JP2004153028A - Thin-film photoelectric converting device - Google Patents

Thin-film photoelectric converting device Download PDF

Info

Publication number
JP2004153028A
JP2004153028A JP2002316815A JP2002316815A JP2004153028A JP 2004153028 A JP2004153028 A JP 2004153028A JP 2002316815 A JP2002316815 A JP 2002316815A JP 2002316815 A JP2002316815 A JP 2002316815A JP 2004153028 A JP2004153028 A JP 2004153028A
Authority
JP
Japan
Prior art keywords
thin
photoelectric conversion
layer
based semiconductor
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002316815A
Other languages
Japanese (ja)
Inventor
Hisashi Higuchi
永 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002316815A priority Critical patent/JP2004153028A/en
Publication of JP2004153028A publication Critical patent/JP2004153028A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin-film photoelectric converting device which is easily manufactured and free of optical deterioration and has high conversion efficiency. <P>SOLUTION: A first thin-film photoelectric converting element 20 comprises on a light-transmissive substrate 11 a first translucent conductive layer 12, a first single-conductive silicon-based semiconductor layer 21, an intrinsic first translucent conductive layer 22, a first reverse conductive silicon-based semiconductor layer 23, and a second translucent conductive layer 30. A second thin-film photoelectric converting element 70 comprises on a conductive substrate 60 as a second substrate or a second insulating substrate 50 equipped with a conductive layer 61 a second single-conductive silicon-based semiconductor 71, an intrinsic second crystalline silicon-based semiconductor layer 72 which has column-grown surface unevenness, a second crystalline silicon-based semiconductor layer 72, a second reverse conductive silicon-based semiconductor layer 73, and a third translucent conductive layer 80. A contact layer 90 between both the elements is formed of a translucent resin layer 91 or an air layer 92 for heat insulation and the translucent resin layer 91. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、2つの基板に形成された光電変換素子を前記両基板が外側に位置するように互いに対向させて貼り合わせ、電気出力を別々に取り出すメカニカル・スタック型の薄膜光電変換装置に関し、特に両基板に結晶質の薄膜シリコン系半導体層を用い、光閉じ込め構造を(及び断熱構造を)有するメカニカル・スタック型の薄膜光電変換装置に関する。
