性能が大幅に低下している。これは、接続溝13の形成時に、レーザー光の吸収により昇華した透明金属酸化物層5cが接続溝13内に再付着したことによるバリの発生が主要因であると推定される。
(Comparative Example 1)
The comparative example 1 is different from the first example only in that the resistivity of the transparent metal oxide layer 5c is changed to 0.005 Ωcm (calculated from the sheet resistance value measured by forming 600 上 on the glass). It was. Table 1 shows the measurement results of the obtained solar cell. When Example 1 and Comparative Example 1 are compared, the average performance is significantly reduced simply by reducing the resistivity of the transparent metal oxide layer 5c. It is presumed that this is mainly due to the occurrence of burrs due to the transparent metal oxide layer 5c sublimated by absorption of laser light being reattached in the connection groove 13 when the connection groove 13 is formed.

(比較例2)
比較例2においては、比較例1と比較して、接続溝13形成後に水による超音波洗浄工程を追加したことのみが異なっていた。得られた太陽電池の測定結果を表1に示す。実施例1と比較例2を比較すると性能差は大きくないが、実施例1のほうが透明金属酸化物層5cの透明性が高い分だけJscが高くなっていることがわかる。
(Comparative Example 2)
The comparative example 2 was different from the comparative example 1 only in that an ultrasonic cleaning process with water was added after the connection groove 13 was formed. Table 1 shows the measurement results of the obtained solar cell. When Example 1 and Comparative Example 2 are compared, the performance difference is not large, but it can be seen that Jsc is higher in Example 1 due to the higher transparency of the transparent metal oxide layer 5c.

(比較例3)
比較例3においては、実施例1と比較して、透明金属酸化物層5cの形成を省略し、接続溝13形成後に水による超音波洗浄工程を追加し、透明導電体層5tとして抵抗率0.1Ωcm(ガラス上に900Å形成して測定したシート抵抗値から算出)、厚さ900Åのものを用いたことのみが異なっていた。得られた太陽電池の測定結果を表1に示す。実施例1と比較例3を比較すると、透明電極2と抵抗率の高い透明導電体層5tが直接接して太陽電池の直列接続がなされた場合には、集積化された太陽電池のFFが大幅に悪化していることがわかる。
(Comparative Example 3)
In Comparative Example 3, compared with Example 1, the formation of the transparent metal oxide layer 5c is omitted, and an ultrasonic cleaning step with water is added after the formation of the connection groove 13, and the resistivity 0 is set as the transparent conductor layer 5t. .1 Ωcm (calculated from a sheet resistance value measured by forming 900 mm on glass) and having a thickness of 900 mm was different. Table 1 shows the measurement results of the obtained solar cell. When Example 1 and Comparative Example 3 are compared, when the transparent electrode 2 and the transparent conductor layer 5t having a high resistivity are in direct contact and the solar cells are connected in series, the FF of the integrated solar cell is greatly increased. It turns out that it is getting worse.

(実施例2)
実施例2においては、実施例1と比較して、透明金属酸化物層5cの抵抗率を3Ωcm(ガラス上に6000Å形成して測定したシート抵抗値から算出)に変更したことのみが異なっていた。得られた太陽電池の測定結果を表1に示す。実施例2においては実施例1とほぼ同等の性能が得られていることがわかる。
(Example 2)
Example 2 was different from Example 1 only in that the resistivity of the transparent metal oxide layer 5c was changed to 3 Ωcm (calculated from the sheet resistance value measured by forming 6000 mm on glass). . Table 1 shows the measurement results of the obtained solar cell. It can be seen that the performance similar to that of the first embodiment is obtained in the second embodiment.

