JP2786600B2 - Thin film solar cell and method for manufacturing the same - Google Patents

Thin film solar cell and method for manufacturing the same

Info

Publication number
JP2786600B2
JP2786600B2 JP6202190A JP20219094A JP2786600B2 JP 2786600 B2 JP2786600 B2 JP 2786600B2 JP 6202190 A JP6202190 A JP 6202190A JP 20219094 A JP20219094 A JP 20219094A JP 2786600 B2 JP2786600 B2 JP 2786600B2
Authority
JP
Japan
Prior art keywords
film
thin
solar cell
metal
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6202190A
Other languages
Japanese (ja)
Other versions
JPH0864850A (en
Inventor
和孝 宇田
正義 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6202190A priority Critical patent/JP2786600B2/en
Publication of JPH0864850A publication Critical patent/JPH0864850A/en
Application granted granted Critical
Publication of JP2786600B2 publication Critical patent/JP2786600B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はモジュール化が容易で低
コスト化に有利な薄膜太陽電池及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin-film solar cell which can be easily formed into a module and which is advantageous in cost reduction, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】一般に薄膜太陽電池は2つの電極で半導
体薄膜を挟んだ構造をしており、2つの電極のうち光が
入射する側は透明電極を、また他方には金属電極を用い
る。この金属電極は、低抵抗のAlやAgが用いられ、
半導体薄膜で吸収されずに透過してくる光を逆方向に反
射させて光起電流に寄与させる役割も有する。一方、透
明電極にはSnO2 (酸化錫),ITO(インジウム・
錫酸化物)またはZnO(酸化亜鉛)等の透明導電膜が
用いられるが、電気抵抗率が約5×10-4Ω・cmと金
属膜より2桁程大きいため、発生した電流が透明電極を
流れる間に電力損失を生じる。それは基板面積が大きく
なる程顕著となり、外部へ取り出せる電力を減少させる
ため損失を小さくするための構造が種々考案されたき
た。
2. Description of the Related Art In general, a thin-film solar cell has a structure in which a semiconductor thin film is sandwiched between two electrodes. A transparent electrode is used on the side on which light is incident, and a metal electrode is used on the other side. This metal electrode is made of low-resistance Al or Ag,
It also has a role of reflecting light transmitted through the semiconductor thin film without being absorbed by the semiconductor thin film in the reverse direction and contributing to photovoltaic current. On the other hand, SnO 2 (tin oxide) and ITO (indium.
Although a transparent conductive film such as tin oxide) or ZnO (zinc oxide) is used, since the electrical resistivity is about 5 × 10 −4 Ω · cm, which is about two orders of magnitude larger than that of the metal film, the generated current flows through the transparent electrode. Power loss occurs while flowing. This becomes more remarkable as the substrate area increases, and various structures have been devised to reduce the loss in order to reduce the power that can be extracted to the outside.

【0003】図7〜9は従来の薄膜太陽電池の構造を示
している。図7はステンレスのような金属基板(1)を
第1の電極として用い、アモルファスシリコンのような
非晶質半導体やCdS/CdTe,CdS/CuInS
2 のような多結晶半導体の半導体薄膜(2)及び第2
の透明な電極(3)を順次畳重しており、さらにその上
に金属膜による集電電極(4)が形成された構造であ
る。この集電電極はグリッド電極ともいわれ一定間隔の
ピッチで樹枝状に形成されるが、入射光をさえぎるた
め、集電電極面積を大きくとることはできない。またそ
の形成には同形状の穴のあいたマスクを透明電極(3)
上に接触させて金属を蒸着させる(マスク成膜といい、
マスクで覆われた所は成膜されない。)か、または同形
状パターンにて導電性ペーストをスクリーン印刷する方
法があるが、いずれもマスクまたはスクリーンと基板の
位置合せを必要とする。図8は集積型太陽電池ともいわ
れ、多数のセルを直列につないだものである。ところで
透明電極による電力損失は、流れる電流の平方に比例す
るため、電流を小さくするには単一セルの発電面積を小
さくすればよい。
FIGS. 7 to 9 show the structure of a conventional thin-film solar cell. FIG. 7 shows an example in which a metal substrate (1) such as stainless steel is used as a first electrode, and an amorphous semiconductor such as amorphous silicon or CdS / CdTe or CdS / CuInS is used.
a polycrystalline semiconductor of the semiconductor thin film such as e 2 (2) and a second
Transparent electrodes (3) are sequentially stacked, and a current collecting electrode (4) of a metal film is formed thereon. The collector electrode is also called a grid electrode and is formed in a tree shape at a constant pitch. However, since the incident light is blocked, the area of the collector electrode cannot be increased. For the formation, a mask having the same shape and a hole is used for a transparent electrode (3).
Metal is deposited by contacting the top
No film is formed where the mask is covered. ) Or a method of screen-printing a conductive paste in the same pattern, but all require alignment of the mask or screen with the substrate. FIG. 8 is also called an integrated solar cell, and is a cell in which many cells are connected in series. By the way, since the power loss due to the transparent electrode is proportional to the square of the flowing current, the current can be reduced by reducing the power generation area of a single cell.