【0002】
【従来の技術】
シリコン系薄膜太陽電池は高変換効率化、光劣化抑制、大面積化、及び低コスト化を目指した開発が活発である。この中で、太陽光エネルギー分布を有効に利用するために禁制帯幅の異なる複数の半導体接合を積み重ねた積層型と光閉じ込め効果を利用した各種凹凸構造のシリコン系薄膜太陽電池の開発が活発である。また非晶質シリコン系薄膜太陽電池は光劣化を抑制するための開発が活発である。
【0003】
従来例1として、光電変換素子群から成る2種類の基体を接着剤で機械的に貼り合わせ、電気出力を別々に取り出すメカニカル・スタック型の薄膜太陽電池モジュールが知られている(特許文献1を参照)。
【0004】
この薄膜太陽電池モジユールは、第1の半導体からなる光電変換領域と両側に透明電極を有し、分離形成された複数の直列接続ユニツトセルを備えた第1のガラス基板と、第1の半導体より狭いバンドギヤツプを持つ第2の半導体からなる光電変換領域と反基板側に透明電極を有し、分離形成された直列接続ユニツトセルを備えた第2のガラス基板とが両基板を外側にして対向して位置して互いにガラスにより気密に連結され、両基板上のユニツトセル間の空間は外部より遮断されている。上記特許文献1に開示された実施形態において、第1の半導体としてアモルファスシリコンのPIN接合が、第2の半導体としてアモルファスシリコン・ゲルマニュームのPIN接合が記載されている。
【0005】
この構成により、バンドギャップの広い第1の半導体からなるセル側から入射した光はそのセルで吸収され接合により光電流が発生するが、吸収されない光は対向するバンドギャップの狭い第2の半導体からなるセルにて吸収され、再び光電流を発生するので、入射光の利用効率が向上するとしている。また2枚のそれぞれの直列型太陽電池の両端を接続するために、第1の半導体に対しては5直列とし、第2の半導体に対しては6直列とし、両端の最適動作電圧がほぼ等しくなるようにしている。また2枚の基板は低融点ガラスで封止され、中はAr等の不活性ガスを封入して、湿度その他外部雰囲気に対する保護がなされている。
【0006】
従来例2として、メカニカル・スタック型の薄膜太陽電池モジュールが知られている(特許文献2を参照)。このタンデム太陽電池モジユールは、多結晶シリコンから成り大面積の下側の第1太陽電池サブモジュール、光カプラとして作用する透明な絶縁性中間層、水素添加非晶質シリコンから成り大面積で透明な上側の第2太陽電池サブモジュール、両方のサブモジュールの互いに無関係な電気接触部を備えることを特徴としている。
【0007】
また、多結晶シリコンとして、バルク単結晶シリコン以外にシリコン材料が基板上に析出した後、再結晶処理例えばアニーリングにより多結晶構造となった薄膜太陽電池モジュールが好適としている。また、光カプラは入射光を吸収も反射もしない電気絶縁性としている。さらに、第1太陽電池サブモジュールと第2太陽電池サブモジュールとは等しい幅のストライプ型構造であることを特徴としている。
【0008】
従来例3として、一つの基板上に禁制帯幅の異なる複数の半導体接合を積み重ねた積層型で、光学的・電気的に直列接続された二端子型タンデム構造のシリコン系薄膜太陽電池が知られている(特許文献3を参照)。
【0009】
このシリコン系薄膜太陽電池は、一つの基板上に2つのPIN接合(光入射側のトップセルと光反射側のボトムセル)を積層したもので、第2のI型層をまず真性もしくは実質的に真性のアモルファス半導体を形成した後、強光を照射して結晶化せしめ、第1と第2の半導体材料は同一であってもモホロジ的に異ならせるタンデム構造、即ち第1はアモルファス、第2は結晶化させることにより高価なゲルマン(GeH4)を用いることなく、I型膜のバンドギャップEgに0.15eV以上の差をつけたことを特徴としている。第1のPIN接合の非晶質シリコン系半導体では短波長光をよく吸収して光電流を生じ、第2のPIN接合の結晶質半導体では長波長光をよく吸収して光電流を生じるとしている。
【0010】
従来例4として、従来例3と同じ二端子型タンデム構造のシリコン系薄膜太陽電池が知られている(特許文献4を参照)。
【0011】
このシリコン系薄膜太陽電池の断面模式図を図2に示す。この図によれば、透明ガラス基板11上に順に積層された酸化物透明電極12、少なくとも1つの非晶質光電変換ユニット20、少なくとも1つの結晶質光電変換ユニット30、及び裏面電極40を含み、前記酸化物透明電極12及び結晶質光電変換ユニット30は表面凹凸構造を有する。
【0012】
ここで、1つの非晶質光電変換ユニット20は一導電型層21、非晶質光電変換層22、逆導電型層23からなり、1つの結晶質光電変換ユニット30は一導電型層31、結晶質光電変換層32、逆導電型層33からなり、裏面電極40は酸化物透明導電層41、金属層42からなる。また、非晶質光電変換ユニット20と結晶質光電変換ユニット30の間に中間層と称される透光性導電層などが挿入されることもある。
