JP2000058888A - Solar battery and manufacture thereof - Google Patents

Solar battery and manufacture thereof

Info

Publication number
JP2000058888A
JP2000058888A JP10219484A JP21948498A JP2000058888A JP 2000058888 A JP2000058888 A JP 2000058888A JP 10219484 A JP10219484 A JP 10219484A JP 21948498 A JP21948498 A JP 21948498A JP 2000058888 A JP2000058888 A JP 2000058888A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive layer
resistance
solar cell
collector electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10219484A
Other languages
Japanese (ja)
Other versions
JP3619681B2 (en
Inventor
Teiji Tsuge
定司 津毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP21948498A priority Critical patent/JP3619681B2/en
Publication of JP2000058888A publication Critical patent/JP2000058888A/en
Application granted granted Critical
Publication of JP3619681B2 publication Critical patent/JP3619681B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve massproductivity and photoelectric converting property of a solar battery by providing a transparent conductive layer and a collecting electrode on an amorphous semiconductor layer, and a low resistance region, having the resistance lower than the other surface part, on the surface part which comes in contact with the collecting electrode of the transparent electrode. SOLUTION: A ZnO transparent conductive layer 4, having sheet resistance of 50 of 80 Ω/(square), is formed on an amorphous semiconductor layer 3 using an Al-doped ZnO target by performing a sputtering method. Then, when the other surface part 5, excluding the surface part corresponding to the part where the collecting electrode 5 of the transparent conductive layer 4 is formed using a mask, is oxidized by selectively exposing to oxygen plasma, the sheet resistance of the oxidated part becomes 120 kΩ/(square), and a low resistance region 6, having the resistance lower than the other surface part, is formed on the surface part where the collecting electrode 5 is formed. Subsequently, an electrolytic plating operation is performed, and an Ni collecting electrode 5 is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は特性の良好な太陽電
池及びその製造方法に係わり、特に表面側集電極の構造
及び製造方法に関する技術である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell having good characteristics and a method of manufacturing the same, and more particularly to a structure and a method of manufacturing a surface side collector.

【0002】[0002]

【従来の技術】太陽光を直接電気エネルギーに変換する
ことのできる太陽電池は、石油代替エネルギー源として
期待されている。太陽電池用の種類としては単結晶シリ
コン太陽電池、多結晶シリコ太陽電池、アモルファスシ
リコン太陽電池などがあげられるが、単結晶シリコンの
場合製造方法として1000℃以上の高温プロセスを使
用するため生産コストが高い。また単結晶シリコンや多
結晶シリコンは間接遷移型であるため光吸収係数が小さ
く、入射太陽光を吸収するためには少なくとも数100
μm以上の膜厚が必要となり、このため材料コストが高
くなる。これに対し、アモルファスシリコンに代表され
るアモルファス半導体材料は200℃程度の低温プロセ
スにより製造可能であり、また直接遷移型であることか
ら必要膜厚も数1000Åと薄膜で良く、このため低コ
ストの太陽電池材料として期待されている。
2. Description of the Related Art A solar cell capable of directly converting sunlight into electric energy is expected as an alternative energy source for petroleum. The types of solar cells include single-crystal silicon solar cells, polycrystalline silicon solar cells, amorphous silicon solar cells, and the like. In the case of single-crystal silicon, the production cost is high because a high-temperature process of 1000 ° C. or higher is used. high. In addition, single crystal silicon and polycrystalline silicon are indirect transition types and therefore have a small light absorption coefficient.
A film thickness of at least μm is required, which increases the material cost. On the other hand, an amorphous semiconductor material typified by amorphous silicon can be manufactured by a low-temperature process of about 200 ° C., and since it is a direct transition type, the required film thickness may be as thin as several thousand Å, and therefore, low cost is achieved. It is expected as a solar cell material.

【0003】斯かるアモルファス半導体材料を用いたア
モルファス太陽電池の構造として、図4の素子構造断面
図に示す如く、プラスチック、或いは表面が絶縁コート
されたステンレス板等の絶縁性表面を有する基板1上
に、Ag、Al等の金属からなる裏面電極2、内部にp
in接合を有するアモルファス半導体層3、ITOから
なる透明導電層4、及びAgからなる櫛型状の集電極5
を有する構造が知られている。
As shown in the sectional view of the element structure in FIG. 4, a structure of an amorphous solar cell using such an amorphous semiconductor material is formed on a substrate 1 having an insulating surface such as a plastic plate or a stainless plate coated with an insulating surface. Back electrode 2 made of a metal such as Ag, Al, etc.
Amorphous semiconductor layer 3 having in-junction, transparent conductive layer 4 made of ITO, and comb-shaped collector electrode 5 made of Ag
Are known.

【0004】斯かる構造のアモルファス太陽電池におい
ては高効率化のため、Agや銅などの比抵抗の小さい材
料を用いることにより無効部分となる集電極5の面積を
小さくすることが行われている。例えば、銀の比抵抗は
1.62×10-6Ωcmであり、銅の比抵抗は1.72
×10-6Ωcmであるが、これに対しアルミニウムでは
2.75×10-6Ωcm、亜鉛では5.9×10-6Ωc
mである。
In the amorphous solar cell having such a structure, in order to increase the efficiency, a material having a small specific resistance such as Ag or copper is used to reduce the area of the collecting electrode 5 which is an ineffective portion. . For example, the specific resistance of silver is 1.62 × 10 −6 Ωcm, and the specific resistance of copper is 1.72.
× 10 −6 Ωcm, whereas aluminum is 2.75 × 10 −6 Ωcm and zinc is 5.9 × 10 −6 Ωc.
m.