【0004】具体的には基板上のセルを多数の小さいセ
ルに分割し、直列に接続することで損失を抑えることが
できる。図8に示すようにその構造は、ガラスや高分子
フィルム等の透明基板(6)上に透明電極膜(7)、半
導体薄膜(8)及び裏面金属電極膜(9)を順次畳重し
たものであるが、その形成法は各膜ごとに特定形状の穴
のあいたマスクを用いて成膜するか、または各膜の成膜
後にレーザエッチングを施す方法が一般に行われる。図
中A,B,Cは、それぞれ透明電極膜、半導体薄膜、裏
面電極膜が存在しない領域を示す。太陽電池出力は透明
電極膜上の両側の端子(10)から取り出すことができ
る。ところでアモルファスシリコンの単一セルでは電極
間に発生する光起電力は約0.7Vであるが、同図のよ
うに3段直列接続すると2.1Vの出力が得られる。即
ち基板全体を単一セルとする場合に比べ電流は1/3、
電圧は3倍となり、発電電力は同じで損失が1/9に減
少する。(この場合、無効領域であるA,B,Cの面積
は無視する。)この型の太陽電池も下地パターンに合わ
せてマスクやレーザ光を位置合せする必要がある。
[0004] Specifically, the loss on the substrate can be reduced by dividing the cell on the substrate into a number of small cells and connecting them in series. As shown in FIG. 8, the structure is such that a transparent electrode film (7), a semiconductor thin film (8) and a back metal electrode film (9) are sequentially stacked on a transparent substrate (6) such as glass or a polymer film. However, the formation method is generally performed by forming a film using a mask having a hole of a specific shape for each film, or performing laser etching after forming each film. In the figure, A, B, and C indicate areas where no transparent electrode film, semiconductor thin film, and back electrode film are present, respectively. The solar cell output can be taken out from the terminals (10) on both sides of the transparent electrode film. By the way, in a single cell of amorphous silicon, the photovoltaic power generated between the electrodes is about 0.7 V, but when three stages are connected in series as shown in the figure, an output of 2.1 V is obtained. That is, the current is 1/3 as compared with the case where the whole substrate is a single cell,
The voltage is tripled, the generated power is the same, and the loss is reduced to 1/9. (In this case, the areas of the invalid regions A, B, and C are ignored.) In this type of solar cell, it is necessary to align the mask and the laser beam in accordance with the underlying pattern.

【0005】この他図9に示すようなスルーホールコン
タクト型が考案されている。同図(b)はその断面図で
ある。透明基板(11)上に透明電極(第1の電極)
(12)、半導体薄膜(13)、金属電極(第2の電
極)(14)が順次畳重されてセルを構成している。ま
たスルーホール(15)を形成するために一定間隔毎に
セルの一部分が円筒形に除かれ、さらに、絶縁膜(1
6)及び裏面金属電極(17)が積層されている。そし
てスルーホール部分で裏面金属電極は透明電極に電気的
に接続した構造となっている。このスルーホールはバイ
パス経路となっており、透明電極側に発生した正電荷は
より抵抗の小さい裏面金属電極へ優先的に流れる。同図
(c)はスルーホール部分の斜視断面図である。ここで
絶縁膜(16)は透明体として表わしている。このよう
に高抵抗の透明電極と平行して金属電極を配置し、一定
間隔毎にスルーホールコンタクトを設けることにより裏
面金属電極は集電電極として働くため、透明電極による
電力損失を低減することができる。しかしこのスルーホ
ールコンタクト型構造は作製プロセスが複雑となる問題
を有する。まずセル形成後、スルーホール(15)を形
成する部分をYAGレーザーで円筒形に除去した後、基
板全体にポリイミド樹脂等の絶縁膜(16)を形成す
る。続いてエキシマレーザーを用いてスルーホールの中
心部分の絶縁膜をエッチング除去した後、裏面金属電極
膜(17)を成膜することによりスルーホールコンタク
トが形成される。尚出力は第2の電極(14)及び裏面
金属電極の端子(18)から得られる。この場合もレー
ザー加工位置を基板上のパターンに合わせて行う必要が
ある。このように作製プロセスが複雑であることは、高
い歩留りを得るのが難しく、製造に要する時間も長くな
るので、コスト低減には不利である。また、第2の電極
である金属電極(14)の膜厚は最大でも1μm程度
と、あまり厚くはできない。というのも、下地の透明電
極(12)を損傷させずに選択的に半導体膜(13)及
び金属電極(14)をレーザーエッチングする必要があ
り、レーザーパワー密度をあまり大きくできないからで
ある。即ち、流せる電流は自ずと限られるため大面積化
には限度があった。
In addition, a through-hole contact type as shown in FIG. 9 has been devised. FIG. 2B is a cross-sectional view thereof. Transparent electrode (first electrode) on transparent substrate (11)
(12), a semiconductor thin film (13), and a metal electrode (second electrode) (14) are sequentially stacked to form a cell. In order to form a through hole (15), a part of the cell is removed at regular intervals into a cylindrical shape.
6) and the back metal electrode (17) are laminated. The back metal electrode is electrically connected to the transparent electrode at the through hole. This through-hole serves as a bypass path, and positive charges generated on the transparent electrode side flow preferentially to the lower-surface metal electrode having lower resistance. FIG. 3C is a perspective sectional view of a through hole portion. Here, the insulating film (16) is represented as a transparent body. By arranging metal electrodes in parallel with the high-resistance transparent electrode and providing through-hole contacts at regular intervals, the back metal electrode functions as a current collecting electrode, thus reducing power loss due to the transparent electrode. it can. However, this through-hole contact type structure has a problem that the manufacturing process is complicated. First, after forming a cell, a portion where a through hole (15) is to be formed is removed in a cylindrical shape with a YAG laser, and then an insulating film (16) such as a polyimide resin is formed on the entire substrate. Subsequently, the insulating film at the center of the through hole is removed by etching using an excimer laser, and then a back metal electrode film (17) is formed to form a through hole contact. The output is obtained from the second electrode (14) and the terminal (18) of the back metal electrode. Also in this case, it is necessary to perform the laser processing position according to the pattern on the substrate. Such a complicated manufacturing process makes it difficult to obtain a high yield and increases the time required for manufacturing, which is disadvantageous for cost reduction. Further, the thickness of the metal electrode (14), which is the second electrode, is about 1 μm at the maximum and cannot be too large. This is because it is necessary to selectively laser-etch the semiconductor film (13) and the metal electrode (14) without damaging the underlying transparent electrode (12), so that the laser power density cannot be increased so much. That is, since the current that can be passed is naturally limited, there is a limit in increasing the area.