【0013】
非晶質光電変換ユニット20では短波長光がよりよく吸収されて光電流を生じ、結晶質光電変換ユニット30では長波長光がよりよく吸収されて光電流を生じる。さらに、透明電極と非晶質光電変換膜との境界は透明電極の結晶粒などによって凹凸化されており、結晶質光電変換膜と裏面電極との境界も結晶質光電変換膜の結晶粒によって凹凸化されており、これら2つの自生凹凸による光閉じ込め効果を得て、両ユニットにおいて光電流の増加が図られている。1つの光電変換ユニットでは高い変換効率を得ることが難しく禁制帯幅の異なる2つ以上の光電変換ユニットを積層し、更にそれぞれの光電変換ユニット膜面の凹凸化による光閉じ込め効果によって高い変換効率を得ようとしている。
【0014】
この二端子型タンデム構造では、最大効率を得るために、両光電変換ユニットの光電流を一致させて両光電変換ユニットを最適動作点とする最適化設計が必要である。具体的には、両光電変換ユニットの侵入光強度にもとづき膜質や膜厚や凹凸などを調整した最適化設計が行われ、さらに繰り返し実験によりこれらの最適値を実現する手法がとられている。前記中間層の挿入は、両光電変換ユニットの光電流をより調整し易くし、動作の最適化に用いられている。
【0015】
従来例5として、従来例4を集積化したタンデム型薄膜光電変換装置が知られている(特許文献5を参照)。これは、複数のタンデム型光電変換セルを形成するように実質的に直線状で互いに平行な複数の分離溝によって分離され、それらの複数のセルは前記分離溝によって分離され、さらに、それらの複数セルは前記分離溝に平行な複数の接続用溝を介して互いに電気的に直列接続されているものであり、一枚の基板上で集積化されている。
【0016】
従来例3、4、5のように、基板が一枚の薄膜光電変換装置を太陽電池として実際に用いる際には、基板の裏面電極側にバックシートなどが封止樹脂にて接着され、耐環境特性への配慮がなされている。
【0017】
また、従来例6として、シングルセルの裏面電極とバックシートとの間に、断熱材を密着させた太陽電池パネルが知られている(特許文献6を参照)。
【0018】
また、従来例7として、シングルセルの裏面に、断熱層を設けた薄膜太陽電池モジュールが知られている(特許文献7を参照)。
【0019】
また、従来例8として、シングルセルの裏面に、真空断熱層を設けた薄膜太陽電池モジュールが知られている(特許文献8を参照)。
【0020】
さらに、従来例9として、シングルセルにおいて、発泡体を設けた太陽電池モジュールが知られている(特許文献9を参照)。
【0021】
【特許文献1】
特公平5−27278号公報
【特許文献2】
特開平1−68977号公報
【特許文献3】
特公平5−25187号公報
【特許文献4】
特開2001−217440号公報
【特許文献5】
特開平11−186583号公報
【特許文献6】
特開平7−297435号公報
【特許文献7】
特開2002−111037号公報
【特許文献8】
特開2002−111026号公報
【特許文献9】
特開平9−191121号公報
【0022】
【発明が解決しようとする課題】
従来例1では、2つの非晶質シリコン系の半導体はどちらも光劣化の問題を抱えており、これら2つのセルから得られる合計の出力はそれぞれの光劣化の合計に相当する出力低下を生じてしまう問題があった。また、第1の半導体は短波長光に対して光吸収率の高いアモルファスシリコンであり、光閉じ込め構造とする必要が無いためか、特許文献1では光電変換面の凹凸化について何ら記載されていない。また、第2の半導体は長波長光に対して光吸収率の高いアモルファスシリコン・ゲルマニュームであり、光閉じ込め構造とする必要が無いためか、光電変換面の凹凸化についても特許文献1では何ら記載されていない。さらに2枚の基板間に不活性ガスが封入されているが、第1及び第2の半導体のいずれもが光劣化するアモルファスシリコン系であり、不活性ガスが及ぼす断熱効果や2つの半導体の光劣化抑制効果についても特許文献1では何ら記載されていない。
【0023】
従来例2では、第1の半導体が水素添加非晶質シリコンから成り、第2の半導体が多結晶シリコンから成り、この多結晶シリコンがアニーリングなどで再結晶処理した薄膜多結晶シリコンでもよいとしているが、特許文献2では第1及び第2の光電変換面の凹凸化などの光閉じ込め構造については何ら触れておらず、再結晶処理した薄膜多結晶シリコンが表面凹凸を成すのかどうか、結晶の凹凸サイズが光の波長オーダーかどうかも定かでない。この光閉じ込め構造の有無は薄膜光電変換装置の今後の変換効率向上に重要な影響を与えるものであり、薄膜光電変換層にはどうしても必要な構造である。同様に、特許文献2では第1の水素添加非晶質シリコンから成る光電変換面の凹凸化などの光閉じ込め構造についても何ら触れられていない。また光カプラは入射光を吸収も反射もしない電気絶縁性としているが、これでは第1の半導体である水素添加非晶質シリコンの膜厚を薄くできず光劣化を抑制できない。また。第1の水素添加非晶質シリコンからなる第1太陽電池サブモジュールは光劣化の問題を抱えており、出力低下を生じてしまう問題があった。