【0005】これらの集電極を形成する方法として、従
来結晶系の太陽電池の場合には蒸着法、メッキ法、印刷
法などの方法が用いられる。このうち蒸着法では良質の
金属が堆積でき、かつ半導体とのオーミックコンタクト
も良好なものができるが、堆積速度が遅いことと真空プ
ロセスを用いるためにスループットが低いこと、特定の
パターンを形成するためにはマスキングが必要である等
の問題が有る。
[0005] As a method of forming these collector electrodes, in the case of a conventional crystalline solar cell, a method such as a vapor deposition method, a plating method, and a printing method is used. Of these, the vapor deposition method can deposit good-quality metal and make good ohmic contact with the semiconductor, but the deposition rate is slow, the throughput is low due to the use of a vacuum process, and the formation of a specific pattern Has problems such as the necessity of masking.

【0006】また、メッキ法の場合にはNiの無電界メ
ッキが一般的に行われているが、剥離し易いこととマス
クが必要であるという問題が有る。
In the case of the plating method, electroless plating of Ni is generally performed, but there are problems that it is easy to peel off and that a mask is required.

【0007】印刷法は、最も自動化し易く且つ量産性が
高いという特徴を有しており、Agペーストをスクリー
ン印刷して高温でシンターしてコンタクトする方法が行
われている。また、抵抗を下げるために更に印刷した電
極の上にメッキやはんだのコートを行うことも検討され
ている。
[0007] The printing method has the feature that it is the easiest to automate and has high mass productivity, and a method is used in which an Ag paste is screen-printed and sintered at a high temperature to make contact. Further, in order to reduce the resistance, plating and solder coating on the printed electrodes are also being studied.

【0008】[0008]

【発明が解決しようとする課題】アモルファス太陽電池
の場合には上述したいずれの方法も検討されているが、
実用的には印刷法が量産性に優れ実用化されている。然
し乍ら、アモルファス太陽電池の場合、高温にすると
p、n層中の導電型不純物の拡散等の問題が生じるため
結晶系太陽電池のようにシンターすることができず、抵
抗の高い電極となってしまう。即ち、銀の導電性ペース
トは高分子の樹脂をバインダーとして含むため、比抵抗
は約4×10-5Ωcmであり、純粋な銀よりも1桁抵抗
が高い。従って集電極の面積を変えずに抵抗を下げるた
めには電極の厚みを厚くすることが望ましい。然し乍
ら、厚みを厚くしようとすると導電性ペーストの粘度を
大きくする必要があり、スクリーンが目詰まりを起こし
たりするため限界がある。この為スクリーン印刷によっ
て実用的に作成される電極の厚みとしては10μmから
20μmである。従ってスクリーン印刷により作成され
る集電極は抵抗を下げるために幅広にならざるを得ず、
このため有効面積の損失が大きくなっていた。
In the case of an amorphous solar cell, any of the above methods has been studied.
Practically, the printing method is excellent in mass productivity and has been put to practical use. However, in the case of an amorphous solar cell, when the temperature is increased, problems such as diffusion of conductive impurities in the p and n layers occur, so that sintering cannot be performed as in a crystalline solar cell, resulting in an electrode having high resistance. . That is, since the silver conductive paste contains a polymer resin as a binder, the specific resistance is about 4 × 10 −5 Ωcm, which is one digit higher than that of pure silver. Therefore, in order to reduce the resistance without changing the area of the collecting electrode, it is desirable to increase the thickness of the electrode. However, to increase the thickness, it is necessary to increase the viscosity of the conductive paste, and there is a limit because the screen may be clogged. For this reason, the thickness of the electrode practically produced by screen printing is 10 μm to 20 μm. Therefore, the collector electrode created by screen printing must be wide to lower the resistance,
For this reason, the loss of the effective area was large.

【0009】また、メッキ法も結晶系と同様に用いるこ
とが可能であり、例えばメッキ法による太陽電池の透明
導電層上への電極形成方法が開示されている(特開昭6
0−66426号公報)。
Also, a plating method can be used in the same manner as the crystal system. For example, a method of forming an electrode on a transparent conductive layer of a solar cell by a plating method has been disclosed (Japanese Unexamined Patent Publication No. Sho 6).
0-66426).

【0010】然し乍ら、この方法においては集電極以外
の部分にメッキされない様にするためにレジストのパタ
ーニング膜を設け、集電極を作成した後にレジスト膜を
除去する必要があり、製造工程が繁雑となるという問題
がある。
However, in this method, it is necessary to provide a resist patterning film in order to prevent plating on portions other than the collecting electrode, and to remove the resist film after forming the collecting electrode, which complicates the manufacturing process. There is a problem.

【0011】本発明は、アモルファス半導体を用いた太
陽電池における上述した問題を解決して、量産性及び光
電変換特性の良好な太陽電池を提供することを目的とす
るものである。
An object of the present invention is to solve the above-mentioned problems in a solar cell using an amorphous semiconductor and to provide a solar cell having good mass productivity and photoelectric conversion characteristics.

【0012】[0012]

【課題を解決するための手段】斯かる課題を解決するた
めに、本発明太陽電池は、非晶質半導体層上に透明導電
層及び集電極を備える太陽電池であって、前記透明導電
層の前記集電極と接する表面部分に、他の表面部分より
も抵抗の小さい低抵抗領域を有することを特徴とし、前
記他の表面部分が、透明導電層の内部領域よりも高い抵
抗を有することを特徴とする。
Means for Solving the Problems In order to solve the above problems, a solar cell according to the present invention is a solar cell having a transparent conductive layer and a collector electrode on an amorphous semiconductor layer, wherein the transparent conductive layer The surface portion in contact with the collector electrode has a low resistance region having a smaller resistance than the other surface portion, and the other surface portion has a higher resistance than the internal region of the transparent conductive layer. And

【0013】また、本発明製造方法は、非晶質半導体層
上に透明導電層を形成する工程と、前記透明導電層の集
電極が形成される領域に対応する表面部分を低抵抗化し
て低抵抗領域を形成する工程と、前記低抵抗領域上に集
電極を形成する工程と、を備えることを特徴とし、前記
集電極の形成は、電界メッキ法により行われることを特
徴とする。
Further, in the manufacturing method of the present invention, a step of forming a transparent conductive layer on the amorphous semiconductor layer and a step of lowering the resistance of a surface portion of the transparent conductive layer corresponding to a region where a collector electrode is formed are reduced. The method is characterized by comprising a step of forming a resistance region and a step of forming a collector electrode on the low resistance region, wherein the formation of the collector electrode is performed by an electroplating method.