【0006】[0006]

【発明が解決しようとする課題】以上述べたように、薄
膜太陽電池を構成する各膜をパターン化する方法は、マ
スク成膜とレーザーエッチング法が主である。マスク成
膜では下地の膜にマスク板を密着させるため、その位置
合せ工程が必要であること及びマスクと接触することに
よって膜が損傷を受けやすく製造歩留りを低下させる原
因となること、またレーザーエッチング法では同様に下
地の膜のパターン形状に対して照射レーザー光の位置合
せをして加工する必要があること、また膜を損傷させな
いためにはレーザーパワーの綿密な管理が必要であるこ
と、及びエッチングくずを除去する工程が必要であるこ
と等の問題があり、これらはコスト低減を阻む要因であ
った。またマスク成膜ではマスクの大きさに制限がある
こと、及びレーザーエッチング加工法では基板をレーザ
ー光に対して垂直に保ちつつ水平移動させる高精度なテ
ーブルが必要であることにより、基板の大面積化には自
ずと限界があった。本発明は上記の諸問題を解決するこ
とができ、モジュール化が容易で低コスト化に有利な薄
膜太陽電池及びその製造方法を提供することを目的とす
る。
As described above, a method of patterning each film constituting a thin film solar cell mainly includes a mask film formation and a laser etching method. In mask film formation, a mask plate is brought into close contact with the underlying film, so that an alignment step is required. Also, the film is easily damaged by contact with the mask, which causes a reduction in manufacturing yield, and laser etching. In the same method, it is necessary to align and process the irradiation laser beam with respect to the pattern shape of the underlying film, and it is necessary to carefully control the laser power so as not to damage the film, and There are problems such as the necessity of a step of removing etching debris, and these are factors that hinder cost reduction. In addition, the size of the mask is limited in mask formation, and the laser etching method requires a high-precision table that moves the substrate horizontally while keeping the substrate perpendicular to the laser beam. Naturalization had its limits. An object of the present invention is to provide a thin-film solar cell that can solve the above-mentioned problems, is easy to modularize, and is advantageous in reducing costs, and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明は上記の目的を活
性するためになされたものであって、一定間隔毎に貫通
孔を設けた金属基板を第1の電極とし、該金属基板の一
方の主面上に非晶質、または多結晶質の半導体薄膜及
び、第2の電極である透明導電膜が順次畳重された構造
の薄膜太陽電池において、前記金属基板の他方の主面上
に少なくとも絶縁膜及び金属膜が順次畳重してなり、且
つ前記金属膜が少なくとも前記貫通孔において前記透明
導電膜と電気的に接続したことを特徴とする薄膜太陽電
池を提供するものである。また、本発明は金属基板の他
方の主面に絶縁膜を形成する第1工程、該金属基板の全
域に多数の貫通孔を形成する第2工程、該金属基板の一
方の主面上に半導体膜を形成する第3工程、次いで少な
くとも該半導体膜の上に透明導電膜を形成する第4工
程、続いて前記絶縁膜の上に金属膜を形成し貫通孔部に
おいては該金属膜と該透明導電膜とを電気的に接続させ
る第5工程からなる上記薄膜太陽電池の製造方法を提供
する。さらに、本発明は金属基板の全域に多数の貫通孔
を形成する第1工程、該金属基板の他方の主面に絶縁膜
を形成する第2工程、以下は前記と同様の第3乃至第5
工程からなる上記薄膜太陽電池の製造方法をも提供す
る。本発明においては絶縁膜の形成を陽極酸化法、セラ
ミックメッキ法、プラズマCVD法、スパッタリング
法、塗布法又は溶射法により行うことが特に好ましい実
施態様である。
SUMMARY OF THE INVENTION The present invention has been made in order to activate the above-mentioned object, and a metal substrate provided with through holes at regular intervals is used as a first electrode. In a thin-film solar cell having a structure in which an amorphous or polycrystalline semiconductor thin film and a transparent conductive film as a second electrode are sequentially stacked on the main surface of the above, the other main surface of the metal substrate An object of the present invention is to provide a thin-film solar cell, characterized in that at least an insulating film and a metal film are sequentially stacked and the metal film is electrically connected to the transparent conductive film at least in the through hole. The present invention also provides a first step of forming an insulating film on the other main surface of the metal substrate, a second step of forming a large number of through-holes over the entire area of the metal substrate, and a step of forming a semiconductor on one main surface of the metal substrate. A third step of forming a film, and then a fourth step of forming a transparent conductive film on at least the semiconductor film, and subsequently, a metal film is formed on the insulating film, and the metal film and the transparent film are formed in a through hole. A method for manufacturing the thin-film solar cell, comprising a fifth step of electrically connecting the conductive film to a conductive film. Further, the present invention provides a first step of forming a large number of through holes over the entire area of the metal substrate, a second step of forming an insulating film on the other main surface of the metal substrate, and the third to fifth steps similar to the above.
The present invention also provides a method for producing the above-mentioned thin-film solar cell comprising the steps of: In the present invention, it is a particularly preferred embodiment that the insulating film is formed by anodic oxidation, ceramic plating, plasma CVD, sputtering, coating or thermal spraying.

【0008】[0008]

【作用及び実施例】本発明によれば、半導体薄膜におけ
る光吸収により発生した正・負の電荷のうち片方(例え
ば正電荷)が第2の電極である透明電極に達した後、近
傍の貫通孔を通って裏面金属電極に集電される。即ち電
荷が透明電極中を移動する距離が短くなるために、それ
だけ電圧降下(電力損失)は抑えられる。またもう一方
の電荷(たとえば負電荷)は第一の電極である金属基板
内を流れる。ところで予め金属基板に一定間隔毎に貫通
孔を多数形成しておけば、光の入射面に半導体薄膜、透
明導電膜を他方の面に絶縁膜、裏面金属膜をそれぞれ位
置合せをすることなく成膜するだけで低コスト、高歩留
り、低損失で且つ大面積化が容易な薄膜太陽電池を提供
することが可能である。
According to the present invention, one of the positive and negative charges (for example, positive charge) generated by light absorption in the semiconductor thin film reaches the transparent electrode serving as the second electrode, and then passes through the nearby transparent electrode. The current is collected to the back metal electrode through the hole. That is, the distance over which the charge moves in the transparent electrode is shortened, so that the voltage drop (power loss) is suppressed accordingly. The other charge (eg, a negative charge) flows in the metal substrate serving as the first electrode. By the way, if a large number of through holes are formed in the metal substrate in advance at regular intervals, the semiconductor thin film and the transparent conductive film can be formed on the light incident surface without aligning the insulating film and the back metal film on the other surface, respectively. It is possible to provide a thin-film solar cell that is low in cost, high in yield, low in loss, and easy to increase in area by simply forming a film.