【0024】
従来例3では、第1のセルは非晶質であり光劣化する問題を抱えていた。また、第2のセルは結晶化により光劣化しないと考えられるが、第1と第2の光電変換セルが直列接続されているため、これらの電流は回路的に等しくなければならず、第1セルの光劣化の影響を第2のセルも受けてしまい、ともに光電流が低下するという問題があった。また第2の半導体を長波長光に対して光吸収率の低い結晶質のシリコンとしただけでは第2のセルの光電流の発生が小さく、直列接続した全体の効率は低くなってしまう。この第2のセルに対し、光電変換面の凹凸化などの光閉じ込め構造がなされていない。
【0025】
従来例4の薄膜二端子型タンデム構造の光電変換装置では、第1と第2の光電変換セルが直列接続されているため、第1の光電変換セルで発生する光電流と第2の光電変換セルで発生する光電流とが等しく、且つこの光電流がこれら2つの起電力セルそれぞれの最適動作点でなければならない。これらが等しくない場合、光電流の小さい方の光電変換セルで律速されたより小さい光電流しか外部に電流を取り出すことが出来ず、薄膜起電力装置全体の効率低下になってしまう。
【0026】
このため、従来、第1及び第2の光電変換セルで発生する光電流が等しくなるように、侵入光の波長や強度とともにPIN半導体膜の膜質や膜厚などとともに光閉じ込め効果のための凹凸形状などのパラメータを調整することが行われてきたが、パラメータが多く煩雑な調整が必要であった。調整パラメータは多く調整可能ではあるが、逆にパラメータが多くてパラメータの影響を受けやすいという問題があつた。
【0027】
このことは、設計の困難さと製造の困難さを生じていた。即ち、多数のパラメータについて設計では高度なシミュレーション技術を必要とし、製造では製造上の安定性と均一性を確保するために高度な製造技術が必要であるため、低コストで製造できる歩留りの高い太陽電池を提供することが困難であった。特にこれらのパラメータを製造で安定に且つ均一に製造することは非常に困難であり、これらのパラメータには必ず製造ロット間の中心値変動や製造ロット内及びロット間の面内バラツキがあり、これらの全てが製造ロット間の発生光電流の中心値変動や製造ロット内及びロット間の発生光電流の面内バラツキを両セルでそれぞれ生じていた。これら全てのバラツキが光電流の律速要因となって変換効率の低下や歩留り低下などの問題を引き起こし、出力当りの低コスト化が容易に実現できないという太陽電池として大きな課題があった。
【0028】
また、これらのパラメータ以外に、トップセルの非晶質シリコン系半導体には光劣化現象の存在が知られており、ボトムセルの結晶質シリコン系半導体は光劣化しないため、トップセルの光電流の減少に伴いボトムセルの光電流も回路的に減少せざるを得ないという最適化の困難さと効率低下の問題があった。
【0029】
前記中間膜は、短波長光の反射を強めてトップセルの膜厚を薄くして光劣化を抑制することに役立っているが、前記同様にパラメータ増による煩雑さとともにこのパラメータの膜厚などの中心値変動や面内バラツキの課題を抱え込み、さらに製造を困難にする。この中間膜より光電流を出力することもできるが、多層膜中に存在しており、取り出し電極を膜中に設けることは困難である。
【0030】
また、第1のセルと第2のセルは直接もしくは薄い中間層を介して積層されているので、両セルを熱的に分離することができず、高温実使用の場合、第1のセルは光劣化に改善傾向であるが第2のセルは効率低下傾向であり、逆に低温実使用の場合、第2のセルは効率向上傾向であるが第1のセルは光劣化が悪化傾向である。
【0031】
また、非晶質シリコン系半導体と接する第1の透光性導電膜面に形成された第1の凹凸形状は、通常透光性導電膜の多結晶化による自生凹凸が利用されているが、この凹凸面上への非晶質シリコン系半導体膜の堆積、そして結晶質シリコン系半導体膜の連続堆積により、結晶質シリコン系半導体膜の自生凹凸へ変化するものの、少なからず第1の凹凸形状を引き摺り、光反射面において長波長光に適した凹凸形状に必ずしも変化させることが出来なかった。
【0032】
また、非晶質シリコン系半導体膜の堆積、そして結晶質シリコン系半導体膜の連続堆積により、結晶質シリコン系半導体膜の堆積時に、非晶質シリコン系半導体膜のPIN接合に不純物の相互拡散を引き起こしたり、非晶質シリコン系半導体膜と接する導電膜からの金属拡散を引き起こしたりして、光電変換の低下を生じていた。また、長波長光を十分に吸収させ光電流を稼ぐため、結晶質シリコン系半導体膜の膜厚は非晶質シリコン系半導体膜の膜厚より厚く、結晶質シリコン系半導体膜の堆積時間は非晶質シリコン系半導体膜の堆積時間より長く、これら拡散の問題を生じ易かった。
【0033】
このため従来、非晶質光電変換膜のPI間にボロン(B)の拡散抑止のため拡散抑止膜の挿入などが行われてきたが、煩雑な膜構成が必要となって、前記同様に製造上の問題を引き起こしていた。
