JP2000058885A - Solar battery and manufacture thereof - Google Patents

Solar battery and manufacture thereof

Info

Publication number
JP2000058885A
JP2000058885A JP10219485A JP21948598A JP2000058885A JP 2000058885 A JP2000058885 A JP 2000058885A JP 10219485 A JP10219485 A JP 10219485A JP 21948598 A JP21948598 A JP 21948598A JP 2000058885 A JP2000058885 A JP 2000058885A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive layer
insulating layer
solar cell
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10219485A
Other languages
Japanese (ja)
Inventor
Teiji Tsuge
定司 津毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10219485A priority Critical patent/JP2000058885A/en
Publication of JP2000058885A publication Critical patent/JP2000058885A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To enhance mass productivity and reliability of a solar battery and also the photoelectric conversion characteristics, by a method wherein collector electrode are buried in the aperture parts of transmissive insulating layer so as to coat the surface of a transparent conductive layer. SOLUTION: This solar battery is provided with a transmissive insulating layer 6 having aperture parts on a transparent conductive layer 4, so as to bury collector electrodes 5 in aperture parts for coating a transparent conductive layer with the collector electrodes 5. This transmissive insulating layer 6 having insulating capacity to fill the effective role of a mask in the field plating process also preventing alkaline component from eluting out of the transparent conductive layer 4 in the non-electrolyte plating process, thereby suppressing the deposition of a metal on the transmissive insulating layer 6 to fill the effective role of a mask in the non-electrolyte plating process. As for the material for the transmissive insulating layer 6, e.g. such materials as SiO2, SiN, TiO2, Al2O3, ZnO, etc., having the same refractive index as that of glass may be applicable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は特性の良好な太陽電
池及びその製造方法に係わり、特に表面側集電極の構造
及び製造方法に関する技術である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell having good characteristics and a method of manufacturing the same, and more particularly to a structure and a method of manufacturing a surface side collector.

【0002】[0002]

【従来の技術】太陽光を直接電気エネルギーに変換する
ことのできる太陽電池は、石油代替エネルギー源として
期待されている。太陽電池用の種類としては単結晶シリ
コン太陽電池、多結晶シリコ太陽電池、アモルファスシ
リコン太陽電池などがあげられるが、単結晶シリコンの
場合製造方法として1000℃以上の高温プロセスを使
用するため生産コストが高い。また単結晶シリコンや多
結晶シリコンは間接遷移型であるため光吸収係数が小さ
く、入射太陽光を吸収するためには少なくとも数100
μm以上の膜厚が必要となり、このため材料コストが高
くなる。これに対し、アモルファスシリコンに代表され
るアモルファス半導体材料は200℃程度の低温プロセ
スにより製造可能であり、また直接遷移型であることか
ら必要膜厚も数1000Åと薄膜で良く、このため低コ
ストの太陽電池材料として期待されている。
2. Description of the Related Art A solar cell capable of directly converting sunlight into electric energy is expected as an alternative energy source for petroleum. The types of solar cells include single-crystal silicon solar cells, polycrystalline silicon solar cells, amorphous silicon solar cells, and the like. In the case of single-crystal silicon, the production cost is high because a high-temperature process of 1000 ° C. or higher is used. high. In addition, single crystal silicon and polycrystalline silicon are indirect transition types and therefore have a small light absorption coefficient.
A film thickness of at least μm is required, which increases the material cost. On the other hand, an amorphous semiconductor material typified by amorphous silicon can be manufactured by a low-temperature process of about 200 ° C., and since it is a direct transition type, the required film thickness may be as thin as several thousand Å, and therefore, low cost is achieved. It is expected as a solar cell material.

【0003】斯かるアモルファス半導体材料を用いたア
モルファス太陽電池の構造として、図3の断面素子構造
図に示す如く、プラスチック、或いは表面が絶縁コート
されたステンレス板等の絶縁性表面を有する基板1上
に、Ag、Al等の金属からなる裏面電極2、内部にp
in接合を有するアモルファス半導体層3、ITOから
なる透明導電層4、及びAgからなる櫛型状の集電極5
を有する構造が知られている。
As a structure of an amorphous solar cell using such an amorphous semiconductor material, as shown in a sectional element structure diagram of FIG. Back electrode 2 made of a metal such as Ag, Al, etc.
Amorphous semiconductor layer 3 having in-junction, transparent conductive layer 4 made of ITO, and comb-shaped collector electrode 5 made of Ag
Are known.

【0004】斯かる構造のアモルファス太陽電池におい
ては高効率化のため、Agや銅などの比抵抗の小さい材
料を用いることにより無効部分となる集電極5の面積を
小さくすることが行われている。例えば、銀の比抵抗は
1.62×10-6Ωcmであり、銅の比抵抗は1.72
×10-6Ωcmであるが、これに対しアルミニウムでは
2.75×10-6Ωcm、亜鉛では5.9×10-6Ωc
mである。
In the amorphous solar cell having such a structure, in order to increase the efficiency, a material having a small specific resistance such as Ag or copper is used to reduce the area of the collecting electrode 5 which is an ineffective portion. . For example, the specific resistance of silver is 1.62 × 10 −6 Ωcm, and the specific resistance of copper is 1.72.
× 10 −6 Ωcm, whereas aluminum is 2.75 × 10 −6 Ωcm and zinc is 5.9 × 10 −6 Ωc.
m.

【0005】これらの集電極を形成する方法として、従
来結晶系の太陽電池の場合には蒸着法、メッキ法、印刷
法などの方法が用いられる。このうち蒸着法では良質の
金属が堆積でき、かつ半導体とのオーミックコンタクト
も良好なものができるが、堆積速度が遅いことと真空プ
ロセスを用いるためにスループットが低いこと、特定の
パターンを形成するためにはマスキングが必要である等
の問題が有る。
[0005] As a method of forming these collector electrodes, in the case of a conventional crystalline solar cell, a method such as a vapor deposition method, a plating method, and a printing method is used. Of these, the vapor deposition method can deposit good-quality metal and make good ohmic contact with the semiconductor, but the deposition rate is slow, the throughput is low due to the use of a vacuum process, and the formation of a specific pattern Has problems such as the necessity of masking.