【0009】以下本発明の具体化例を添付の図面に沿っ
て説明する。図1は本発明の第1の具体化例による薄膜
太陽電池の構造図を示す。同図(a)は上面図、(b)
はA−A′断面図、(c)は断面斜視図である。一定間
隔毎に貫通孔を設けた金属基板(21)の片面の主面上
(図では上側の光入射面)に非晶質または多結晶質の半
導体薄膜(22)及び透明導電膜(23)が積層されて
おり、金属基板が第一の電極としてまた透明電極が第2
の電極としてセルを構成する。さらに金属基板の他方の
主面(下側)には絶縁膜(24)及び金属膜(25)が
積層されており、貫通孔(コンタクトホール)(26)
において、金属膜は透明導電膜と電気的に接続されてい
て第2の電極の集電電極として作用する。
An embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a structural diagram of a thin-film solar cell according to a first embodiment of the present invention. FIG. 3A is a top view, and FIG.
Is a sectional view taken along the line AA ', and (c) is a sectional perspective view. An amorphous or polycrystalline semiconductor thin film (22) and a transparent conductive film (23) are formed on one main surface (an upper light incidence surface in the figure) of a metal substrate (21) provided with through holes at regular intervals. Are laminated, and the metal substrate serves as the first electrode and the transparent electrode serves as the second electrode.
A cell is formed as the electrode of. Further, an insulating film (24) and a metal film (25) are laminated on the other main surface (lower side) of the metal substrate, and a through hole (contact hole) (26) is formed.
In, the metal film is electrically connected to the transparent conductive film and functions as a current collecting electrode of the second electrode.

【0010】また図2は本発明の第1の具体化例による
薄膜太陽電池の製造工程を示す。図2のステップ(1)
に示すようにステンレス、鉄、アルミニウム等の金属基
板(21)の一方の主面に高分子フィルム(20)を貼
りつけることにより他方の主面のみを露出させた後、ス
テップ(2)において絶縁膜(24)を形成する。絶縁
膜は耐熱性が高く、真空中でガス放出が少ないセラミッ
クス(主に金属酸化物)が最も望ましく金属の導電性を
生かした陽極酸化法や近年脚光を浴びているセラミック
メッキ法により形成することができる。次にステップ
(3)において金属基板の全域に亘り、一定間隔毎に多
数の貫通孔(26)を形成する。この場合主としてレー
ザー加工法、打ち抜き法、化学エッチング法により開孔
した後、前記高分子フィルム(20)を剥離除去して上
側の金属表面を露出させる(図示せず)。このとき必要
によっては金属表面に化学エッチングを施し、微細な凹
凸を設けることができる。
FIG. 2 shows a manufacturing process of a thin-film solar cell according to a first embodiment of the present invention. Step (1) in FIG.
As shown in (1), a polymer film (20) is attached to one main surface of a metal substrate (21) made of stainless steel, iron, aluminum or the like to expose only the other main surface. A film (24) is formed. The insulating film is preferably made of ceramics (mainly metal oxides) that have high heat resistance and low outgassing in vacuum, and are preferably formed by anodic oxidation utilizing the conductivity of metal or ceramic plating which has been in the spotlight in recent years. Can be. Next, in step (3), a large number of through holes (26) are formed at regular intervals over the entire area of the metal substrate. In this case, after opening holes mainly by a laser processing method, a punching method, or a chemical etching method, the polymer film (20) is peeled off and the upper metal surface is exposed (not shown). At this time, if necessary, chemical etching can be performed on the metal surface to provide fine irregularities.

【0011】続いて金属基板の端の適当な位置に小さい
マスク(27)を載置した後、半導体薄膜(22)を成
膜する。この半導体薄膜にはアモルファスシリコン等の
非晶質、CdS/CdTeやCdS/CuInSe2
の多結晶質を用いることができる。尚成膜方法はアモル
ファスシリコンはプラズマCVD法、CdS/CdT
e、CdS/CuInSe2 は昇華法、蒸着法、溶液成
長法により形成することができる。次に第2の電極であ
る透明導電膜(23)を成膜する(同図ステップ
(4))。この透明導電膜による透明電極は、Sn
2 ,ITO,酸化亜鉛等の酸化物であり、イオンプレ
ーティング法,スパッタ法等により形成することができ
る。続いて同図ステップ(5)の下面に金属膜(25)
としてAlまたはAgを蒸着法またはスパッタ法により
成膜する。このとき貫通孔の内壁面で透明導電膜と自動
的に電気的接続がなされる。次にマスク(27)をはず
すことで金属基板(21)が一部露出しそこへリード線
(28)を接続する(図1(b)参照)。また金属膜
(25)にも対電極のリード線(28)を接続する。電
極の極性は半導体膜(22)の積層順序によって決ま
り、金属基板側にn型、透明電極側にp型半導体を形成
すると図示したような極性を示し、半導体の積層順序を
逆にすると出力も逆極性となる。
Subsequently, after a small mask (27) is placed at an appropriate position on the edge of the metal substrate, a semiconductor thin film (22) is formed. For this semiconductor thin film, an amorphous material such as amorphous silicon or a polycrystalline material such as CdS / CdTe or CdS / CuInSe 2 can be used. The film formation method is as follows: amorphous silicon is a plasma CVD method, CdS / CdT
e, CdS / CuInSe 2 can be formed by a sublimation method, an evaporation method, or a solution growth method. Next, a transparent conductive film (23) as a second electrode is formed (Step (4) in the figure). The transparent electrode made of this transparent conductive film is made of Sn
Oxides such as O 2 , ITO, and zinc oxide can be formed by ion plating, sputtering, or the like. Subsequently, a metal film (25) is formed on the lower surface of step (5) in FIG.
Is formed by vapor deposition or sputtering. At this time, electrical connection is automatically made with the transparent conductive film on the inner wall surface of the through hole. Next, by removing the mask (27), the metal substrate (21) is partially exposed, and the lead wire (28) is connected thereto (see FIG. 1 (b)). The lead wire (28) of the counter electrode is also connected to the metal film (25). The polarity of the electrode is determined by the lamination order of the semiconductor film (22). The polarity is as shown when an n-type semiconductor is formed on the metal substrate side and the p-type semiconductor is formed on the transparent electrode side. It becomes reverse polarity.