【0014】或いは、非晶質半導体層上に透明導電層を
形成する工程と、前記透明導電層の集電極が形成される
表面部分以外の他の表面部分を高抵抗化して、前記表面
部分を他の表面部分よりも抵抗の小さい低抵抗領域とす
る工程と、前記低抵抗領域上に集電極を形成する工程
と、を備えることを特徴とし、前記集電極の形成は、電
界メッキ法により行われることを特徴とする。
Alternatively, a step of forming a transparent conductive layer on the amorphous semiconductor layer, and increasing the resistance of the surface portion other than the surface portion of the transparent conductive layer on which the collector electrode is formed, so as to reduce the surface portion A step of forming a low-resistance region having a lower resistance than other surface portions; and a step of forming a collector electrode on the low-resistance region, wherein the formation of the collector electrode is performed by an electrolytic plating method. It is characterized by being performed.

【0015】さらには、非晶質半導体層上に、低抵抗の
第一の透明導電層を形成する工程と、該第一の透明導電
層上に、高抵抗の第二の透明導電層を形成する工程と、
該第二の透明導電層の集電極が形成される領域に対応す
る表面部分を低抵抗化して低抵抗領域を形成する工程
と、前記低抵抗領域上に集電極を形成する工程と、を備
えることを特徴とし、前記集電極の形成は、電界メッキ
法により行われることを特徴とする。
Further, a step of forming a low-resistance first transparent conductive layer on the amorphous semiconductor layer, and forming a high-resistance second transparent conductive layer on the first transparent conductive layer The process of
A step of forming a low-resistance region by lowering the resistance of a surface portion of the second transparent conductive layer corresponding to the region where the collector is formed; and forming a collector on the low-resistance region. The collector electrode is formed by an electroplating method.

【0016】[0016]

【発明の実施の形態】図1は本発明の第1実施形態に係
る太陽電池の構造を示す素子構造断面図であり、同図に
おいて図4と同様の機能を呈する部分には同一の符号を
付している。
FIG. 1 is a sectional view of an element structure showing the structure of a solar cell according to a first embodiment of the present invention. In FIG. 1, parts having the same functions as those in FIG. It is attached.

【0017】本実施形態の太陽電池が図4に示した従来
の太陽電池と異なる点は、透明導電層4の少なくとも集
電極5と接する表面部分に、他の表面部分よりも抵抗の
小さい低抵抗領域6を備えた点にある。
The solar cell of this embodiment is different from the conventional solar cell shown in FIG. 4 in that at least the surface portion of the transparent conductive layer 4 which is in contact with the collector electrode 5 has a lower resistance than the other surface portions. The point is that the region 6 is provided.

【0018】斯かる構成によれば、透明導電層4の集電
極5と接する表面部分と、他の表面部分との間に抵抗差
が存在することとなるので、電界メッキにより上記表面
部分上に選択的にメッキ金属を析出させ、電界メッキに
よる集電極5を形成することができる。従って、従来の
ようにレジストのパターン形成及び除去の工程が必要な
くなり、量産性に優れている。さらに、電界メッキを用
いることにより低抵抗の集電極が得られるので、集電極
の抵抗成分の減少により光電変換特性が向上する。尚、
低抵抗領域6は、上述のように透明導電層4の表面部分
だけでなく、アモルファス半導体層3に至るまでの領域
に設けても良いが、少なくとも表面部分に低抵抗領域6
を備えておれば、電界メッキによる集電極5の形成が可
能となる。
According to such a configuration, there is a difference in resistance between the surface portion of the transparent conductive layer 4 in contact with the collector electrode 5 and the other surface portion. By selectively depositing a plating metal, the collector electrode 5 can be formed by electrolytic plating. Therefore, the steps of forming and removing the resist pattern as in the conventional case are not required, and the mass productivity is excellent. Furthermore, since a low-resistance collector electrode can be obtained by using the electrolytic plating, the photoelectric conversion characteristics are improved by reducing the resistance component of the collector electrode. still,
The low-resistance region 6 may be provided not only on the surface portion of the transparent conductive layer 4 as described above, but also on a region extending to the amorphous semiconductor layer 3.
Is provided, the collector electrode 5 can be formed by electrolytic plating.

【0019】上述のように透明導電層4の集電極5と接
する表面部分に低抵抗領域6を形成するにあたっては、
この表面部分における透明導電層の組成を制御すれば良
い。即ち、太陽電池用の透明導電層として用いられるI
TO,ZnO,SnO2等の透光性を有する導電性酸化
物は、酸素の含有量を調節することで、その電気的特性
及び光学的特性を制御することができる。具体的には、
酸素の含有量を増加させることで抵抗率、光の透過率と
もに増大させることができ、また、酸素の含有量を減少
させることで、抵抗、光の透過率ともに減少させること
ができる。
As described above, in forming the low-resistance region 6 on the surface portion of the transparent conductive layer 4 which is in contact with the collector electrode 5,
What is necessary is just to control the composition of the transparent conductive layer in this surface part. That is, I used as a transparent conductive layer for a solar cell
A light-transmitting conductive oxide such as TO, ZnO, or SnO 2 can control its electrical characteristics and optical characteristics by adjusting the oxygen content. In particular,
By increasing the oxygen content, both the resistivity and the light transmittance can be increased, and by decreasing the oxygen content, both the resistance and the light transmittance can be reduced.