【0034】
従来例5では、従来例4のタンデム型薄膜光電変換装置を直列に集積化したものであり、集積化されるそれぞれのタンデム型ユニットセルで発生する光電流が等しく、且つこれらの光電流がそれぞれのタンデム型ユニットセルの最適動作点でなければ、集積化で高い変換効率が得られない。
【0035】
また上述した幾つかのパラメータの面内バラツキは面積の拡大とともに大きくなる傾向があり、これらパラメータの面内バラツキは直列接続による光電流の律速要因となって、集積化により変換効率が低下するという問題があった。このことは、大面積化を低コスト化の特長としている薄膜型の光電変換装置では重大な問題であった。
【0036】
薄膜光電変換装置の製造方法は、二端子型タンデム構造である従来例4のような場合、薄膜半導体堆積途中の大気暴露を嫌ってインライン型の化学気相成長装置にて連続製膜されるが、非晶質シリコン系半導体と結晶質シリコン系半導体とでは膜厚が一桁程度異なっているため製膜時間差が大きく、インライン型の連続製膜装置では効率の悪い生産方法であってコスト高となっていた。
【0037】
従来例6〜8では、断熱材や真空断熱層や発泡体を設けて、非晶質シリコン半導体の光劣化を抑制しようとするものであるが、いずれもシングルセルの裏面側に設置するものであり、タンデムセルに効果的な構成ではない。
【0038】
本発明は斯かる事情に鑑みてなされたものであり、タンデムセル間での煩雑な設計上の調整を無くし、製造ロットによるパラメータの中心値変動や面内バラツキの悪影響を軽減した薄膜光電変換装置を提供することを目的とする。また、第1の素子(セル)と第2の素子(セル)とを結晶質シリコン系半導体で構成することにより、光劣化の無い薄膜光電変換装置を提供することを目的とする。また、凹凸化を第1の素子(セル)と第2の素子(セル)とで独立して設計・作製できて、さらに第1の素子と第2の素子との中間に効果的な光閉じ込め構造を設けることで変換効率の高い薄膜光電変換装置を提供することを目的とする。また、第1の素子と第2の素子の製造を分離することにより、もしくは拡散抑止層などの挿入工程を無くすかその役割を軽減化することにより、製造を容易とし低コストで高い変換効率の薄膜光電変換装置を提供することを目的とする。
【0039】
また、変換効率が高い集積構造の薄膜光電変換装置を提供することを目的とする。
【0040】
また、第1と第2の素子間に短波長に対し高い光反射率を有する密接層を設けることにより、第1の結晶質シリコン系半導体層の膜厚を薄くできて、第1の光電変換素子が長波長に対し高い光透過率を有する薄膜光電変換装置を提供することを目的とする。
【0041】
また、第1と第2の素子間に高い断熱性を有する上記密接層を設けることにより、第2の結晶質シリコン系半導体層の温度上昇による効率低下を低減できる薄膜光電変換装置を提供することを目的とする。
【0042】
さらに、バックシートを無くし、低コスト化が可能で耐環境性に優れた薄膜光電変換装置を提供することを目的とする。
【0043】
【課題を解決するための手段】
上記目的を達成するために、本発明の薄膜光電変換装置は、透光性を有する第1の基板を備えた第1の薄膜光電変換素子と、表面が導電性の第2の基板を備えた第2の薄膜光電変換素子とを、前記両基板が外側に位置するように互いに対向させて成り、前記第1の薄膜光電変換素子は、前記第1の基板上に、第1の透光性導電層、第1の一導電型シリコン系半導体層、実質的に真性であり表面が凹凸状の結晶質シリコン系半導体層、第1の逆導電型シリコン系半導体層、及び第2の透光性導電層が順次積層されて成るとともに、前記第2の薄膜光電変換素子は、前記第2の基板上に、第2の一導電型シリコン系半導体層、実質的に真性であり表面が凹凸状の結晶質シリコン系半導体層、第2の逆導電型シリコン系半導体層、及び第3の透光性導電層が順次積層されて成り、且つ前記第1の薄膜光電変換素子と前記第2の薄膜光電変換素子との間に透光性樹脂層もしくは断熱用気体層を含む密接層を介在させたことを特徴とする。
また特に、前記第1の結晶質シリコン系半導体層が結晶質柱状堆積による自生凹凸部を有し、この自生凹凸部上に形成した前記第2の透光性導電層と該第2の透光性導電層上の前記密接層との凹凸構成により、光閉じ込め効果を高めたことを特徴とする。
【0044】
また特に、前記第2の結晶質シリコン系半導体層が結晶質柱状堆積による自生凹凸部を有し、この自生凹凸部上に形成した前記第3の透光性導電層と該第3の透光性導電層上の前記密接層との凹凸構成により、光閉じ込め効果を高めたことを特徴とする。
【0045】
また特に、前記第2の結晶質シリコン系半導体層及び前記第2の一導電型シリコン系半導体層と接する前記第2の基板表面が凹凸状を成していることを特徴とする。
【0046】
また特に、前記第1の結晶質シリコン系半導体層及び前記第1の一導電型シリコン系半導体層と接する少なくとも前記第1の透光性導電層表面もしくは前記第1の基板表面が凹凸状を成すことを特徴とする。