【0012】尚、絶縁膜の形成法として前述した陽極酸
化法やセラミックメッキ法は低コストであるが、液相形
成法であり、高分子フィルム等で片面を覆う必要があ
る。それに対してプラズマCVD法、スパッタリング法
あるいは溶射法を用いれば、図2のステップ(2)′に
示すように片面成膜が可能なので高分子フィルムは不要
である。この場合絶縁膜としては、Si3 4 ,Si
C,SiO2 またはAl2 3 などを用いることができ
る。また同様にポリイミドのような耐熱性が高く、真空
中で比較的ガス放出が少ない樹脂を金属基板の片面にロ
ールコーターを用いて塗布後、加熱硬化して絶縁膜を形
成する(塗布法)ことも可能である。図2のステップ
(3)′以下は前述した方法と同様である。
Although the above-described anodic oxidation method and ceramic plating method for forming an insulating film are low-cost, they are liquid phase forming methods and need to cover one side with a polymer film or the like. On the other hand, if a plasma CVD method, a sputtering method, or a thermal spraying method is used, a single-sided film can be formed as shown in step (2) ′ of FIG. 2, so that a polymer film is unnecessary. In this case, as the insulating film, Si 3 N 4 , Si
C, SiO 2 or Al 2 O 3 can be used. Similarly, a resin having high heat resistance such as polyimide and having relatively low outgassing in a vacuum is applied to one surface of a metal substrate using a roll coater, and then heated and cured to form an insulating film (coating method). Is also possible. The steps after step (3) 'in FIG. 2 are the same as the above-mentioned method.

【0013】[0013]

【実施例】次にこの製造方法に基づいた実施例を述べる
が、本発明はこれに限定されるところはない。 〔実施例〕金属基板として100mm×100mm×厚
さ0.2mmのステンレス板(SUS304)を用い、
表面を電解研磨及び洗浄した後、基板の他方(下側)主
面に絶縁膜としてプラズマCVD法により厚さ5000
ÅのSi3 4 膜を形成した。原料ガスとしてはSiH
4 (シラン),NH3 (アンモニア),N2 (窒素)を
用い、それぞれの流量は毎分100,250,2000
ccである。また、基板温度300℃、RFパワー20
0Wとした。次に、基板の一方の主面(上側)からYA
Gレーザー光を照射して多数の孔あけを行った。その
際、レーザービームのスポット径を種々に変えることに
より、孔径を50μm〜500μmの範囲で変化させ、
かつ孔間隔も1mm〜20mmの範囲で種々に変化させ
て加工した。
EXAMPLES Next, examples based on this manufacturing method will be described, but the present invention is not limited to these examples. [Example] A 100 mm x 100 mm x 0.2 mm thick stainless steel plate (SUS304) was used as a metal substrate.
After the surface is electrolytically polished and washed, the other (lower) main surface of the substrate is formed as an insulating film to a thickness of 5000 by a plasma CVD method.
The Si 3 N 4 film of Å was formed. The source gas is SiH
4 (silane), NH 3 (ammonia), N 2 (nitrogen), and the flow rate of each was 100, 250, 2000 per minute.
cc. Further, the substrate temperature is 300 ° C., the RF power is 20
0 W. Next, YA is applied from one main surface (upper side) of the substrate.
A large number of holes were made by irradiating G laser light. At that time, by changing the spot diameter of the laser beam variously, the hole diameter is changed in the range of 50 μm to 500 μm,
In addition, the hole interval was varied in a range of 1 mm to 20 mm to perform processing.

【0014】次に、基板の端付近に防着のためのマスク
を載置した後、該基板の一方の主面(上側)に半導体薄
膜としてプラズマCVD法によりアモルファスシリコン
系膜を以下の手順で成膜した。まず、P型アモルファス
シリコンカーバイド(a−SiC)を厚さ100Å成膜
した。原料ガスはSiH4 ,CH4 (メタン)の他、ド
ーピングガスとして0.5%B2 6 (ジボラン)を用
い、流量はそれぞれ毎分20,30,20cc、基板温
度170℃、RFパワー10Wとした。次にバッファ層
としてアモルファスシリコンカーバイド(a−SiC)
を100Å成膜した。原料ガスはSiH4 ,CH4 及び
2 (水素)で、流量はそれぞれ毎分25,25,50
0ccとして、基板温度180℃、RFパワー20Wで
あった。さらに光吸収の主役となる真性層としてアモル
ファスシリコン(a−Si)を厚さ4000Å成膜し
た。原料ガスとしてSiH4 を用い、流量は毎分60c
cとした。基板温度170℃、RFパワー10Wであっ
た。さらにn型アモルファスシリコンを厚さ150Å成
膜した。原料ガスはSiH 4 、H2 の他ドーピングガス
として0.05%PH3 (ホスフィン)を用いた。流量
はそれぞれ毎分30,500,300ccとし、基板温
度170℃、RFパワー100Wであった。このように
して半導体膜を形成後、透明導電膜としてITOをイオ
ンプレーティング法により厚さ3000Å成膜した。そ
のシート抵抗は10Ω/□であった。最後に防着用マス
クを除去後、基板の他方の主面の絶縁膜上にAlを真空
蒸着法により厚さ5μm成膜した。
Next, a mask for preventing deposition near the edge of the substrate.
Is placed on one main surface (upper side) of the substrate.
Amorphous silicon film by plasma CVD
A system film was formed by the following procedure. First, P-type amorphous
Silicon carbide (a-SiC) film with a thickness of 100 mm
did. The source gas is SiHFour, CHFour(Methane)
0.5% B as a topping gasTwoH6(Diborane)
The flow rates are 20, 30, and 20 cc per minute, respectively,
The temperature was 170 ° C. and the RF power was 10 W. Next, the buffer layer
As amorphous silicon carbide (a-SiC)
Was formed at a film thickness of 100 °. The source gas is SiHFour, CHFouras well as
HTwo(Hydrogen) and the flow rate is 25, 25, 50 per minute respectively
0cc, substrate temperature 180 ° C, RF power 20W
there were. In addition, the amorphous layer
Fac silicon (a-Si) is deposited to a thickness of 4000mm.
Was. SiH as source gasFourAnd the flow rate is 60 c / min.
c. Substrate temperature 170 ° C, RF power 10W
Was. In addition, n-type amorphous silicon is formed to a thickness of 150 mm.
Filmed. The source gas is SiH Four, HTwoOther doping gases
0.05% PH asThree(Phosphine) was used. Flow rate
Is 30,500,300 cc / min.
The temperature was 170 ° C. and the RF power was 100 W. in this way
After forming a semiconductor film, ITO is used as a transparent conductive film.
A film having a thickness of 3000 mm was formed by a plating method. So
Was 10 Ω / □. Finally the trout prevention
After removing the mask, a vacuum is applied to Al on the insulating film on the other main surface of the substrate.
A film having a thickness of 5 μm was formed by an evaporation method.