【0020】従って、透明導電層4形成後に、集電極5
と接する表面部分のみを還元して酸素量を減少させるこ
とにより、この表面部分を他の表面部分よりも抵抗の小
さい低抵抗領域とすることができる。このためには、水
素雰囲気中で所定の表面部分にのみレーザビームを照射
し、選択的に還元すれば良い。または、マスクを用いて
上記表面部分のみを露出させ、この状態で水素プラズマ
に曝すことにより、この表面部分のみを選択的に還元す
るようにしても良い。尚、以上の様にして還元された透
明導電層の表面部分は前述のように光の透過率が減少す
ることとなるが、この部分は集電極5直下に存在し、も
ともと入射光に対して無効領域であるために、特に問題
は生じない。
Therefore, after the formation of the transparent conductive layer 4, the collector electrode 5
By reducing only the surface portion that is in contact with and reducing the amount of oxygen, this surface portion can be a low-resistance region having lower resistance than other surface portions. This can be achieved by irradiating only a predetermined surface portion with a laser beam in a hydrogen atmosphere to selectively reduce the surface. Alternatively, only the surface portion may be exposed using a mask and exposed to hydrogen plasma in this state to selectively reduce only the surface portion. The light transmittance of the surface portion of the transparent conductive layer reduced as described above is reduced as described above. However, this portion exists immediately below the collector electrode 5 and is originally exposed to incident light. There is no particular problem because the area is invalid.

【0021】或いは、透明導電層4形成後に、集電極と
接する表面部分を除く他の表面部分を酸化して酸素量を
増大させ、内部領域よりも抵抗を増大させることによ
り、集電極と接する表面部分を他の表面部分よりも抵抗
の小さい低抵抗領域とすることができる。このためには
上述した他の表面部分のみが露出するようにマスクを設
け、酸素プラズマに曝して選択的に酸化する方法、或い
は同様にマスクを用いて酸素又はオゾン雰囲気中で紫外
線を照射し、選択的に酸化する方法を用いることができ
る。特に、オゾン雰囲気中で紫外線を照射する方法にお
いては、オゾンが紫外線の照射により強力な酸化作用を
有する原子状酸素になるため、透明導電層の酸化効果が
高まる。以上の様にして酸化された透明導電層の他の表
面部分は前述のように光の透過率が増大することとなる
ので、アモルファス半導体層に入射する光の光量も増大
させることができ、光電変換特性をより向上させること
が可能となる。尚、この場合にはアモルファス半導体層
3にて生成された光生成キャリアは、透明導電層4の内
部領域及び低抵抗領域6を経由して集電極5に収集させ
ることとなるので、抵抗を増大させる部分は上述のよう
に表面部分に限定する必要があり、透明導電層4の内部
領域の抵抗は低く保つ必要がある。
Alternatively, after the transparent conductive layer 4 is formed, the surface portion other than the surface portion in contact with the collector electrode is oxidized to increase the amount of oxygen and increase the resistance more than the internal region, thereby increasing the surface contact with the collector electrode. The portion can be a low-resistance region having lower resistance than other surface portions. For this purpose, a mask is provided so that only the other surface portions described above are exposed, and a method of selectively oxidizing by exposure to oxygen plasma, or similarly, irradiating ultraviolet rays in an oxygen or ozone atmosphere using a mask, A selective oxidation method can be used. In particular, in the method of irradiating ultraviolet rays in an ozone atmosphere, the oxidizing effect of the transparent conductive layer is enhanced because ozone is converted into atomic oxygen having a strong oxidizing action by the irradiation of ultraviolet rays. As described above, the light transmittance of the other surface portion of the transparent conductive layer oxidized as described above increases, so that the amount of light incident on the amorphous semiconductor layer can be increased. Conversion characteristics can be further improved. In this case, the photogenerated carriers generated in the amorphous semiconductor layer 3 are collected by the collector electrode 5 via the internal region of the transparent conductive layer 4 and the low resistance region 6, so that the resistance is increased. The portion to be formed needs to be limited to the surface portion as described above, and the resistance of the internal region of the transparent conductive layer 4 needs to be kept low.

【0022】さらに、透明導電層の所定の表面部分を選
択的に低抵抗化して低抵抗領域とする前者の方法におい
ては、他の表面部分も元々低い抵抗率を有しているため
に、電界メッキ時にメッキ金属が他の表面部分上にも析
出する可能性がある。
Further, in the former method, a predetermined surface portion of the transparent conductive layer is selectively made to have a low resistance to form a low resistance region. During plating, the plating metal may also deposit on other surface portions.

【0023】これに対し、透明導電層4の他の表面部分
を選択的に高抵抗化する後者の方法によれば、他の表面
部分の抵抗率を極めて大きくできるため、他の表面部分
上へのメッキ金属の析出も抑制することができる。
On the other hand, according to the latter method of selectively increasing the resistance of the other surface portion of the transparent conductive layer 4, the resistivity of the other surface portion can be extremely increased, so that the other surface portion can be formed on the other surface portion. Of the plating metal can also be suppressed.

【0024】加えて、図2に示すように透明導電層4
を、アモルファス半導体層3側の低抵抗の第一の透明導
電層4Aと、集電極側の高抵抗の第二の透明導電層4B
とから構成し、第二の透明導電層4Bの集電極5が形成
される部分を第一の透明導電層4Aに達する深さまで選
択的に還元して低抵抗領域6とするようにしても良い。
この場合には、上記第二導電層4Bの光の透過率が増大
するので、アモルファス半導体層に入射する光の光量を
増大させることができ、太陽電池の光電変換効率を一層
向上させることができる。尚、本実施形態の場合には、
低抵抗領域6を第二の透明導電層4Bの表面部分にのみ
設けると、第二の透明導電層4Bは高抵抗であるために
その内部領域が光生成キャリアの収集の際に抵抗成分を
増大させることとなるので、低抵抗領域6は上述のよう
に第一の透明導電層4Aに到る領域にまで設ける必要が
ある。(実施例)本発明の実施例として、以下の工程に
より図1に示す構造の太陽電池を製造した。
In addition, as shown in FIG.
Are connected to the first transparent conductive layer 4A having a low resistance on the amorphous semiconductor layer 3 side and the second transparent conductive layer 4B having a high resistance on the collector side.
The portion where the collector electrode 5 of the second transparent conductive layer 4B is formed may be selectively reduced to a depth reaching the first transparent conductive layer 4A to form the low resistance region 6. .
In this case, since the light transmittance of the second conductive layer 4B increases, the amount of light incident on the amorphous semiconductor layer can be increased, and the photoelectric conversion efficiency of the solar cell can be further improved. . In the case of the present embodiment,
If the low-resistance region 6 is provided only on the surface of the second transparent conductive layer 4B, the second transparent conductive layer 4B has a high resistance, so that its internal region increases the resistance component when collecting photogenerated carriers. Therefore, the low resistance region 6 needs to be provided up to the region reaching the first transparent conductive layer 4A as described above. (Example) As an example of the present invention, a solar cell having the structure shown in FIG. 1 was manufactured by the following steps.