(比較例4)
比較例4においては、実施例1と比較して、透明導電体層5tの抵抗率を0.05Ωcm(ガラス上に300Å形成して測定したシート抵抗値から算出)に変更したことのみが異なっていた。得られた太陽電池の測定結果を表1に示す。実施例1と比較例4を比較すると、比較例3の結果と同様に透明電極2と抵抗率の高い透明導電体層5tが直接接して太陽電池の直列接続がなされた場合には、集積化された太陽電池のFFが低下していることがわかる。
(Comparative Example 4)
Comparative Example 4 differs from Example 1 only in that the resistivity of the transparent conductor layer 5t was changed to 0.05 Ωcm (calculated from the sheet resistance value measured by forming 300 Å on glass). It was. Table 1 shows the measurement results of the obtained solar cell. When Example 1 and Comparative Example 4 are compared, if the transparent electrode 2 and the transparent conductor layer 5t having a high resistivity are in direct contact with each other and the solar cells are connected in series as in the result of Comparative Example 3, integration is performed. It can be seen that the FF of the produced solar cell is lowered.

以上述べたように、本発明により薄膜光電変換装置を集積化する場合の接続溝形成後の洗浄工程を省略しつつ、集積化薄膜光電変換装置のJscとFFを高め、高い性能を得ることが可能となる。   As described above, according to the present invention, it is possible to increase the Jsc and FF of the integrated thin film photoelectric conversion device and obtain high performance while omitting the cleaning step after the connection groove formation when integrating the thin film photoelectric conversion device according to the present invention. It becomes possible.

本発明による集積化非晶質シリコン太陽電池の模式的断面図である。1 is a schematic cross-sectional view of an integrated amorphous silicon solar cell according to the present invention.

符号の説明Explanation of symbols

1 透光性基板
2 透明電極
3 非晶質シリコン光電変換ユニット
3p 非晶質p型シリコンカーバイド層
3i 非晶質i型シリコン光電変換層
3n n型シリコン層
5c 透明金属酸化物層
5t 透明導電体層
5m 裏面電極
12 下部分離溝
13 接続溝
15 上部分離溝
DESCRIPTION OF SYMBOLS 1 Translucent substrate 2 Transparent electrode 3 Amorphous silicon photoelectric conversion unit 3p Amorphous p-type silicon carbide layer 3i Amorphous i-type silicon photoelectric conversion layer 3n N-type silicon layer 5c Transparent metal oxide layer 5t Transparent conductor Layer 5m Back electrode 12 Lower separation groove 13 Connection groove 15 Upper separation groove

Claims (4)