【0047】
また特に、前記第2の結晶質シリコン系半導体層及び前記第2の一導電型シリコン系半導体層と接する前記第2の基板表面が凹凸状を成すとともに、前記第1の結晶質シリコン系半導体及び前記第1の一導電型シリコン系半導体層と接する少なくとも前記第1の透光性導電層表面もしくは前記第1の基板表面が凹凸状を成し、且つ前記第2の基板表面の凹凸部の高低差とピッチが、前記第1の基板表面の凹凸部の高低差とピッチより大きいことを特徴とする。
【0048】
また特に、前記第1の結晶質シリコン系半導体層及び前記第2の結晶質シリコン系半導体層が、化学気相成長法により連続堆積することなくそれぞれ独自の製膜条件で堆積されることを特徴とする。
【0049】
さらに特に、前記第2の結晶質シリコン系半導体層の膜厚が、前記第1の結晶質シリコン系半導体層の膜厚より大きいことを特徴とする。
【0050】
【発明の実施の形態】
以下、本発明に係る実施形態を図面に基づいて詳細に説明する。本発明の薄膜光電変換装置の断面模式図を図1に示す。
【0051】
図1に示すように、薄膜光電変換装置1は、透光性を有する第1の基板10を備えた第1の薄膜光電変換素子20と、第2の基板50を備えた第2の薄膜光電変換素子70とが、両基板11,50を外側にして対向して配置されたメカニカル・スタック型の構造をなすものである。
【0052】
ここで、第1の薄膜光電変換素子20は、透光性基板11上に順次、第1の透光性導電層12、第1の一導電型シリコン系半導体層21、実質的に真性である柱状成長の表面凹凸を有する結晶質シリコン系半導体層22、第1の逆導電型シリコン系半導体層23、及び第2の透光性導電層30を積層してなり、第2の薄膜光電変換素子70は、第2の基板である導電性基板60上、もしくは導電層61を備えた第2の基板である絶縁性基板50上に、順次、第2の一導電型シリコン系半導体層71、実質的に真性である柱状成長の表面凹凸を有する第2の結晶質シリコン系半導体層72、第2の逆導電型シリコン系半導体層73、第3の透光性導電層80を積層してなり、且つ両薄膜光電変換素子間の密接層90が例えば透光性樹脂層90もしくは透光性樹脂層91と断熱用気体層92からなる。
【0053】
これにより、例えば、第1の薄膜光電変換素子20において第1の結晶質シリコン系半導体膜22の膜厚に中心値変動や面内バラツキがあっても、これが第2の薄膜光電変換素子70の光起電力とは無関係となり、第1の薄膜光電変換素子20を最適動作点にシフトすることにより、全体としての変換効率の低下は無く、従来技術より高い変換効率となる。膜質についても同様である。そして、これらのパラメータの両セル間の設計調整や高度なシミュレーション技術が不要となり、且つ高度な製造技術が不要となるので製造が容易になる。
【0054】
また、第1の薄膜光電変換素子20と第2の薄膜光電変換素子70は、それぞれ第1の結晶質シリコン系半導体層22と第2の結晶質シリコン系半導体層72から成り、いずれも非晶質シリコン系半導体を用いていないため光劣化が無く、従来技術より光安定化後の変換効率が高くなる。
【0055】
また、第1と第2の薄膜光電変換素子間に、主に断熱用気体層(減圧気体層もしくは真空層を含む)を含む密着層90を、もしくは図1のように断熱用気体層と透光性樹脂層との並層から成る密着層90を、もしくは気体と透光性樹脂材の混合層からなる屈折率差の大きい密接層90を設けることにより、実使用の太陽光照射下において、密接層90の気体成分に起因する断熱効果により、第2の結晶質シリコン系半導体層72の温度上昇が抑えられ、第2の薄膜光電変換素子の温度上昇による効率低下が抑えられる。ここで、密着層90は、例えばシリコーン等の液状接着剤を用い、これを攪拌しながら気泡を取り込み、接着剤の真空脱泡や接着工程時の減圧を行わず、加熱による硬化工程を行なって形成してもよい。また、EVA(エチレン酢酸ビニル共重合樹脂)やPVB(ポリビニルブチラール)等の固体形状のシート状接着剤を用いて、固体形状のシートを予め打ち抜き工程により気層を混合させた層や環状の層としてもよい。なお、その他の樹脂材料としてはエチレン−アクリル酸メチル共重合体(EMA)、エチレン−アクリル酸エチル共重合体(EEA)、フッ素樹脂等が考えられる。
【0056】
また、前述のような透光性樹脂層90から成る密接層90を設けることにより、第1の結晶質シリコン系半導体層への光反射が大きくなり、第1の結晶質シリコン系半導体層22の膜厚を薄くできて、第1の薄膜光電変換素子20の製造コストを低減できる。
【0057】
すなわち、密接層90が主に断熱用気体層の場合、屈折率差及び断熱性も大きくより効果的である。また断熱用気体層を減圧気体層もしくは真空層にすることにより、屈折率差及び断熱性も大きくより効果的である。密接層90が断熱用気体層と透光性樹脂層との並層とする場合、断熱用気体層による前記効果とともに、透光性樹脂層により両素子間の隙間を固定化できて薄膜光電変換装置の機械的安定性を保持できる。特に、非集積セルの場合外周を固定化し、集積セルの場合分離溝を固定化すると効率への悪影響が無く好都合である。密接層90が気体と透光性樹脂材の混合層の場合、全面において隙間の固定が出来て機械的強度を備えることができ、気体と透光性樹脂材との繰り返しを光の波長オーダーとすることにより光の反射率を高めることができる。