【0025】まず、表面がSiO2で絶縁コートされた
ステンレス基板1の上に、スパッタ法を用いて厚さ約1
μmのAgからなる裏面電極2を形成し、裏面電極2上
にプラズマCVD法を用いて厚さ約200Åのn型a−
Si層、厚さ約3000Åのi型a−Si層及び厚さ約
100Åのp型a−SiC層を順次積層し、アモルファ
ス半導体層3を形成した。
First, on a stainless steel substrate 1 whose surface is insulated with SiO 2 , a thickness of about 1
A back electrode 2 made of Ag having a thickness of about 200 μm is formed, and an n-type a-
An amorphous semiconductor layer 3 was formed by sequentially laminating a Si layer, an i-type a-Si layer having a thickness of about 3000 ° and a p-type a-SiC layer having a thickness of about 100 °.

【0026】次いで、アモルファス半導体層3上にAl
を5%ドープしたZnOターゲットを用いてスパッタ法
により厚さ約700ÅのZnOからなる透明導電層4を
形成した。スパッタは、温度150℃、RFパワー20
mW/cm2、4×10-3TorrのAr雰囲気中で行
い、50〜80Ω/□のシート抵抗を有する透明導電層
4が得られた。
Next, Al is formed on the amorphous semiconductor layer 3.
A transparent conductive layer 4 made of ZnO having a thickness of about 700 ° was formed by a sputtering method using a ZnO target doped with 5%. The sputtering is performed at a temperature of 150 ° C. and an RF power of 20.
The operation was performed in an Ar atmosphere of 4 × 10 −3 Torr at mW / cm 2 , and a transparent conductive layer 4 having a sheet resistance of 50 to 80 Ω / □ was obtained.

【0027】次いで、マスクを用いて透明導電層4の、
集電極5が形成される部分に対応する表面部分を除く他
の表面部分を選択的に酸素プラズマに曝して酸化した。
酸化処理が施された部分のシート抵抗は120kΩ/□
であった。
Next, the transparent conductive layer 4 is
The other surface portion except for the surface portion corresponding to the portion where the collector electrode 5 is formed was selectively exposed to oxygen plasma to be oxidized.
The sheet resistance of the oxidized part is 120 kΩ / □
Met.

【0028】以上の様にして、透明導電層4の、集電極
5が形成される表面部分に、他の表面部分よりも抵抗の
小さい低抵抗領域を形成した。
As described above, a low-resistance region having a lower resistance than other surface portions was formed on the surface of the transparent conductive layer 4 where the collector electrode 5 was formed.

【0029】この後、硫酸ニッケル、塩化ニッケル及び
ほう酸の混合溶液を使用してメッキ浴中で電界メッキを
行い、15分で厚さ10μm程度のNiからなる集電極
5を形成した。
Thereafter, electrolytic plating was performed in a plating bath using a mixed solution of nickel sulfate, nickel chloride and boric acid to form a Ni collecting electrode 5 having a thickness of about 10 μm in 15 minutes.

【0030】以上のようにして製造した本発明太陽電池
と、集電極をスクリーン印刷法により形成した従来の太
陽電池の光電変換特性を測定した。この結果を表2に示
す。
The photoelectric conversion characteristics of the solar cell of the present invention manufactured as described above and a conventional solar cell in which the collector was formed by screen printing were measured. Table 2 shows the results.

【0031】[0031]

【表1】 【table 1】

【0032】同表から明らかに、本発明太陽電池の方が
集電極の抵抗値が減少したためにF.F.(曲線因子)
が向上し、高い光電変換効率が得られた。
It is clear from the table that the solar cell of the present invention has a lower F.C. F. (Fill factor)
Was improved, and high photoelectric conversion efficiency was obtained.

【0033】以上の如く、本発明によれば光電変換特性
が良好で、量産性の良い太陽電池を提供できる。
As described above, according to the present invention, a solar cell having good photoelectric conversion characteristics and good mass productivity can be provided.

【0034】尚、以上の実施の形態においてはアモルフ
ァス太陽電池について説明したが、本発明はこれに限ら
ず非晶質半導体層上に形成された透明導電層及び櫛形状
の集電極を有する太陽電池であれば如何なる構造の太陽
電池に対しても適用することができる。この例として
は、例えば、n型(p型)の結晶シリコン或いは多結晶
シリコン基板とp型(n型)の非晶質半導体層とからな
る半導体接合を備え、p型(n型)の非晶質半導体層上
に透明導電層を介して集電極を備えた構造の太陽電池が
ある。
Although the above embodiment has been described with reference to an amorphous solar cell, the present invention is not limited to this, and a solar cell having a transparent conductive layer formed on an amorphous semiconductor layer and a comb-shaped collector electrode. Then, the present invention can be applied to a solar cell having any structure. As an example of this, for example, a semiconductor junction including an n-type (p-type) crystalline silicon or polycrystalline silicon substrate and a p-type (n-type) amorphous semiconductor layer is provided, and a p-type (n-type) There is a solar cell having a structure in which a collector electrode is provided on a crystalline semiconductor layer via a transparent conductive layer.