透光性基板と、透明電極と、光電変換ユニットと、透明金属酸化物層と、透明導電体層と、裏面電極を備え、複数の単位素子が直列接続された構造を有する集積化薄膜光電変換装置の製造方法であって、少なくとも、
透光性基板上に、下部分離溝によりそれぞれが分割された複数の透明電極を形成する工程
複数の該透明電極の各々に接して、光電変換ユニットを形成する工程;
該光電変換ユニット上に、抵抗率が0.01Ωcmより大きい透明金属酸化物層を形成する工程
該下部分離溝の近傍の該光電変換ユニットと該透明金属酸化物層の一部を除去して、該透明電極の一部が露出するように、かつ、該下部分離溝に接することなく配置された接続溝を、レーザースクライブにより形成する工程
該接続溝を形成後に洗浄処理を行うことなく、該透明金属酸化物層上に、該透明金属酸化物層と接する抵抗率が0.01Ωcm以下である透明導電体層と、該透明導電体層上の金属層からなる裏面電極とを、最近隣の2つの該透明電極の一方と該接続溝を介して電気的に接続するように形成する工程;および
該透明電極と該裏面電極とで挟まれる領域からなる単位素子を複数個直列に接続するように、各該接続溝の近傍の該裏面電極と該透明導電体層と該透明金属酸化物層と光電変換ユニットの一部を除去して、該透明電極の一部が露出するように上部分離溝を形成し、該裏面電極を複数の単位素子に対応する複数領域にそれぞれ分割する工程;
をこの順に有する、集積化薄膜光電変換装置の製造方法。
And the transparent substrate, a transparent electrode, a photoelectric conversion unit, and a transparent metal oxide layer, and a transparent conductor layer, comprising a back electrode, integrated thin film photoelectric having unit elements of several are connected in series structure A method for manufacturing a conversion device , comprising at least:
Forming a plurality of transparent electrodes, each of which is divided by a lower separation groove, on a translucent substrate ;
Forming a photoelectric conversion unit in contact with each of the plurality of transparent electrodes ;
Forming a transparent metal oxide layer having a resistivity greater than 0.01 Ωcm on the photoelectric conversion unit ;
Removing a portion of the photoelectric conversion unit and the transparent metal oxide layer in the vicinity of the lower separation grooves, so that a portion of the transparent electrode is exposed, and Ku distribution such that contact with said lower isolation trench Forming the placed connection groove by laser scribing ;
A transparent conductor layer having a resistivity in contact with the transparent metal oxide layer of 0.01 Ωcm or less on the transparent metal oxide layer without performing a cleaning treatment after forming the connection groove, and the transparent conductor layer in a and transparent electrode and the rear surface electrode; a back electrode made of metallic layers of the upper, recent two steps are formed so as to electrically connected to one via the connection groove of the transparent electrode of the next the unit element consisting of a region sandwiched between to connect to each other in series, removing a portion of each said connecting said back electrode and the transparent conductive material layer and the transparent metal oxide layer in the vicinity of the groove and the photoelectric conversion unit to step a portion of the transparent electrode is an upper portion away groove formed so as to expose, respectively divided into a plurality of areas corresponding to rear surface electrodes into a plurality of unit elements;
The manufacturing method of the integrated thin film photoelectric conversion apparatus which has these in this order.
前記光電変換ユニットはシリコンを主成分とする、請求項1の集積化薄膜光電変換装置の製造方法。   The method for manufacturing an integrated thin film photoelectric conversion device according to claim 1, wherein the photoelectric conversion unit is mainly composed of silicon. 前記透明金属酸化物層は酸化亜鉛を主成分とする、請求項1の集積化薄膜光電変換装置の製造方法。   The method of manufacturing an integrated thin film photoelectric conversion device according to claim 1, wherein the transparent metal oxide layer contains zinc oxide as a main component. 前記透明金属酸化物層は、有機金属蒸気を含みIII族(3族)元素を含まないガスを用いたCVD法、またはIII族(3族)元素の添加量が0.2重量%以下のスパッタターゲットを用いたスパッタリング法、によって形成され、請求項3の集積化薄膜光電変換装置の製造方法。
The transparent metal oxide layer is formed by a CVD method using a gas containing an organometallic vapor and not containing a group III (group 3) element, or sputtering with a group III (group 3) element addition amount of 0.2 wt% or less. sputtering method using a target, Ru is formed by the manufacturing method of an integrated thin film photoelectric converter according to claim 3.
JP2006113567A 2006-04-17 2006-04-17 A manufacturing method of an integrated thin film photoelectric conversion device, and an integrated thin film photoelectric conversion device obtainable by the manufacturing method. Active JP5232362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006113567A JP5232362B2 (en) 2006-04-17 2006-04-17 A manufacturing method of an integrated thin film photoelectric conversion device, and an integrated thin film photoelectric conversion device obtainable by the manufacturing method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006113567A JP5232362B2 (en) 2006-04-17 2006-04-17 A manufacturing method of an integrated thin film photoelectric conversion device, and an integrated thin film photoelectric conversion device obtainable by the manufacturing method.

Publications (2)

Publication Number Publication Date
JP2007287926A JP2007287926A (en) 2007-11-01
JP5232362B2 true JP5232362B2 (en) 2013-07-10

Family

ID=38759410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006113567A Active JP5232362B2 (en) 2006-04-17 2006-04-17 A manufacturing method of an integrated thin film photoelectric conversion device, and an integrated thin film photoelectric conversion device obtainable by the manufacturing method.