【0058】
また、本発明の薄膜光電変換装置は、第1の結晶質シリコン系半導体層22が結晶質柱状堆積による自生凹凸部を有し、この自生凹凸部上に形成した第2の透光性導電層30とこの第2の透光性導電層30上の断熱気体層(減圧気体層もしくは真空層を含む)、もしくは断熱用気体層と透光性樹脂層との並層、もしくは気体と透光性樹脂材の混合層からなる密接層90との凹凸構成により、光閉じ込め効果を高めることができる。ここで、自生凹凸の程度は、シリコンの体積結晶化率で表現できる。すなわち、基板上から柱状に一定方向に結晶成長する(配向という)ことにより、突出した凹凸状の表面形状となり、この柱状微結晶相の間はアモルファス相であり、自生凹凸の程度は結晶相/(結晶相+アモルファス相)の比である体積結晶化率(%)の大きさにほぼ比例する。概略、これらの体積結晶化率が60%以上の場合を自生凹凸といい、それ未満では非自生凹凸というものとする。
【0059】
これにより、従来無かった積層構造の中間位置にさらに凹凸面を得たことになり、光の選択入射・反射・屈折そして吸収が第1及び第2の薄膜光電変換素子20,70においてより活発となり、この光閉じ込め効果の向上により、従来に比し変換効率の向上をもたらす。
【0060】
また、本発明の薄膜光電変換装置は、第2の結晶質シリコン系半導体層72が結晶質柱状堆積による自生凹凸部を有し、この自生凹凸部上に形成した第3の透光性導電層80と、この第3の透光性導電層80上の断熱気体層(減圧気体層もしくは真空層を含む)、もしくは断熱用気体層と透光性樹脂層との並層、もしくは気体と透光性樹脂材の混合層からなる密接層90との凹凸構成により、光閉じ込め効果を高めることができる。
【0061】
これにより、従来無かった積層構造の中間位置にさらに凹凸面を得たことになり、光の選択入射・反射・屈折そして吸収が第1及び第2の薄膜光電変換素子20,70においてより活発となり、この光閉じ込め効果の向上により、従来に比し変換効率の向上をもたらす。
【0062】
また、本発明の薄膜光電変換装置は、第2の結晶質シリコン系半導体層72及び第2の一導電型シリコン系半導体層71と接する導電性基板60の表面もしくは導電層61を備えた絶縁性基板50の表面が凹凸をなすことを特徴とする。
【0063】
これにより、積層構造の背面位置に凹凸面を得たことになり、光の反射そして吸収が特に第2の薄膜光電変換素子70でより活発となり、光閉じ込め効果のアップにより、変換効率の向上をもたらす。また、この凹凸を第2の基板である導電性基板60もしくは絶縁性基板50上に新たに形成することができるので、凹凸形成の自由度と容易さが得られ、従来に比し高い変換効率をもたらす。
【0064】
また、本発明の薄膜光電変換装置は、第1の結晶質シリコン系半導体層22及び第1の一導電型シリコン系半導体層21と接する少なくとも第1の透光性導電層12表面もしくは第1の基板11表面が凹凸をなすことを特徴とする。これにより、積層構造の入射位置に凹凸面を得たことになり、光の選択入射・屈折そして吸収が特に第1の光電変換素子でより活発となり、光閉じ込め効果のアップにより、変換効率の向上をもたらす。
【0065】
また、本発明の薄膜光電変換装置は、第2の結晶質シリコン系半導体層72と接する光反射性の導電性基板60もしくは導電層61を備えた絶縁性基板50の第1の凹凸の高低差とピッチが、前記第1の結晶質シリコン系半導体層22と接する透光性基板11もしくは第1の透光性導電層12の第2の凹凸の高低差とピッチより大きいことを特徴とする。これにより、短波長光より光侵入が深い長波長光に対して、第1の凹凸がより光透過性となり、第2の凹凸がより光反射性となり、長波長光の光閉じ込め効果が増してより高い変換効率の向上をもたらす。ここで、凹凸の高低差とピッチは、断面のTEM(透過型電子顕微鏡)写真やAFM(原子間力顕微鏡)による表面観察によって確認(測定)できる。
【0066】
また、本発明の薄膜光電変換装置によれば、第1の結晶質シリコン系半導体層22、第2の結晶質シリコン系半導体層72が、化学気相成長法により連続堆積することなくそれぞれ独自の製膜条件で堆積されることを特徴とする。
【0067】
これにより、それぞれの基板に対して、異なった製膜条件もしくは異なった製膜装置で独立に製膜することが可能となり、一方のPIN半導体膜を堆積することが他方のPIN半導体膜の特性に悪影響を及ぼすということが無い。これにより、それぞれの波長に合った結晶化堆積が容易となり、さらに第2の結晶質シリコン系半導体層72の堆積が堆積された第1の結晶質シリコン系半導体層22に不純物拡散などの悪影響を及ぼすことが無く、第1の結晶質シリコン半導体層22と第1の一導電型シリコン系半導体層21の間や第1の一導電型シリコン系半導体層21と第1の透明導電層12の間に、特別の拡散抑止膜を設けなくても高変換効率が得られるので拡散抑止膜が不要となる。