【0035】図3は斯かる本発明の別の実施形態に係る
太陽電池の素子構造断面図であり、n型の結晶系シリコ
ン基板10の一主面上に厚さ100Å程度のi型の非晶
質シリコン層11を介してp型の非晶質シリコン層12
が形成されており、このp型の非晶質シリコン層12上
に透明導電層13及び集電極14が積層されている。
FIG. 3 is a sectional view of an element structure of a solar cell according to another embodiment of the present invention, in which an i-type non-crystalline silicon substrate having a thickness of about 100 ° is formed on one main surface of an n-type crystalline silicon substrate 10. A p-type amorphous silicon layer 12 via a crystalline silicon layer 11
The transparent conductive layer 13 and the collector 14 are laminated on the p-type amorphous silicon layer 12.

【0036】また、結晶系シリコン基板10の他の主面
上には厚さ100Å程度のi型の非晶質シリコン層11
を介してn型の非晶質シリコン層15が形成されてお
り、このn型の非晶質シリコン層15上に透明導電層1
3及び集電極14が積層されている。
On the other main surface of the crystalline silicon substrate 10, an i-type amorphous silicon layer 11 having a thickness of about 100 ° is formed.
An n-type amorphous silicon layer 15 is formed through the transparent conductive layer 1 on the n-type amorphous silicon layer 15.
3 and the collecting electrode 14 are stacked.

【0037】斯かる構成の太陽電池においても、透明電
極層13の集電極14と接する表面部分に、他の表面部
分よりも抵抗の小さい低抵抗領域16を備えることで、
同様の効果を奏する。
Also in the solar cell having such a configuration, the transparent electrode layer 13 is provided with the low resistance region 16 having a lower resistance than the other surface portions on the surface portion of the transparent electrode layer 13 in contact with the collector electrode 14.
A similar effect is achieved.

【0038】尚、本実施の形態にあっては結晶系シリコ
ン基板10の両主面上に非晶質半導体層12,15、透
明導電層13及び集電極14を備えた構造となっている
が、これに限らずどちらか一方の主面上にのみ非晶質半
導体層、透明導電層及び集電極を備えた構造の太陽電池
についても本発明を適用できるのは言うまでもない。
Although the present embodiment has a structure in which the amorphous semiconductor layers 12 and 15, the transparent conductive layer 13 and the collecting electrode 14 are provided on both main surfaces of the crystalline silicon substrate 10. However, the present invention is not limited to this, and it goes without saying that the present invention can be applied to a solar cell having a structure including an amorphous semiconductor layer, a transparent conductive layer, and a collector only on one of the main surfaces.

【0039】また、本発明に係る透明導電層は、ZnO
から構成することが好ましい。即ち、ZnOは膜中の酸
素量を微量に変化させるだけでそのシート抵抗を50〜
120kΩ/□以上にまで大幅に変化させることができ
る。従って、低抵抗領域と他の表面部分との間の抵抗の
差を大きくできるので、電界メッキを用いて集電極を形
成する際の選択性が向上し、より微細なパターンを有す
る集電極を形成することが可能となる。このため、太陽
電池の有効面積が増大し、光電変換効率の向上した太陽
電池が得られる。
The transparent conductive layer according to the present invention is made of ZnO.
It is preferred to be comprised from. That is, ZnO can change the sheet resistance by 50 to 50 by only slightly changing the amount of oxygen in the film.
It can be greatly changed to 120 kΩ / □ or more. Therefore, the difference in resistance between the low-resistance region and the other surface portion can be increased, so that the selectivity when forming the collector using electrolytic plating is improved, and a collector having a finer pattern is formed. It is possible to do. Therefore, the effective area of the solar cell is increased, and a solar cell with improved photoelectric conversion efficiency can be obtained.

【0040】[0040]

【発明の効果】以上説明した如く、本発明によれば、透
明導電層の集電極と接する表面部分に、他の表面部分よ
りも抵抗の小さい低抵抗領域を備えるので、抵抗の小さ
い電界メッキによる集電極を使用することができる。こ
の結果、量産性に優れ、光電変換特性の向上した太陽電
池を提供できる。
As described above, according to the present invention, the surface portion of the transparent conductive layer in contact with the collector electrode is provided with a low-resistance region having a lower resistance than the other surface portions. A collecting electrode can be used. As a result, a solar cell which is excellent in mass productivity and has improved photoelectric conversion characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る太陽電池の素子構造断
面図である。
FIG. 1 is a sectional view of an element structure of a solar cell according to an embodiment of the present invention.

【図2】本発明の他の実施形態に係る太陽電池の素子構
造断面図である。
FIG. 2 is a sectional view of an element structure of a solar cell according to another embodiment of the present invention.

【図3】本発明の別の実施形態に係る太陽電池の素子構
造断面図である。
FIG. 3 is a sectional view of an element structure of a solar cell according to another embodiment of the present invention.

【図4】従来の太陽電池の素子構造断面図である。FIG. 4 is a sectional view of an element structure of a conventional solar cell.

【符号の説明】[Explanation of symbols]

1…基板、2…裏面電極、3…アモルファス半導体層、
4…透明導電層、5…集電極、6…低抵抗領域
DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Back electrode, 3 ... Amorphous semiconductor layer,
4: transparent conductive layer, 5: collector electrode, 6: low resistance region