【0006】また、メッキ法の場合にはNiの無電界メ
ッキが一般的に行われているが、剥離し易いこととマス
クが必要であるという問題が有る。
In the case of the plating method, electroless plating of Ni is generally performed, but there are problems that it is easy to peel off and that a mask is required.

【0007】印刷法は、最も自動化し易く且つ量産性が
高いという特徴を有しており、Agペーストをスクリー
ン印刷して高温でシンターしてコンタクトする方法が行
われている。また、抵抗を下げるために更に印刷した電
極の上にメッキやはんだのコートを行うことも検討され
ている。
[0007] The printing method has the feature that it is the easiest to automate and has high mass productivity, and a method is used in which an Ag paste is screen-printed and sintered at a high temperature to make contact. Further, in order to reduce the resistance, plating and solder coating on the printed electrodes are also being studied.

【0008】[0008]

【発明が解決しようとする課題】アモルファス太陽電池
の場合には上述したいずれの方法も検討されているが、
実用的には印刷法が量産性に優れ実用化されている。然
し乍ら、アモルファス太陽電池の場合、高温にすると
p、n層中の導電型不純物の拡散等の問題が生じるため
結晶系太陽電池のようにシンターすることができず、抵
抗の高い電極となってしまう。即ち、銀の導電性ペース
トは高分子の樹脂をバインダーとして含むため、比抵抗
は約4×10-5Ωcmであり、純粋な銀よりも1桁抵抗
が高い。従って集電極の面積を変えずに抵抗を下げるた
めには電極の厚みを厚くすることが望ましい。然し乍
ら、厚みを厚くしようとすると導電性ペーストの粘度を
大きくする必要があり、スクリーンが目詰まりを起こし
たりするため限界がある。この為スクリーン印刷によっ
て実用的に作成される電極の厚みとしては10μmから
20μmである。従ってスクリーン印刷により作成され
る集電極は抵抗を下げるために幅広にならざるを得ず、
このため有効面積の損失が大きくなっていた。
In the case of an amorphous solar cell, any of the above methods has been studied.
Practically, the printing method is excellent in mass productivity and has been put to practical use. However, in the case of an amorphous solar cell, when the temperature is increased, problems such as diffusion of conductive impurities in the p and n layers occur, so that sintering cannot be performed as in a crystalline solar cell, resulting in an electrode having high resistance. . That is, since the silver conductive paste contains a polymer resin as a binder, the specific resistance is about 4 × 10 −5 Ωcm, which is one digit higher than that of pure silver. Therefore, in order to reduce the resistance without changing the area of the collecting electrode, it is desirable to increase the thickness of the electrode. However, to increase the thickness, it is necessary to increase the viscosity of the conductive paste, and there is a limit because the screen may be clogged. For this reason, the thickness of the electrode practically produced by screen printing is 10 μm to 20 μm. Therefore, the collector electrode created by screen printing must be wide to lower the resistance,
For this reason, the loss of the effective area was large.

【0009】また、メッキ法も結晶系と同様に用いるこ
とが可能であり、例えばメッキ法による太陽電池の透明
電極上への電極形成方法が開示されている(特開昭60
−66426号公報)。
Also, a plating method can be used in the same manner as the crystal system. For example, a method of forming an electrode on a transparent electrode of a solar cell by a plating method has been disclosed (Japanese Patent Application Laid-Open No. 60-1985).
-66426).

【0010】然し乍ら、この方法においては集電極以外
の部分にメッキされない様にするためにレジストのパタ
ーニング膜を設け、集電極を作成した後にレジスト膜を
除去する必要があり、製造工程が繁雑となる。また、メ
ッキにより形成された電極は厚膜であるために、剥離し
易いという問題がある。
However, in this method, it is necessary to provide a resist patterning film in order to prevent plating on portions other than the collecting electrode, and to remove the resist film after forming the collecting electrode, which complicates the manufacturing process. . In addition, since the electrode formed by plating is a thick film, there is a problem that the electrode is easily peeled.

【0011】本発明は、アモルファス半導体を用いた太
陽電池における上述した問題を解決して、特性の良好な
太陽電池を提供することを目的とするものである。
An object of the present invention is to solve the above-mentioned problems in a solar cell using an amorphous semiconductor and to provide a solar cell having good characteristics.

【0012】[0012]

【課題を解決するための手段】斯かる課題を解決するた
めに、本発明太陽電池は、非晶質半導体層上に透明導電
層及び集電極を備える太陽電池であって、前記透明導電
層上に開口部を有する透光性絶縁層が設けられ、前記集
電極は、前記透光性絶縁層の開口部を埋設して前記透明
導電層の表面上に被着されていることを特徴とし、前記
透光性絶縁層が、ガラスと略等しい屈折率を有すること
を特徴とするを特徴とする。
Means for Solving the Problems In order to solve such problems, a solar cell according to the present invention is a solar cell comprising a transparent conductive layer and a collector on an amorphous semiconductor layer, wherein A light-transmitting insulating layer having an opening is provided, and the collector is embedded on the surface of the transparent conductive layer by burying the opening of the light-transmitting insulating layer, The translucent insulating layer has a refractive index substantially equal to that of glass.

【0013】また、本発明製造方法は、非晶質半導体層
上に透明導電層を形成する工程と、前記透明導電層上
に、該透明導電層の表面の一部を露出させて透光性絶縁
層を形成する工程と、前記透光性絶縁層から露出する前
記透明導電層の表面上に集電極を形成する工程と、を備
えることを特徴とし、前記集電極を形成する工程が、電
気メッキ法により行われることを特徴とする。
[0013] Further, the manufacturing method of the present invention comprises a step of forming a transparent conductive layer on the amorphous semiconductor layer, and a step of exposing a part of the surface of the transparent conductive layer on the transparent conductive layer so as to transmit light. Forming an insulating layer, and forming a collector electrode on the surface of the transparent conductive layer exposed from the light-transmitting insulating layer, wherein the step of forming the collector electrode comprises: It is characterized by being performed by a plating method.

【0014】さらには、前記集電極を形成する工程が、
前記透明電極層の表面上に無電界メッキ法により第一の
集電極を形成する工程と、前記第一の集電極上に電界メ
ッキ法により第二の集電極を形成する工程と、からなる
ことを特徴とする。
Further, the step of forming the collector electrode includes the following steps:
Forming a first collector by electroless plating on the surface of the transparent electrode layer, and forming a second collector by electroplating on the first collector. It is characterized by.