Country Status (1)

Country Link
JP (1) JP5232362B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101488413B1 (en) * 2008-03-07 2015-01-30 솔라프론티어가부시키가이샤 Integrated structure of CIS-type solar battery
US8647995B2 (en) * 2009-07-24 2014-02-11 Corsam Technologies Llc Fusion formable silica and sodium containing glasses
KR101573846B1 (en) * 2009-07-27 2015-12-04 주성엔지니어링(주) Thin film type Solar Cell Method and Apparatus for manufacturing thereof
JP6220053B2 (en) 2013-04-29 2017-10-25 コーニング インコーポレイテッド Solar cell module package
CN106033782A (en) * 2015-03-11 2016-10-19 英属开曼群岛商精曜有限公司 Solar cell, solar cell module, and manufacturing method thereof
US10228495B2 (en) * 2016-09-08 2019-03-12 Goodrich Corporation Apparatus and methods of electrically conductive optical semiconductor coating

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107228A (en) * 1994-10-06 1996-04-23 Kanegafuchi Chem Ind Co Ltd Thin film solar cell
JP2000150934A (en) * 1998-11-16 2000-05-30 Sanyo Electric Co Ltd Photovoltaic element and manufacture thereof
JP2000353817A (en) * 1999-06-10 2000-12-19 Kanegafuchi Chem Ind Co Ltd Integrated photoelectric conversion device and its manufacture
JP4131615B2 (en) * 2001-01-22 2008-08-13 三洋電機株式会社 Manufacturing method of integrated photovoltaic device
JP2003197936A (en) * 2001-12-21 2003-07-11 Mitsubishi Heavy Ind Ltd Solar battery
JP2003264307A (en) * 2002-03-11 2003-09-19 Sharp Corp Thin film solar cell and its manufacturing method
JP4316475B2 (en) * 2003-11-19 2009-08-19 シャープ株式会社 Thin film solar cell and manufacturing method thereof
JP2005197608A (en) * 2004-01-09 2005-07-21 Mitsubishi Heavy Ind Ltd Photoelectric converting device

Also Published As

Publication number Publication date
JP2007287926A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP4257332B2 (en) Silicon-based thin film solar cell
JP5180590B2 (en) Stacked photoelectric conversion device
JP4940290B2 (en) Photoelectric conversion device and manufacturing method thereof
JP5374250B2 (en) Crystalline silicon solar cell
JP2009503848A (en) Composition gradient photovoltaic device, manufacturing method and related products
EP2386124B1 (en) Solar cell
JP5232362B2 (en) A manufacturing method of an integrated thin film photoelectric conversion device, and an integrated thin film photoelectric conversion device obtainable by the manufacturing method.
JP5400322B2 (en) Silicon-based thin film solar cell and method for manufacturing the same
JP2007305826A (en) Silicon-based thin film solar cell
JPWO2005109526A1 (en) Thin film photoelectric converter
JP2009094198A (en) Manufacturing method of hybrid thin film solar battery
JP2008283075A (en) Manufacturing method of photoelectric conversion device
JP4903940B2 (en) Method for manufacturing tandem thin film solar cell
US8642881B2 (en) Thin film solar cell and method of manufacturing the same
JP4674780B2 (en) Method for manufacturing tandem thin film solar cell
JPWO2006049003A1 (en) Method for manufacturing thin film photoelectric conversion device
JP5763411B2 (en) Stacked photoelectric conversion device
JP2006073878A (en) Photoelectric converter and manufacturing method therefor
WO2011105166A1 (en) Photoelectric conversion module and method for manufacturing same
JP5373045B2 (en) Photoelectric conversion device
JP2010283162A (en) Solar cell and method for manufacturing the same
JP4173692B2 (en) Solar cell element and manufacturing method thereof
JP5131249B2 (en) Thin film solar cell
WO2010146846A1 (en) Photoelectric conversion device and method for producing photoelectric conversion device
JP5339294B2 (en) Method for manufacturing photoelectric conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5232362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250