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 非晶質半導体層上に透明導電層及び集電
極を備える太陽電池であって、 前記透明導電層の前記集電極と接する表面部分に、他の
表面部分よりも抵抗の小さい低抵抗領域を有することを
特徴とする太陽電池。
1. A solar cell comprising a transparent conductive layer and a collector electrode on an amorphous semiconductor layer, wherein the surface portion of the transparent conductive layer in contact with the collector electrode has a lower resistance than other surface portions. A solar cell having a resistance region.
【請求項2】 前記他の表面部分が、透明導電層の内部
領域よりも高い抵抗を有することを特徴とする請求項1
記載の太陽電池。
2. The device according to claim 1, wherein the other surface portion has a higher resistance than an inner region of the transparent conductive layer.
The solar cell as described.
【請求項3】 非晶質半導体層上に透明導電層を形成す
る工程と、 前記透明導電層の集電極が形成される領域に対応する表
面部分を低抵抗化して低抵抗領域を形成する工程と、 前記低抵抗領域上に集電極を形成する工程と、 を備えることを特徴とする太陽電池の製造方法。
3. A step of forming a transparent conductive layer on the amorphous semiconductor layer, and a step of forming a low-resistance region by lowering a surface portion of the transparent conductive layer corresponding to a region where a collector electrode is formed. And a step of forming a collector electrode on the low resistance region. A method for manufacturing a solar cell, comprising:
【請求項4】 前記集電極の形成は、電界メッキ法によ
り行われることを特徴とする請求項3記載の太陽電池の
製造方法。
4. The method according to claim 3, wherein the collector electrode is formed by an electroplating method.
【請求項5】 非晶質半導体層上に透明導電層を形成す
る工程と、 前記透明導電層の集電極が形成される表面部分以外の他
の表面部分を高抵抗化して、前記表面部分を他の表面部
分よりも抵抗の小さい低抵抗領域とする工程と、 前記低抵抗領域上に集電極を形成する工程と、 を備えることを特徴とする太陽電池の製造方法。
5. A step of forming a transparent conductive layer on the amorphous semiconductor layer, and increasing the resistance of the other surface part of the transparent conductive layer other than the surface part on which the collector electrode is formed, and A method for manufacturing a solar cell, comprising: a step of forming a low-resistance region having lower resistance than other surface portions; and a step of forming a collector electrode on the low-resistance region.
【請求項6】 前記集電極の形成は、電界メッキ法によ
り行われることを特徴とする請求項5記載の太陽電池の
製造方法。
6. The method according to claim 5, wherein the collector electrode is formed by an electroplating method.
【請求項7】 非晶質半導体層上に、低抵抗の第一の透
明導電層を形成する工程と、 該第一の透明導電層上に、高抵抗の第二の透明導電層を
形成する工程と、 該第二の透明導電層の集電極が形成される領域に対応す
る表面部分を低抵抗化して低抵抗領域を形成する工程
と、 前記低抵抗領域上に集電極を形成する工程と、 を備えることを特徴とする太陽電池の製造方法。
7. A step of forming a low-resistance first transparent conductive layer on the amorphous semiconductor layer, and forming a high-resistance second transparent conductive layer on the first transparent conductive layer. A step of forming a low-resistance region by reducing the resistance of a surface portion of the second transparent conductive layer corresponding to the region where the collector is formed; and forming a collector on the low-resistance region. A method for manufacturing a solar cell, comprising:
【請求項8】 前記集電極の形成は、電界メッキ法によ
り行われることを特徴とする請求項7記載の太陽電池の
製造方法。
8. The method according to claim 7, wherein the collector electrode is formed by an electroplating method.
JP21948498A 1998-08-03 1998-08-03 Solar cell and manufacturing method thereof Expired - Lifetime JP3619681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21948498A JP3619681B2 (en) 1998-08-03 1998-08-03 Solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21948498A JP3619681B2 (en) 1998-08-03 1998-08-03 Solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000058888A true JP2000058888A (en) 2000-02-25
JP3619681B2 JP3619681B2 (en) 2005-02-09

Family

ID=16736173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21948498A Expired - Lifetime JP3619681B2 (en) 1998-08-03 1998-08-03 Solar cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3619681B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209734A (en) * 2004-01-20 2005-08-04 Nichia Chem Ind Ltd Electrode and semiconductor light-emitting device
JP2011077454A (en) * 2009-10-01 2011-04-14 Kaneka Corp Crystal silicon system solar cell and method of manufacturing the same
KR101181225B1 (en) 2011-01-06 2012-09-10 성균관대학교산학협력단 Fabricating method of solar cell
JP2012525008A (en) * 2009-04-22 2012-10-18 テトラサン インコーポレイテッド Local metal contacts by local laser conversion of functional films in solar cells
WO2013094233A1 (en) * 2011-12-21 2013-06-27 三菱電機株式会社 Solar cell, method for producing same, and solar cell module
WO2013141232A1 (en) * 2012-03-23 2013-09-26 三洋電機株式会社 Solar cell and method for manufacturing same
JP2013214672A (en) * 2012-04-04 2013-10-17 Sharp Corp Photoelectric conversion element
JP2014053544A (en) * 2012-09-10 2014-03-20 Mitsubishi Electric Corp Photoelectric conversion element and manufacturing method of the same
WO2014189058A1 (en) * 2013-05-21 2014-11-27 株式会社カネカ Solar cell, solar cell module, method for manufacturing solar cell, and method for manufacturing solar cell module
WO2014192739A1 (en) * 2013-05-29 2014-12-04 株式会社カネカ Solar cell, manufacturing method therefor, solar-cell module, and manufacturing method therefor
JPWO2013073211A1 (en) * 2011-11-18 2015-04-02 三洋電機株式会社 Solar cell and method for manufacturing solar cell
WO2015098873A1 (en) 2013-12-24 2015-07-02 株式会社マテリアル・コンセプト Solar cell and production method therefor
JP2015159198A (en) * 2014-02-24 2015-09-03 三菱電機株式会社 Photovoltaic element, manufacturing method therefor and manufacturing apparatus therefor
CN105684165A (en) * 2013-10-30 2016-06-15 株式会社钟化 Solar cell and production method therefor, and solar cell module
WO2019054239A1 (en) * 2017-09-15 2019-03-21 ソーラーフロンティア株式会社 Photoelectric conversion module and method for manufacturing photoelectric conversion module