【0015】[0015]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて説明する。
Embodiments of the present invention will be described below.

【0016】図1は本実施形態に係る太陽電池の構造を
示す素子構造断面図であり、同図において図3と同様の
機能を呈する部分には同一の符号を付している。
FIG. 1 is a sectional view of the element structure showing the structure of the solar cell according to the present embodiment. In FIG. 1, parts having the same functions as in FIG. 3 are denoted by the same reference numerals.

【0017】本実施形態の太陽電池が図3に示した従来
の太陽電池と異なる点は、透明導電層4上に開口部を有
する透光性絶縁層6を有しており、そして集電極5が透
光性絶縁層6の開口部を埋設して透明導電層4上に被着
されている点である。
The solar cell of this embodiment is different from the conventional solar cell shown in FIG. 3 in that it has a light-transmitting insulating layer 6 having an opening on a transparent conductive layer 4 and a collector electrode 5. Is that the light-transmitting insulating layer 6 is embedded on the transparent conductive layer 4 by burying the opening.

【0018】この透光性絶縁層6は、絶縁性を有するた
めに電界メッキにおけるマスクとして有効に作用し、且
つ無電界メッキにおいては透明導電層4からのアルカリ
成分の溶出を防止することで透光性絶縁層6上への金属
の析出を抑制することから、無電界メッキにおいてもマ
スクとして有効に作用する。
The translucent insulating layer 6 has an insulating property and thus effectively acts as a mask in electroplating. In electroless plating, the translucent insulating layer 6 prevents the elution of the alkali component from the transparent conductive layer 4 to prevent translucency. Since the deposition of the metal on the optical insulating layer 6 is suppressed, it effectively functions as a mask even in electroless plating.

【0019】また、透光性絶縁層6は透光性を有するた
めに光の吸収ロスが少なく、このため従来のレジストの
ように集電極をメッキ後除去する必要がなく、製造工程
の簡略化が可能である。
Further, since the light-transmitting insulating layer 6 has a light-transmitting property, loss of light absorption is small, and therefore, unlike the conventional resist, it is not necessary to remove the collector electrode after plating, thereby simplifying the manufacturing process. Is possible.

【0020】さらに、集電極5は透明導電層4の表面及
び透光性絶縁層6の側面に接触し、従来よりも接触面積
が増大するため、密着性が向上する。
Furthermore, the collector electrode 5 comes into contact with the surface of the transparent conductive layer 4 and the side surface of the translucent insulating layer 6, and the contact area is larger than before, so that the adhesion is improved.

【0021】斯かる透光性絶縁層6の材料としては、例
えばSiO2,SiN,TiO2,Al23,ZnO等の
材料を用いることができる。
As a material of the light-transmitting insulating layer 6, for example, a material such as SiO 2 , SiN, TiO 2 , Al 2 O 3 , ZnO or the like can be used.

【0022】さらに、太陽電池を発電用に用いるにあた
っては、通常太陽電池を光入射側の強化ガラスと裏面フ
ィルムとの間にEVAのような透光性封止材を用いて封
止することとなるが、上記透光性絶縁層6の屈折率を上
記強化ガラス及びEVAの屈折率と略等しい1.5程度
とすることで、透光性絶縁層6による光のロスを無視で
きる程度にまで減少できる。従って、透光性絶縁層6は
ガラスと略等しい屈折率を有する材料、例えばSiO2
から構成することが好ましい。
Further, when the solar cell is used for power generation, the solar cell is usually sealed with a translucent sealing material such as EVA between the tempered glass on the light incident side and the back film. However, by setting the refractive index of the translucent insulating layer 6 to about 1.5, which is substantially the same as the refractive index of the tempered glass and EVA, the loss of light due to the translucent insulating layer 6 can be ignored. Can be reduced. Therefore, the light-transmitting insulating layer 6 is made of a material having a refractive index substantially equal to that of glass, for example, SiO 2.
It is preferred to be comprised from.

【0023】以上のような構成の本発明太陽電池は、以
下のようにして製造することができる。
The solar cell of the present invention having the above structure can be manufactured as follows.

【0024】まず、絶縁コートが施されたステンレス基
板1の上に、スパッタ法或いは蒸着法等の方法によりA
g、Al等の高反射性金属からなる裏面電極2を形成す
る。次いで、この裏面電極2上にプラズマCVD法を用
いて内部にpin接合を有するアモルファス半導体層3
を形成する。そして、アモルファス半導体層3上にIT
Oからなる透明電極層4をスパッタ法により形成した
後、透明導電層4の全面に、その表面の一部を露出させ
てSiO2からなる透光性絶縁層6をスクリーン印刷法
により形成する。尚、透光性絶縁層6の形成はスパッタ
法或いは蒸着法を用いて行っても良いが、この場合には
マスクが必要となる。最後に、透光性絶縁層6から露出
する透明導電層4の表面上に電気メッキ法により集電極
5を形成する。
First, A is formed on the stainless steel substrate 1 on which the insulating coating is applied by sputtering or vapor deposition.
The back electrode 2 made of a highly reflective metal such as g or Al is formed. Next, an amorphous semiconductor layer 3 having a pin junction inside is formed on the back surface electrode 2 by using a plasma CVD method.
To form Then, the IT is formed on the amorphous semiconductor layer 3.
After the transparent electrode layer 4 made of O is formed by a sputtering method, a light-transmitting insulating layer 6 made of SiO 2 is formed on the entire surface of the transparent conductive layer 4 by exposing a part of the surface by a screen printing method. The light-transmitting insulating layer 6 may be formed by a sputtering method or an evaporation method, but in this case, a mask is required. Finally, the collector electrode 5 is formed on the surface of the transparent conductive layer 4 exposed from the translucent insulating layer 6 by electroplating.

【0025】集電極5の形成にあたっては無電界メッキ
法、電界メッキ法のいずれを用いて行っても良いが、無
電界メッキ法を用いる方が微細構造上均一にメッキで
き、また下地との密着性に優れるので好ましい。
The formation of the collector electrode 5 may be carried out by using either an electroless plating method or an electrolytic plating method. However, the use of the electroless plating method enables uniform plating on a fine structure and adhesion to a base. It is preferable because it has excellent properties.