【0015】このようにして作成した薄膜太陽電池にリ
ード線を取り付け、疑似太陽光下(AM1.5 光照射
強度100mW/cm2 )で出力特性を測定したとこ
ろ、図6に示す結果が得られた。図6は本願発明発明の
薄膜太陽電池の変換効率の孔間隔依存特性を示す。この
ように孔径500μm以下の場合、孔間隔は1〜8mm
程度が最適であることがわかる。
A lead wire was attached to the thin-film solar cell thus prepared, and the output characteristics were measured under simulated sunlight (AM1.5 light irradiation intensity: 100 mW / cm 2 ). The results shown in FIG. 6 were obtained. Was. FIG. 6 shows the dependence of the conversion efficiency of the thin-film solar cell of the present invention on the hole spacing. In the case where the hole diameter is 500 μm or less, the hole interval is 1 to 8 mm.
It turns out that the degree is optimal.

【0016】また本発明の第2の具体化例による薄膜太
陽電池の断面斜視図を図3に示す。これは絶縁膜(2
4)を貫通孔(26)の内壁まで形成させた点が第1の
具体化例と異なる。その目的は、内壁部分に成膜した半
導体膜(22)は基板の主面に成膜されたものに比べて
薄いため、半導体膜の充分な絶縁抵抗が得られず金属基
板(21)と透明導電膜(23)が短絡状態になりやす
くなるのを防ぐためになされたものである。製造方法と
しては図5に示すように金属基板にまず貫通孔を設けた
後、前述したのと同様な方法で片面に絶縁膜を形成する
ことで得られる。
FIG. 3 is a sectional perspective view of a thin-film solar cell according to a second embodiment of the present invention. This is an insulating film (2
The fourth embodiment is different from the first embodiment in that 4) is formed up to the inner wall of the through hole (26). The purpose is that the semiconductor film (22) formed on the inner wall portion is thinner than the film formed on the main surface of the substrate, so that sufficient insulation resistance of the semiconductor film cannot be obtained and the metal film (21) is transparent. This is for preventing the conductive film (23) from being easily short-circuited. As a manufacturing method, as shown in FIG. 5, a through hole is first formed in a metal substrate, and then an insulating film is formed on one surface by the same method as described above.

【0017】また図4は本発明の第3の具体化例による
薄膜太陽電池の断面斜視図である。透明導電膜(23)
を基板の両面に形成した点が第1,第2の具体化例と異
なる。透明導電膜上に金属膜を形成した場合、界面には
接触抵抗が生じるが、その値は接触面積に反比例する。
そのため第1,第2の具体化例のように貫通孔(26)
の内壁面のみで接触させるよりも図4に示すように基板
の下側の主面全体でも接触させる方が接触抵抗による電
力損失は低減できる。この場合の透明電極の形成方法と
してゾルゲル法がある。これは半導体膜形成後、錫やイ
ンジウムのアルコキシド溶液に基板全体を浸漬後引き上
げて乾燥、焼成する方法である。こうすることにより、
基板全体に透明導電膜を形成することが可能であり、続
いて基板下側から金属膜を形成すればよい。尚、この裏
面金属電極膜は電気メッキ法,はんだメッキ法等によっ
て膜厚を数10μm以上に形成することができ、また第
一の電極である金属基板も厚さが数10μm以上である
ため、従来構造より大電流を流すことができ、大面積化
が容易である。
FIG. 4 is a sectional perspective view of a thin-film solar cell according to a third embodiment of the present invention. Transparent conductive film (23)
Are different from the first and second embodiments in that are formed on both surfaces of the substrate. When a metal film is formed on a transparent conductive film, contact resistance occurs at the interface, but the value is inversely proportional to the contact area.
Therefore, as in the first and second embodiments, the through-hole (26)
Power loss due to contact resistance can be reduced by making contact with the entire lower surface of the substrate as shown in FIG. In this case, there is a sol-gel method as a method for forming a transparent electrode. In this method, after forming a semiconductor film, the entire substrate is dipped in an alkoxide solution of tin or indium, pulled up, dried, and fired. By doing this,
A transparent conductive film can be formed over the entire substrate, and then a metal film may be formed from below the substrate. The back metal electrode film can be formed to have a thickness of several tens μm or more by an electroplating method, a solder plating method, or the like, and the metal substrate serving as the first electrode has a thickness of several tens μm or more. A larger current can flow than the conventional structure, and the area can be easily increased.

【0018】この他、本発明における孔開け工程におい
て、レーザー加工法を用いることができるが、最初の工
程で金属基板もしくは絶縁膜を片面に形成した金属基板
に、一定間隔に穴あけするだけでよく、従来構造にある
ような下地膜パターンへのレーザー光の位置合せや、下
地膜を損傷させないためのレーザーパワーの綿密な管理
が不要である以上述べたように、本発明によると従来
構造に比べ、簡単な作製プロセスで比較的短時間に大面
積の薄膜太陽電池を製造することが可能である。
In addition, a laser processing method can be used in the hole making step in the present invention, but it is only necessary to make holes at regular intervals in a metal substrate or a metal substrate having an insulating film formed on one side in the first step. In the conventional structure
There is no need for such alignment of the laser beam to the underlayer film pattern and close control of the laser power so as not to damage the underlayer film . As described above, according to the present invention, a large-area thin-film solar cell can be manufactured in a relatively short time by a simple manufacturing process as compared with the conventional structure.