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209734A (en) * 2004-01-20 2005-08-04 Nichia Chem Ind Ltd Electrode and semiconductor light-emitting device
JP2012525008A (en) * 2009-04-22 2012-10-18 テトラサン インコーポレイテッド Local metal contacts by local laser conversion of functional films in solar cells
JP2011077454A (en) * 2009-10-01 2011-04-14 Kaneka Corp Crystal silicon system solar cell and method of manufacturing the same
KR101181225B1 (en) 2011-01-06 2012-09-10 성균관대학교산학협력단 Fabricating method of solar cell
JPWO2013073211A1 (en) * 2011-11-18 2015-04-02 三洋電機株式会社 Solar cell and method for manufacturing solar cell
DE112012004806B4 (en) 2011-11-18 2019-02-28 Panasonic Intellectual Property Management Co., Ltd. Solar cell and manufacturing process for solar cell
WO2013094233A1 (en) * 2011-12-21 2013-06-27 三菱電機株式会社 Solar cell, method for producing same, and solar cell module
US9123861B2 (en) 2011-12-21 2015-09-01 Mitsubishi Electric Corporation Solar battery, manufacturing method thereof, and solar battery module
JPWO2013094233A1 (en) * 2011-12-21 2015-04-27 三菱電機株式会社 Manufacturing method of solar cell
JPWO2013141232A1 (en) * 2012-03-23 2015-08-03 パナソニックIpマネジメント株式会社 Solar cell and manufacturing method thereof
WO2013141232A1 (en) * 2012-03-23 2013-09-26 三洋電機株式会社 Solar cell and method for manufacturing same
US20150000737A1 (en) * 2012-03-23 2015-01-01 Sanyo Electric Co., Ltd. Solar cell and method of manufacturing solar cell
JP2013214672A (en) * 2012-04-04 2013-10-17 Sharp Corp Photoelectric conversion element
JP2014053544A (en) * 2012-09-10 2014-03-20 Mitsubishi Electric Corp Photoelectric conversion element and manufacturing method of the same
WO2014189058A1 (en) * 2013-05-21 2014-11-27 株式会社カネカ Solar cell, solar cell module, method for manufacturing solar cell, and method for manufacturing solar cell module
US9761752B2 (en) 2013-05-21 2017-09-12 Kaneka Corporation Solar cell, solar cell module, method for manufacturing solar cell, and method for manufacturing solar cell module
US9484485B2 (en) 2013-05-29 2016-11-01 Kaneka Corporation Solar cell, manufacturing method therefor, solar-cell module, and manufacturing method therefor
WO2014192739A1 (en) * 2013-05-29 2014-12-04 株式会社カネカ Solar cell, manufacturing method therefor, solar-cell module, and manufacturing method therefor
JP5759639B2 (en) * 2013-05-29 2015-08-05 株式会社カネカ SOLAR CELL AND ITS MANUFACTURING METHOD, SOLAR CELL MODULE AND ITS MANUFACTURING METHOD
CN105684165A (en) * 2013-10-30 2016-06-15 株式会社钟化 Solar cell and production method therefor, and solar cell module
WO2015098873A1 (en) 2013-12-24 2015-07-02 株式会社マテリアル・コンセプト Solar cell and production method therefor
US10529875B2 (en) 2013-12-24 2020-01-07 Material Concept, Inc. Solar cell and production method therefor
JP2015159198A (en) * 2014-02-24 2015-09-03 三菱電機株式会社 Photovoltaic element, manufacturing method therefor and manufacturing apparatus therefor
WO2019054239A1 (en) * 2017-09-15 2019-03-21 ソーラーフロンティア株式会社 Photoelectric conversion module and method for manufacturing photoelectric conversion module
CN111247643A (en) * 2017-09-15 2020-06-05 出光兴产株式会社 Photoelectric conversion module and method for manufacturing photoelectric conversion module
JPWO2019054239A1 (en) * 2017-09-15 2020-10-22 出光興産株式会社 How to manufacture photoelectric conversion module and photoelectric conversion module
JP7127042B2 (en) 2017-09-15 2022-08-29 出光興産株式会社 PHOTOELECTRIC CONVERSION MODULE AND METHOD OF MANUFACTURING PHOTOELECTRIC CONVERSION MODULE
CN111247643B (en) * 2017-09-15 2023-09-22 出光兴产株式会社 Photoelectric conversion module and method for manufacturing photoelectric conversion module

Also Published As

Publication number Publication date
JP3619681B2 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
EP0186351B1 (en) Method of making current collector grid and materials therefor
JP5624623B2 (en) Devices including electrical contacts and manufacturing processes thereof
JP2939075B2 (en) Solar cell module
WO2009116580A1 (en) Solar cell and method for manufacturing the same
JP3619681B2 (en) Solar cell and manufacturing method thereof
KR100334595B1 (en) Manufacturing method of photovoltaic device
CN102386274B (en) The method forming the anisotropic conductive layer as back contacts in film photovoltaic device
JP2000058885A (en) Solar battery and manufacture thereof
JPH1056190A (en) Photovoltaic element and its manufacture
JPWO2013145008A1 (en) Photovoltaic element, manufacturing method thereof, and solar cell module
US20120132268A1 (en) Electrode, photovoltaic device, and method of making
KR101597532B1 (en) The Manufacturing Method of Back Contact Solar Cells
JP2010129872A (en) Solar battery element
US5268039A (en) Photovoltaic device including shunt preventing layer and method for the deposition thereof
JP2010147324A (en) Solar cell element and method of manufacturing solar cell element
JP2014103259A (en) Solar cell, solar cell module, and method of manufacturing the same
US4956023A (en) Integrated solar cell device
JPH0563218A (en) Solar battery and manufacture thereof
US4064522A (en) High efficiency selenium heterojunction solar cells
US4595791A (en) Thin-film photovoltaic devices incorporating current collector grid and method of making
CN115148838B (en) Solar cell, production method and photovoltaic module
JP2000150929A (en) Photovoltaic element and manufacture thereof
JP2786600B2 (en) Thin film solar cell and method for manufacturing the same
JPH0658971B2 (en) Photovoltaic device manufacturing method
CN102810593B (en) The multi-layer N-type stack of film photovoltaic device and manufacture method thereof based on cadmium telluride

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

EXPY Cancellation because of completion of term