【0026】無電界メッキにより集電極を形成するにあ
たっては、まず透明導電層4の表面に脱脂処理及び金属
との結びつきを良くするためのキレート活性剤処理を施
した後にメッキ金属成長の核となる塩化パラジウムと塩
化第1錫とを主成分とする触媒液に浸漬し、さらに酸性
液を使用した活性化処理の後に次亜リン酸ソーダを含み
硫酸ニッケルなどを主成分とするメッキ液に所定時間浸
漬することでNi−P金属からなる集電極5を形成する
ことができる。
In forming the collector electrode by electroless plating, first, the surface of the transparent conductive layer 4 is subjected to a degreasing treatment and a chelating activator treatment for improving the connection with a metal, and then becomes a nucleus for plating metal growth. After being immersed in a catalyst solution containing palladium chloride and stannous chloride as main components, and then subjected to an activation treatment using an acidic solution, the plating solution containing sodium hypophosphite and nickel sulfate etc. as main components for a predetermined time period By dipping, the collector electrode 5 made of Ni-P metal can be formed.

【0027】尚、無電界メッキでは金属の析出速度が遅
く、早いものでも0.1μm/min程度に過ぎない。
そこで、無電界メッキにより第一の集電極形成後、無電
界メッキよりも高速で金属を析出できる電界メッキによ
り第二の集電極を形成するようにすれば、透明導電層と
の密着性も良く低抵抗な集電極を短時間で得ることがで
きる。例えば硫酸ニッケル、塩化ニッケル及びほう酸の
混合液を用いて電界メッキを行うことにより、Ni−P
金属からなる第一の集電極上にNiからなる第二の集電
極を形成することができる。
In the case of electroless plating, the rate of metal deposition is low, and even at a high rate, it is only about 0.1 μm / min.
Therefore, after forming the first collector electrode by electroless plating, if the second collector electrode is formed by electroplating which can deposit metal at a higher speed than electroless plating, the adhesion with the transparent conductive layer is also good. A low-resistance collector electrode can be obtained in a short time. For example, by performing electroplating using a mixed solution of nickel sulfate, nickel chloride and boric acid, Ni-P
A second collector electrode made of Ni can be formed on the first collector electrode made of metal.

【0028】無電界メッキにより形成される金属材料と
しては上述したNi−Pの他にNi−B或いはCuがあ
るが、密着性や膜応力の観点からNi−Pが優れてい
る。また、電界メッキによればNiの他にCu,Cr,
Zn,Sn,Agなどを形成することができる。 (実施例)本発明の実施例として、以下の工程により図
1に示す構造の太陽電池を製造した。
As a metal material formed by electroless plating, there is Ni-B or Cu in addition to Ni-P described above, but Ni-P is excellent from the viewpoint of adhesion and film stress. Further, according to the electrolytic plating, Cu, Cr,
Zn, Sn, Ag, or the like can be formed. (Example) As an example of the present invention, a solar cell having the structure shown in FIG. 1 was manufactured by the following steps.

【0029】まず、表面がSiO2で絶縁コートされた
ステンレス基板1の上に、スパッタ法を用いて厚さ約1
μmのAgからなる裏面電極2を形成し、裏面電極2上
にプラズマCVD法を用いて厚さ約200Åのn型a−
Si層、厚さ約3000Åのi型a−Si層及び厚さ約
100Åのp型a−SiC層を順次積層し、アモルファ
ス半導体層3を形成した。
First, on a stainless steel substrate 1 whose surface is insulated with SiO 2 , a thickness of about 1
A back electrode 2 made of Ag having a thickness of about 200 μm is formed, and an n-type a-
An amorphous semiconductor layer 3 was formed by sequentially laminating a Si layer, an i-type a-Si layer having a thickness of about 3000 ° and a p-type a-SiC layer having a thickness of about 100 °.

【0030】次いで、アモルファス半導体層3上にスパ
ッタ法を用いてITOからなる厚さ約700Åの透明導
電層4を形成し、この透明導電層4上に液体状の酸化珪
素剤をスクリーン印刷法により塗布し、200℃程度の
温度で30〜90分間焼成、硬化させ、集電極を形成す
る部分に対応する透明導電層4の表面を露出させた状態
で透光性絶縁層5を形成した。
Next, a transparent conductive layer 4 made of ITO and having a thickness of about 700 ° is formed on the amorphous semiconductor layer 3 by a sputtering method, and a liquid silicon oxide agent is coated on the transparent conductive layer 4 by a screen printing method. It was applied, baked at a temperature of about 200 ° C. for 30 to 90 minutes, and cured to form a light-transmitting insulating layer 5 in a state where the surface of the transparent conductive layer 4 corresponding to the portion where the collector electrode was to be formed was exposed.

【0031】さらに、透光性絶縁層5表面を脱脂洗浄
し、クエン酸アンモニウムで処理した後に、塩化パラジ
ウムと塩化第1錫を主成分とする触媒液に浸漬し、酸性
液を使用した活性化処理の後、次亜リン酸ソーダを含む
温度40℃程度の硫酸ニッケル中に7分間浸漬すること
で、透光性絶縁層5から露出した透明導電層4の表面
に、Ni−P金属からなる厚さ200nm程度の第一集
電極を形成した。
Further, the surface of the translucent insulating layer 5 is degreased and washed, treated with ammonium citrate, immersed in a catalyst solution containing palladium chloride and stannous chloride as main components, and activated using an acid solution. After the treatment, the surface of the transparent conductive layer 4 exposed from the light-transmitting insulating layer 5 is made of Ni-P metal by immersing in sodium sulfate containing sodium hypophosphite at a temperature of about 40 ° C. for 7 minutes. A first collecting electrode having a thickness of about 200 nm was formed.

【0032】そして、引き続き硫酸ニッケル、塩化ニッ
ケル及びほう酸の混合溶液を使用してメッキ浴中で電界
メッキを行い、15分で厚さ10μm程度のNiからな
る第二集電極を形成した。
Subsequently, electrolytic plating was carried out in a plating bath using a mixed solution of nickel sulfate, nickel chloride and boric acid to form a second collector electrode made of Ni having a thickness of about 10 μm in 15 minutes.