【0019】[0019]

【発明の効果】本発明によれば、透明電極側に発生した
電荷を金属基板に設けられた貫通孔を通して裏面金属膜
に集電する構造とすることにより、透明電極による電力
損失を低減させることができる。また、金属基板(また
は絶縁膜を片面に形成した金属基板)に予め一定間隔毎
に多数の貫通孔を設けておけば、半導体薄膜、透明導電
膜、(絶縁膜)裏面金属膜のそれぞれの膜を位置合わせ
不要で単に成膜するだけで製造することができるため、
低コスト、高歩留り、低損失、且つ大面積化が容易な薄
膜太陽電池を提供することが可能である。
According to the present invention, the electric charge generated on the transparent electrode side is collected on the back metal film through the through hole provided in the metal substrate, thereby reducing the power loss due to the transparent electrode. Can be. Also, if a large number of through holes are provided at predetermined intervals on a metal substrate (or a metal substrate having an insulating film formed on one surface) in advance, the respective films of the semiconductor thin film, the transparent conductive film, and the (insulating film) back metal film can be formed. Can be manufactured simply by forming a film without the need for alignment.
It is possible to provide a thin-film solar cell that is low in cost, high in yield, low in loss, and easy to increase in area.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施態様を示す薄膜太陽電池の構造
図。(a)上面図、(b)A−A′断面図、(c)断面
斜視図。
FIG. 1 is a structural diagram of a thin-film solar cell showing one embodiment of the present invention. (A) Top view, (b) AA 'sectional drawing, (c) sectional perspective view.

【図2】本発明に係る薄膜太陽電池の製造工程図。FIG. 2 is a manufacturing process diagram of the thin-film solar cell according to the present invention.

【図3】本発明の他の実施態様に係る薄膜太陽電池の断
面斜視図。
FIG. 3 is a cross-sectional perspective view of a thin-film solar cell according to another embodiment of the present invention.

【図4】本発明の更に他の実施態様を示す薄膜太陽電池
の断面斜視図。
FIG. 4 is a cross-sectional perspective view of a thin-film solar cell showing still another embodiment of the present invention.

【図5】本発明に係る薄膜太陽電池の他の製造工程図。FIG. 5 is another manufacturing process diagram of the thin-film solar cell according to the present invention.

【図6】本発明に係る太陽電池の変換効率の孔間隔依存
性を示すグラフ図。
FIG. 6 is a graph showing the dependence of the conversion efficiency of the solar cell according to the present invention on the hole spacing.

【図7】従来の薄膜太陽電池(グリッド電極型)の構造
図。(a)上面図、(b)X−X′断面図。
FIG. 7 is a structural diagram of a conventional thin-film solar cell (grid electrode type). (A) Top view, (b) XX 'sectional drawing.

【図8】従来の薄膜太陽電池(集積型)の構造図。
(a)上面図、(b)Y−Y′断面図。
FIG. 8 is a structural view of a conventional thin-film solar cell (integrated type).
(A) Top view, (b) YY 'sectional drawing.

【図9】従来の薄膜太陽電池(スルーホールコンタクト
型)の構造図。(a)上面図、(b)Z−Z′断面図、
(c)断面斜視図。
FIG. 9 is a structural diagram of a conventional thin-film solar cell (through-hole contact type). (A) Top view, (b) ZZ 'sectional view,
(C) Sectional perspective view.

【符号の説明】[Explanation of symbols]

21:金属基板 22:半導体薄膜 23:透明導電膜(透明電極) 24:絶縁膜 25:金属膜(裏面金属電極) 26:貫通孔 28:リード端子 21: Metal substrate 22: Semiconductor thin film 23: Transparent conductive film (transparent electrode) 24: Insulating film 25: Metal film (back metal electrode) 26: Through hole 28: Lead terminal

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−209822(JP,A) 特開 平2−260663(JP,A) 特開 平6−342924(JP,A) 特開 平3−257874(JP,A) 実開 昭56−154172(JP,U) (58)調査した分野(Int.Cl.6,DB名) H01L 31/04────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-62-209822 (JP, A) JP-A-2-260663 (JP, A) JP-A-6-342924 (JP, A) JP-A-3-3 257874 (JP, A) Japanese Utility Model Showa 56-154172 (JP, U) (58) Field surveyed (Int. Cl. 6 , DB name) H01L 31/04