【0033】以上のようにして製造した本発明太陽電池
と、集電極をスクリーン印刷法により形成した従来の太
陽電池の光電変換特性を測定した。この結果を表1に示
す。
The photovoltaic conversion characteristics of the solar cell of the present invention manufactured as described above and a conventional solar cell in which a collector was formed by a screen printing method were measured. Table 1 shows the results.

【0034】[0034]

【表1】 [Table 1]

【0035】同表から明らかに、本発明太陽電池の方が
集電極の抵抗値が減少したためにF.F.(曲線因子)
が向上し、高い光電変換効率が得られた。
As is clear from the table, the solar cell of the present invention has a lower F.C. F. (Fill factor)
Was improved, and high photoelectric conversion efficiency was obtained.

【0036】以上の如く、本発明によれば光電変換特性
が良好で、量産性の良い太陽電池を提供できる。さら
に、集電極の剥離も低減できるため、信頼性の高い太陽
電池を提供できる。
As described above, according to the present invention, a solar cell having good photoelectric conversion characteristics and good mass productivity can be provided. Furthermore, since the separation of the collector electrode can be reduced, a highly reliable solar cell can be provided.

【0037】尚、以上に実施の形態においてはアモルフ
ァス太陽電池について説明したが、本発明はこれに限ら
ず非晶質半導体層上に形成された透明導電層及び櫛形状
の集電極を有する太陽電池であれば如何なる構造の太陽
電池に対しても適用することができる。この例として
は、例えば、n型(p型)の結晶シリコン或いは多結晶
シリコン基板とp型(n型)の非晶質半導体層とからな
る半導体接合を備え、p型(n型)の非晶質半導体層上
に透明導電層を介して集電極を備えた構造の太陽電池が
ある。
Although the embodiments have been described with reference to an amorphous solar cell, the present invention is not limited to this, and a solar cell having a transparent conductive layer formed on an amorphous semiconductor layer and a comb-shaped collector electrode is not limited thereto. Then, the present invention can be applied to a solar cell having any structure. As an example of this, for example, a semiconductor junction including an n-type (p-type) crystalline silicon or polycrystalline silicon substrate and a p-type (n-type) amorphous semiconductor layer is provided, and a p-type (n-type) There is a solar cell having a structure in which a collector electrode is provided on a crystalline semiconductor layer via a transparent conductive layer.

【0038】図2は斯かる本発明の他の実施形態に係る
太陽電池の素子構造断面図であり、n型の結晶系シリコ
ン基板10の一主面上に厚さ100Å程度のi型の非晶
質シリコン層11を介してp型の非晶質シリコン層12
が形成されており、このp型の非晶質シリコン層12上
に透明導電層13及び集電極15が積層されている。
FIG. 2 is a sectional view of an element structure of a solar cell according to another embodiment of the present invention, in which an i-type non-crystalline silicon substrate having a thickness of about 100 ° is formed on one main surface of an n-type crystalline silicon substrate 10. A p-type amorphous silicon layer 12 via a crystalline silicon layer 11
Is formed, and a transparent conductive layer 13 and a collecting electrode 15 are laminated on the p-type amorphous silicon layer 12.

【0039】また、結晶系シリコン基板10の他の主面
上には厚さ100Å程度のi型の非晶質シリコン層11
を介してn型の非晶質シリコン層16が形成されてお
り、このn型の非晶質シリコン層16上に透明導電層1
3及び集電極15が積層されている。
On the other main surface of the crystalline silicon substrate 10, an i-type amorphous silicon layer 11 having a thickness of about 100 ° is formed.
An n-type amorphous silicon layer 16 is formed through the transparent conductive layer 1 on the n-type amorphous silicon layer 16.
3 and the collecting electrode 15 are stacked.

【0040】斯かる構成の太陽電池においても、透明電
極層13上において集電極15を囲むように設けられた
透光性絶縁層15を備えることで、同様の効果を奏す
る。
In the solar cell having such a configuration, the same effect can be obtained by providing the translucent insulating layer 15 provided on the transparent electrode layer 13 so as to surround the collector electrode 15.

【0041】尚、本実施の形態にあっては結晶系シリコ
ン基板10の両主面上に非晶質半導体層12,16、透
明導電層13及び集電極15を備えた構造となっている
が、これに限らずどちらか一方の主面上にのみ非晶質半
導体層、透明導電層及び集電極を備えた構造の太陽電池
についても本発明を適用できるのは言うまでもない。
The present embodiment has a structure in which the amorphous semiconductor layers 12 and 16, the transparent conductive layer 13 and the collector electrode 15 are provided on both main surfaces of the crystalline silicon substrate 10. However, the present invention is not limited to this, and it goes without saying that the present invention can be applied to a solar cell having a structure including an amorphous semiconductor layer, a transparent conductive layer, and a collector only on one of the main surfaces.

【0042】[0042]

【発明の効果】以上説明した如く、本発明によれば、透
明導電層上に設けられた開口部を有する透光性絶縁層を
備えており、集電極は透光性絶縁層の開口部を埋設して
透明導電層の表面上に被着されているので電気メッキに
より形成された集電極の密着性を向上でき、また透光性
絶縁層を除去する必要も無いので量産性に優れている。
この結果、量産性及び信頼性に優れ、且つ光電変換特性
の向上した太陽電池を提供できる。
As described above, according to the present invention, a light-transmitting insulating layer having an opening provided on a transparent conductive layer is provided, and the collector electrode has an opening in the light-transmitting insulating layer. Since it is buried and attached on the surface of the transparent conductive layer, the adhesion of the collector electrode formed by electroplating can be improved, and there is no need to remove the light-transmitting insulating layer, which is excellent in mass productivity. .
As a result, a solar cell having excellent mass productivity and reliability and having improved photoelectric conversion characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る太陽電池の素子構造断
面図である。
FIG. 1 is a sectional view of an element structure of a solar cell according to an embodiment of the present invention.

【図2】本発明の他の実施形態に係る太陽電池の素子構
造断面図である。
FIG. 2 is a sectional view of an element structure of a solar cell according to another embodiment of the present invention.

【図3】従来の太陽電池の素子構造断面図である。FIG. 3 is a sectional view of an element structure of a conventional solar cell.

【符号の説明】[Explanation of symbols]

1…基板、2…裏面電極、3…アモルファス半導体層、
4…透明導電層、5…集電極、6…透光性絶縁層
DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Back electrode, 3 ... Amorphous semiconductor layer,
4: transparent conductive layer, 5: collector electrode, 6: translucent insulating layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 非晶質半導体層上に透明導電層及び集電
極を備える太陽電池であって、 前記透明導電層上に開口部を有する透光性絶縁層が設け
られ、 前記集電極は、前記透光性絶縁層の開口部を埋設して前
記透明導電層の表面上に被着されていることを特徴とす
る太陽電池。
1. A solar cell comprising a transparent conductive layer and a collecting electrode on an amorphous semiconductor layer, wherein a light-transmitting insulating layer having an opening is provided on the transparent conductive layer, A solar cell, wherein the solar cell is embedded on the surface of the transparent conductive layer so as to bury the opening of the transparent insulating layer.
【請求項2】 前記透光性絶縁層が、ガラスと略等しい
屈折率を有することを特徴とする請求項1記載の太陽電
池。
2. The solar cell according to claim 1, wherein the light-transmitting insulating layer has a refractive index substantially equal to that of glass.
【請求項3】 非晶質半導体層上に透明導電層を形成す
る工程と、 前記透明導電層上に、該透明導電層の表面の一部を露出
させて透光性絶縁層を形成する工程と、 前記透光性絶縁層から露出する前記透明導電層の表面上
に集電極を形成する工程と、 を備えることを特徴とする太陽電池の製造方法。
3. A step of forming a transparent conductive layer on the amorphous semiconductor layer; and a step of forming a light-transmitting insulating layer on the transparent conductive layer by exposing a part of the surface of the transparent conductive layer. And a step of forming a collector electrode on the surface of the transparent conductive layer exposed from the light-transmitting insulating layer.
【請求項4】 前記集電極を形成する工程が、電気メッ
キ法により行われることを特徴とする請求項3記載の太
陽電池の製造方法。
4. The method according to claim 3, wherein the step of forming the collector electrode is performed by an electroplating method.
【請求項5】 前記集電極を形成する工程が、前記透明
電極層の表面上に無電界メッキ法により第一の集電極を
形成する工程と、前記第一の集電極上に電界メッキ法に
より第二の集電極を形成する工程と、 からなることを特徴とする請求項4記載の太陽電池の製
造方法。
5. The step of forming the collecting electrode includes forming a first collecting electrode on the surface of the transparent electrode layer by an electroless plating method, and forming the first collecting electrode on the first collecting electrode by an electrolytic plating method. The method for manufacturing a solar cell according to claim 4, comprising: forming a second collector electrode.
JP10219485A 1998-08-03 1998-08-03 Solar battery and manufacture thereof Pending JP2000058885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10219485A JP2000058885A (en) 1998-08-03 1998-08-03 Solar battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10219485A JP2000058885A (en) 1998-08-03 1998-08-03 Solar battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2000058885A true JP2000058885A (en) 2000-02-25

Family

ID=16736190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10219485A Pending JP2000058885A (en) 1998-08-03 1998-08-03 Solar battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2000058885A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030067176A (en) * 2002-02-07 2003-08-14 엘지전자 주식회사 Structure for exterior solar cell
JP2010108994A (en) * 2008-10-28 2010-05-13 Sanyo Electric Co Ltd Method of manufacturing solar cell
WO2011115206A1 (en) 2010-03-19 2011-09-22 三洋電機株式会社 Solar cell, solar cell module using solar cell, and manufacturing method for solar cell
WO2012030407A1 (en) * 2010-09-03 2012-03-08 Tetrasun, Inc. Fine line metallization of photovoltaic devices by partial lift-off of optical coatings
CN102742018A (en) * 2010-01-14 2012-10-17 陶氏环球技术有限责任公司 Moisture resistant photovoltaic devices with exposed conductive grid
WO2013014810A1 (en) * 2011-07-26 2013-01-31 三洋電機株式会社 Solar battery module and method for manufacturing same
WO2013042242A1 (en) * 2011-09-22 2013-03-28 三洋電機株式会社 Solar cell, solar cell module, and methods for manufacturing solar cell and solar cell module
WO2013046386A1 (en) 2011-09-29 2013-04-04 三洋電機株式会社 Solar cell, solar cell module, and method for manufacturing solar cell
WO2013077038A1 (en) 2011-11-22 2013-05-30 株式会社カネカ Solar cell, manufacturing method thereof, and solar cell module
WO2013161127A1 (en) 2012-04-25 2013-10-31 株式会社カネカ Solar cell, solar cell manufacturing method, and solar cell module
JP2014509780A (en) * 2011-03-04 2014-04-21 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for metallizing a textured surface
JP2014199876A (en) * 2013-03-29 2014-10-23 株式会社カネカ Crystal silicon-based solar cell and method of manufacturing the same
WO2014185537A1 (en) 2013-05-17 2014-11-20 株式会社カネカ Solar cell, production method therefor, and solar cell module
WO2014189058A1 (en) 2013-05-21 2014-11-27 株式会社カネカ Solar cell, solar cell module, method for manufacturing solar cell, and method for manufacturing solar cell module
WO2014192899A1 (en) 2013-05-29 2014-12-04 株式会社カネカ Solar cell, manufacturing method therefor, solar-cell module, and manufacturing method therefor
WO2014192408A1 (en) * 2013-05-29 2014-12-04 株式会社カネカ Method for manufacturing crystalline-silicon solar cell and method for manufacturing crystalline-silicon solar-cell module
WO2015050163A1 (en) * 2013-10-04 2015-04-09 長州産業株式会社 Photovoltaic element
US9059349B2 (en) 2010-02-09 2015-06-16 Dow Global Technologies Llc Moisture resistant photovoltaic devices with improved adhesion of barrier film
WO2015137152A1 (en) * 2014-03-14 2015-09-17 国立大学法人北陸先端科学技術大学院大学 Heterojunction solar cell and process for producing same
US9147780B2 (en) 2012-12-17 2015-09-29 Kaneka Corporation Solar cell, method for manufacturing same, and solar cell module
JP2015228526A (en) * 2015-09-14 2015-12-17 パナソニックIpマネジメント株式会社 Solar cell module
JP5958765B2 (en) * 2010-08-31 2016-08-02 パナソニックIpマネジメント株式会社 Method for manufacturing solar cell and method for manufacturing solar cell module
US9484485B2 (en) 2013-05-29 2016-11-01 Kaneka Corporation Solar cell, manufacturing method therefor, solar-cell module, and manufacturing method therefor
JPWO2015146012A1 (en) * 2014-03-24 2017-04-13 株式会社東芝 Photoelectrochemical cell, method for producing photoelectrochemical cell, and photoelectrochemical reaction apparatus
US9673341B2 (en) 2015-05-08 2017-06-06 Tetrasun, Inc. Photovoltaic devices with fine-line metallization and methods for manufacture
DE102016106563A1 (en) * 2016-04-11 2017-10-12 Meyer Burger (Germany) Ag Method for producing a solar cell, solar cell produced by the method and substrate carrier
WO2018157520A1 (en) * 2017-03-03 2018-09-07 广东爱康太阳能科技有限公司 Improved p-type perc double-sided solar cell and preparation method therefor
CN109791954A (en) * 2016-09-23 2019-05-21 石原化学株式会社 The manufacturing method of solar battery cell