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一定間隔毎に貫通孔を設けた金属基板を
第1の電極とし、該金属基板の一方の主面上に非晶質、
または多結晶質の半導体薄膜及び、第2の電極である透
明導電膜が順次畳重された構造の薄膜太陽電池におい
て、前記金属基板の他方の主面上に少なくとも絶縁膜及
び金属膜が順次畳重してなり、且つ前記金属膜が少なく
とも前記貫通孔において前記透明導電膜と電気的に接続
した構造を特徴とする薄膜太陽電池。
1. A metal substrate provided with through holes at regular intervals is used as a first electrode, and an amorphous material is formed on one main surface of the metal substrate.
Alternatively, in a thin film solar cell having a structure in which a polycrystalline semiconductor thin film and a transparent conductive film as a second electrode are sequentially stacked, at least an insulating film and a metal film are sequentially stacked on the other main surface of the metal substrate. A thin-film solar cell having a structure in which the metal films overlap with each other and are electrically connected to the transparent conductive film at least in the through holes.
【請求項2】 半導体薄膜がアモルファスシリコン又は
CdS/CdTe若しくはCdS/CuInSe2 から
なる請求項1に記載の薄膜太陽電池。
2. The thin-film solar cell according to claim 1, wherein the semiconductor thin film is made of amorphous silicon or CdS / CdTe or CdS / CuInSe 2 .
【請求項3】 透明導電膜が酸化錫、インジウム・錫酸
化物又は酸化亜鉛からなる請求項1又は2に記載の薄膜
太陽電池。
3. The thin-film solar cell according to claim 1, wherein the transparent conductive film is made of tin oxide, indium tin oxide, or zinc oxide.
【請求項4】 金属膜がAl又はAgの蒸着により成膜
される請求項1〜3の何れかに記載の薄膜太陽電池。
4. The thin-film solar cell according to claim 1, wherein the metal film is formed by vapor deposition of Al or Ag.
【請求項5】 絶縁膜がSi3 4 ,SiC,SiO2
又はAl2 3 からなる請求項1〜4の何れかに記載の
薄膜太陽電池。
5. The insulating film is made of Si 3 N 4 , SiC, SiO 2
Or thin-film solar cell according to claim 1 made of Al 2 O 3.
【請求項6】 絶縁膜がポリイミドからなる請求項1〜
4の何れかに記載の薄膜太陽電池。
6. The insulating film according to claim 1, wherein the insulating film is made of polyimide.
5. The thin-film solar cell according to any one of 4.
【請求項7】 絶縁膜を貫通孔の内壁まで形成した請求
項1〜6の何れかに記載の薄膜太陽電池。
7. The thin-film solar cell according to claim 1, wherein the insulating film is formed up to the inner wall of the through hole.
【請求項8】 透明導電膜を金属基板の他方の主面上に
も形成した請求項1〜7の何れかに記載の薄膜太陽電
池。
8. The thin-film solar cell according to claim 1, wherein a transparent conductive film is formed also on the other main surface of the metal substrate.
【請求項9】 金属基板の他方の主面に絶縁膜を形成す
る第1工程、該金属基板の全域に多数の貫通孔を形成す
る第2工程、該金属基板の一方の主面上に半導体膜を形
成する第3工程、次いで少なくとも該半導体膜の上に透
明導電膜を形成する第4工程、続いて前記絶縁膜の上に
金属膜を形成する第5工程からなる請求項1に記載の薄
膜太陽電池の製造方法。
9. A first step of forming an insulating film on the other main surface of the metal substrate, a second step of forming a large number of through holes over the entire area of the metal substrate, and a semiconductor on one main surface of the metal substrate. The method according to claim 1, comprising a third step of forming a film, a fourth step of forming a transparent conductive film on at least the semiconductor film, and a fifth step of forming a metal film on the insulating film. A method for manufacturing a thin-film solar cell.
【請求項10】 金属基板の全域に多数の貫通孔を形成
する第1工程、該金属基板の他方の主面に絶縁膜を形成
する第2工程、該金属基板の一方の主面上に半導体膜を
形成する第3工程、次いで少なくとも該半導体膜の上に
透明導電膜を形成する第4工程、続いて前記絶縁膜の上
に金属膜を形成する第5工程からなる請求項1に記載の
薄膜太陽電池の製造方法。
10. A first step of forming a large number of through holes in the whole area of the metal substrate, a second step of forming an insulating film on the other main surface of the metal substrate, and a semiconductor on one main surface of the metal substrate. The method according to claim 1, comprising a third step of forming a film, a fourth step of forming a transparent conductive film on at least the semiconductor film, and a fifth step of forming a metal film on the insulating film. A method for manufacturing a thin-film solar cell.
【請求項11】 絶縁膜の形成を陽極酸化法、セラミッ
クメッキ法、プラズマCVD法、スパッタリング法、塗
布法又は溶射法により行う請求項9又は請求項10に記
載の薄膜太陽電池の製造方法。
11. The method for manufacturing a thin-film solar cell according to claim 9, wherein the formation of the insulating film is performed by an anodizing method, a ceramic plating method, a plasma CVD method, a sputtering method, a coating method or a thermal spraying method.
JP6202190A 1994-08-26 1994-08-26 Thin film solar cell and method for manufacturing the same Expired - Lifetime JP2786600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6202190A JP2786600B2 (en) 1994-08-26 1994-08-26 Thin film solar cell and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6202190A JP2786600B2 (en) 1994-08-26 1994-08-26 Thin film solar cell and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0864850A JPH0864850A (en) 1996-03-08
JP2786600B2 true JP2786600B2 (en) 1998-08-13

Family

ID=16453461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6202190A Expired - Lifetime JP2786600B2 (en) 1994-08-26 1994-08-26 Thin film solar cell and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2786600B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5400501A (en) * 2000-06-27 2002-01-03 Canon Kabushiki Kaisha Photovoltaic element, producing method therefor, and solar cell modules
JP4534331B2 (en) * 2000-10-06 2010-09-01 富士電機システムズ株式会社 Method for manufacturing thin film solar cell
JP5069458B2 (en) * 2006-04-05 2012-11-07 株式会社リコー Optical recording medium
JP4902472B2 (en) * 2007-09-18 2012-03-21 三洋電機株式会社 Solar cell and solar cell module
WO2010028358A2 (en) * 2008-09-08 2010-03-11 Research Foundation Of The City University Of New York Horizontally distrutibuted array of solar cells and methods of making and using
CN102386334A (en) * 2011-11-24 2012-03-21 深圳市创益科技发展有限公司 Solar cell photovoltaic building component and manufacturing method thereof
JP6067344B2 (en) * 2012-11-20 2017-01-25 株式会社東芝 Photochemical reaction system
JP6034151B2 (en) * 2012-11-20 2016-11-30 株式会社東芝 Photochemical reactor
JP6271311B2 (en) * 2014-03-24 2018-01-31 株式会社東芝 Electrochemical reactor

Also Published As

Publication number Publication date
JPH0864850A (en) 1996-03-08

Similar Documents

Publication Publication Date Title
US5259891A (en) Integrated type solar battery
US7829785B2 (en) Thin film solar cell with finger pattern
US6441297B1 (en) Solar cell arrangement
US20140349441A1 (en) Solar cell with metal grid fabricated by electroplating
US20170194516A1 (en) Advanced design of metallic grid in photovoltaic structures
US20170256661A1 (en) Method of manufacturing photovoltaic panels with various geometrical shapes
US20100059117A1 (en) Hybrid silicon solar cells and method of fabricating same
KR100334595B1 (en) Manufacturing method of photovoltaic device
WO1993023880A1 (en) Monolithic, parallel connected photovoltaic array and method for its manufacture
EP0186351A2 (en) Method of making current collector grid and materials therefor
US4647711A (en) Stable front contact current collector for photovoltaic devices and method of making same
JPH06196743A (en) Solar battery module
US20130125974A1 (en) Solar cell with metal grid fabricated by electroplating
JP2014103259A (en) Solar cell, solar cell module, and method of manufacturing the same
JP2786600B2 (en) Thin film solar cell and method for manufacturing the same
CN106653876A (en) Solar cell
JP2000058888A (en) Solar battery and manufacture thereof
CN111834470A (en) Cross-mesh electrical contact back contact heterojunction battery and assembly manufacturing method
JP2015153934A (en) photoelectric conversion device
JPH1065198A (en) Right-angled triangular solar cell module and manufacturing method thereof
US5395457A (en) Photovoltaic device and method of manufacturing the same
US20230335654A1 (en) Solar cell and manufacturing method thereof
JP2968404B2 (en) Method for manufacturing photovoltaic device
JPS63276278A (en) Transparent electrode with buried interconnection
JP3332487B2 (en) Method for manufacturing photovoltaic device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980428