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030067176A (en) * 2002-02-07 2003-08-14 엘지전자 주식회사 Structure for exterior solar cell
JP2010108994A (en) * 2008-10-28 2010-05-13 Sanyo Electric Co Ltd Method of manufacturing solar cell
CN102742018A (en) * 2010-01-14 2012-10-17 陶氏环球技术有限责任公司 Moisture resistant photovoltaic devices with exposed conductive grid
TWI514608B (en) * 2010-01-14 2015-12-21 Dow Global Technologies Llc Moisture resistant photovoltaic devices with exposed conductive grid
US8921148B2 (en) 2010-01-14 2014-12-30 Dow Global Technologies Llc Moisture resistant photovoltaic devices with exposed conductive grid
US9059349B2 (en) 2010-02-09 2015-06-16 Dow Global Technologies Llc Moisture resistant photovoltaic devices with improved adhesion of barrier film
EP2549547A4 (en) * 2010-03-19 2014-01-01 Sanyo Electric Co Solar cell, solar cell module using solar cell, and manufacturing method for solar cell
WO2011115206A1 (en) 2010-03-19 2011-09-22 三洋電機株式会社 Solar cell, solar cell module using solar cell, and manufacturing method for solar cell
US9299871B2 (en) 2010-03-19 2016-03-29 Panasonic Intellectual Property Management Co., Ltd. Solar cell, solar cell module using solar cell, and manufacturing method for solar cell
CN102725857A (en) * 2010-03-19 2012-10-10 三洋电机株式会社 Solar cell, solar cell module using solar cell, and manufacturing method for solar cell
EP2549547A1 (en) * 2010-03-19 2013-01-23 Sanyo Electric Co., Ltd. Solar cell, solar cell module using solar cell, and manufacturing method for solar cell
JP5958765B2 (en) * 2010-08-31 2016-08-02 パナソニックIpマネジメント株式会社 Method for manufacturing solar cell and method for manufacturing solar cell module
US8236604B2 (en) 2010-09-03 2012-08-07 Tetrasun, Inc. Fine line metallization of photovoltaic devices by partial lift-off of optical coatings
AU2014224095B2 (en) * 2010-09-03 2016-11-17 Tetrasun, Inc. Fine line metallization of photovoltaic devices by partial lift-off of optical coatings
AU2011282499B2 (en) * 2010-09-03 2014-06-19 Tetrasun, Inc. Fine line metallization of photovoltaic devices by partial lift-off of optical coatings
WO2012030407A1 (en) * 2010-09-03 2012-03-08 Tetrasun, Inc. Fine line metallization of photovoltaic devices by partial lift-off of optical coatings
US9515205B2 (en) 2011-03-04 2016-12-06 Commissariat A L'energie Atomique Aux Energies Alternatives Method for metallizing textured surfaces
JP2014509780A (en) * 2011-03-04 2014-04-21 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for metallizing a textured surface
WO2013014810A1 (en) * 2011-07-26 2013-01-31 三洋電機株式会社 Solar battery module and method for manufacturing same
WO2013042242A1 (en) * 2011-09-22 2013-03-28 三洋電機株式会社 Solar cell, solar cell module, and methods for manufacturing solar cell and solar cell module
US9502589B2 (en) 2011-09-29 2016-11-22 Panasonic intellectual property Management co., Ltd Solar cell, solar cell module, and method for manufacturing solar cell
WO2013046386A1 (en) 2011-09-29 2013-04-04 三洋電機株式会社 Solar cell, solar cell module, and method for manufacturing solar cell
US9972728B2 (en) 2011-09-29 2018-05-15 Panasonic Intellectual Property Management Co., Ltd. Solar cell, solar cell module, and method for manufacturing solar cell
US9246026B2 (en) 2011-11-22 2016-01-26 Kaneka Corporation Solar cell and method of manufacture thereof, and solar cell module
WO2013077038A1 (en) 2011-11-22 2013-05-30 株式会社カネカ Solar cell, manufacturing method thereof, and solar cell module
US9812594B2 (en) 2011-11-22 2017-11-07 Kaneka Corporation Solar cell and method of manufacture thereof, and solar cell module
WO2013161127A1 (en) 2012-04-25 2013-10-31 株式会社カネカ Solar cell, solar cell manufacturing method, and solar cell module
US9722101B2 (en) 2012-04-25 2017-08-01 Kaneka Corporation Solar cell, solar cell manufacturing method, and solar cell module
CN103703567B (en) * 2012-04-25 2015-04-01 株式会社钟化 Solar cell, solar cell manufacturing method, and solar cell module
CN103703567A (en) * 2012-04-25 2014-04-02 株式会社钟化 Solar cell, solar cell manufacturing method, and solar cell module
KR101423018B1 (en) * 2012-04-25 2014-07-24 카네카 코포레이션 Solar cell, solar cell manufacturing method, and solar cell module
US9147780B2 (en) 2012-12-17 2015-09-29 Kaneka Corporation Solar cell, method for manufacturing same, and solar cell module
JP2014199876A (en) * 2013-03-29 2014-10-23 株式会社カネカ Crystal silicon-based solar cell and method of manufacturing the same
US9553228B2 (en) 2013-05-17 2017-01-24 Kaneka Corporation Solar cell, production method therefor, and solar cell module
WO2014185537A1 (en) 2013-05-17 2014-11-20 株式会社カネカ Solar cell, production method therefor, and solar cell module
US9761752B2 (en) 2013-05-21 2017-09-12 Kaneka Corporation Solar cell, solar cell module, method for manufacturing solar cell, and method for manufacturing solar cell module
WO2014189058A1 (en) 2013-05-21 2014-11-27 株式会社カネカ Solar cell, solar cell module, method for manufacturing solar cell, and method for manufacturing solar cell module
US9484485B2 (en) 2013-05-29 2016-11-01 Kaneka Corporation Solar cell, manufacturing method therefor, solar-cell module, and manufacturing method therefor
JP5694620B1 (en) * 2013-05-29 2015-04-01 株式会社カネカ Crystalline silicon solar cell manufacturing method and crystalline silicon solar cell module manufacturing method
WO2014192899A1 (en) 2013-05-29 2014-12-04 株式会社カネカ Solar cell, manufacturing method therefor, solar-cell module, and manufacturing method therefor
WO2014192408A1 (en) * 2013-05-29 2014-12-04 株式会社カネカ Method for manufacturing crystalline-silicon solar cell and method for manufacturing crystalline-silicon solar-cell module
EP2999005A4 (en) * 2013-05-29 2016-04-20 Kaneka Corp Solar cell, manufacturing method therefor, solar-cell module, and manufacturing method therefor
CN104854707A (en) * 2013-05-29 2015-08-19 株式会社钟化 Solar cell, manufacturing method therefor, solar-cell module, and manufacturing method therefor
JP5705389B1 (en) * 2013-05-29 2015-04-22 株式会社カネカ SOLAR CELL AND ITS MANUFACTURING METHOD, SOLAR CELL MODULE AND ITS MANUFACTURING METHOD
CN104854707B (en) * 2013-05-29 2017-03-22 株式会社钟化 Solar cell, manufacturing method therefor, solar-cell module, and manufacturing method therefor
US9780235B2 (en) 2013-05-29 2017-10-03 Kaneka Corporation Solar cell, manufacturing method therefor, solar cell module, and manufacturing method therefor
US9634176B2 (en) 2013-05-29 2017-04-25 Kaneka Corporation Method for manufacturing crystalline silicon-based solar cell and method for manufacturing crystalline silicon-based solar cell module
JP2015073058A (en) * 2013-10-04 2015-04-16 長州産業株式会社 Photovoltaic element
WO2015050163A1 (en) * 2013-10-04 2015-04-09 長州産業株式会社 Photovoltaic element
JPWO2015137152A1 (en) * 2014-03-14 2017-04-06 国立大学法人北陸先端科学技術大学院大学 Heterojunction solar cell and manufacturing method thereof
WO2015137152A1 (en) * 2014-03-14 2015-09-17 国立大学法人北陸先端科学技術大学院大学 Heterojunction solar cell and process for producing same
JPWO2015146012A1 (en) * 2014-03-24 2017-04-13 株式会社東芝 Photoelectrochemical cell, method for producing photoelectrochemical cell, and photoelectrochemical reaction apparatus
US10062520B2 (en) 2014-03-24 2018-08-28 Kabushiki Kaisha Toshiba Photo-electrochemical cell, manufacturing method of photo-electrochemical cell, and photo-electrochemical reaction device
US9673341B2 (en) 2015-05-08 2017-06-06 Tetrasun, Inc. Photovoltaic devices with fine-line metallization and methods for manufacture
JP2015228526A (en) * 2015-09-14 2015-12-17 パナソニックIpマネジメント株式会社 Solar cell module
DE102016106563A1 (en) * 2016-04-11 2017-10-12 Meyer Burger (Germany) Ag Method for producing a solar cell, solar cell produced by the method and substrate carrier
US11024755B2 (en) 2016-04-11 2021-06-01 Meyer Burger (Germany) Gmbh Method for producing a solar cell, solar cell produced by this method and substrate carrier
CN109791954A (en) * 2016-09-23 2019-05-21 石原化学株式会社 The manufacturing method of solar battery cell
WO2018157520A1 (en) * 2017-03-03 2018-09-07 广东爱康太阳能科技有限公司 Improved p-type perc double-sided solar cell and preparation method therefor

Similar Documents

Publication Publication Date Title
JP2000058885A (en) Solar battery and manufacture thereof
US4677250A (en) Fault tolerant thin-film photovoltaic cell
US4781766A (en) Fault tolerant thin-film photovoltaic cell and method
JP2015039020A (en) Improvement of elements capable of collecting light
JPS63252427A (en) Stable ohmic contact which is contacted with thin film of ii-vi semiconductor containing p-type tellurium
JP6568518B2 (en) Crystalline silicon solar cell manufacturing method and crystalline silicon solar cell module manufacturing method
US9461187B2 (en) Solar cell apparatus and method for manufacturing the same
CN110896118A (en) Manufacturing method of back contact heterojunction solar cell
JP3619681B2 (en) Solar cell and manufacturing method thereof
JP2014103259A (en) Solar cell, solar cell module, and method of manufacturing the same
US4772564A (en) Fault tolerant thin-film photovoltaic cell fabrication process
US20150059842A1 (en) Solar cell
CN102471912B (en) Light induced electroless plating
CN102412316B (en) As the anisotropic conductive layer of back contacts in film photovoltaic device
CN111834470A (en) Cross-mesh electrical contact back contact heterojunction battery and assembly manufacturing method
JPH11298016A (en) Solar battery
CN104600136A (en) Manufacturing method of hetero-junction solar cell and hetero-junction solar cell
JP2983746B2 (en) Solar cell manufacturing method
US4360702A (en) Copper oxide/N-silicon heterojunction photovoltaic device
JP3653379B2 (en) Photovoltaic element
JPH0864850A (en) Thin film solar battery and fabrication thereof
JP6827541B2 (en) Solar cell module and manufacturing method of solar cell module
CN208797008U (en) A kind of two-sided galvanic metallization solar battery sheet of no main grid
CN208000925U (en) A kind of solar cell
US20140166084A1 (en) Solar cell and manufacturing method of the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050308