【0068】
特に、短波長感度を必要とする第1の結晶質シリコン系半導体層22と長波長感度を必要とする第2の結晶質シリコン系半導体層72とでは、結晶粒径や結晶化率などの最適膜質が異なっており、それぞれ異なった製膜装置や製膜条件を用いることにより、膜質がよく変換効率の高い堆積が可能となる。また、第1の結晶質シリコン系半導体層と第2の結晶質シリコン系半導体層とでは膜厚が異なっており製膜時間も異なっており、それぞれ異なった製膜装置を用いることにより効率のよい生産方法が可能となる。
【0069】
また、本発明の薄膜光電変換装置によれば、請求項1に記載の薄膜光電変換装置であって、前記第2の結晶質シリコン系半導体層の膜厚が、前記第1の結晶質シリコン系半導体層の膜厚より大きいことを特徴とする。
【0070】
これにより、吸収されやすい短波長光は第1の結晶質シリコン系半導体層22にてよりよく吸収され、吸収されにくい長波長光は第2の結晶質シリコン系半導体層72にてよりよく吸収されるので、従来技術のように必ずしも異なる禁制帯幅の半導体を用いる必要がない。特に、従来技術のように禁制帯幅の大きい第1セル(トップセル)の高い開放端電圧を得ることは出来ないが、同じ禁制帯幅の半導体であっても、前記凹凸状による光閉じ込め効果により短絡電流の大きい第1の薄膜光電変換素子20を得ることができる。
【0071】
このように、短波長光の減衰は早く、第1の結晶質シリコン系半導体層の膜厚を第2の結晶質シリコン系半導体層の膜厚より小さくした方が、太陽光エネルギー分布を有効に利用できて好都合である。
【0072】
【実施例】
以下に、本発明をより具体的に示す実施例1〜4を説明する。
<実施例1>
図1に示す薄膜光電変換装置1を例にとり説明する。既に説明したように、11は透光性基板であり、本実施例では両面が平坦な白板ガラス(厚み1.8mm)を用いた。他の透光性基板として、青板ガラス、サファイアなどの透明無機質基板、ポリカーボネートなどの透明有機樹脂基板などを用いてもよい。12は、第1の透光性導電膜で、本実施例ではスパッタ法で堆積したITO(Indium Tin Oxide)膜を用いる。透光性導電膜の他の製法として、真空蒸着法、スプレー熱分解法、イオンプレーティング法、ディツプコート法、ゾル・ゲル法、などを用いてもよい。他の透光性導電膜として、不純物をドープしたSnO2系膜、ZnO系膜、In2O3系膜、などを用いてもよく、これらの透光性導電膜を積層して用いてもよい。20はPIN接合を有する結晶質シリコン系半導体膜であり、水素化微結晶シリコン系の膜を用いた。P型半導体膜とI型半導体膜とN型半導体膜の積層によるPIN接合半導体とし、本実施例ではプラズマCVD法で堆積したが、触媒CVD法などで堆積してもよい。
【0073】
本実施例では第1の透光性導電膜側にP型半導体膜を設けたPIN接合としたが、逆接合のNIP接合でも構わない。また、I型半導体膜が結晶質の微結晶もしくは多結晶であれば、P型半導体膜とN型半導体膜もしくはいずれかが非晶質でも構わない。また、水素化微結晶シリコン合金系の膜もしくは水素化アモルファスシリコン合金系の膜でも構わない。例えば、光入射側のP膜は水素化アモルファスシリコンカーバイドが透光性を高めて光の侵入ロスが少なくより好ましい。
【0074】
本実施例では、まず前記第1の透光性導電膜付きの透光性基板上にプラズマCVD法によりPIN型半導体膜をそれぞれ連続して堆積した。まず、P型μc−Si:H半導体膜を200Å(0.02μm)堆積させた。ここで、μcとは、粒径がサブミクロン以下の、いわゆる微結晶質をさすものとする。P型μc−Si:H半導体のかわりにP型μc−SiC:H膜でも構わない。P型μc−Si:Hの原料ガスとしてSiH4、H2ガス、B2H6(H2で500ppmに希釈したもの)を用い、これらのガスの流量をそれぞれ1sccm、200sccm、10sccmとした。
【0075】
続いてI型半導体膜を10000Å(=1μm)堆積させた。I型μc−Si:Hの原料ガスとしてSiH4、H2ガスを用い、これらのガスの流量をそれぞれ10sccm、100sccmとした。I型膜の結晶化率は70%であり、成長表面には自生凹凸が形成されていた。
【0076】
さらにN型a−Si:H半導体膜を120Å堆積させた。N型a−Si:Hの原料ガスとしてSiH4、H2ガス、PH3(H2で1000ppmに希釈したもの)を用い、これらのガスの流量をそれぞれ3sccm、30sccm、6sccmとした。基板温度はPIN膜の何れも220℃とした。
【0077】
30は第2の透光性導電膜であり、ITO膜をスパッタ法で堆積した。他の第2の透光性導電膜として、不純物をドープしたSnO2系膜、ZnO系膜、In2O3系膜、などを用いてもよく、これらの積層膜でもよい。また、この上にAg膜を堆積して櫛型などの電極パターンを形成した集電極を有してもよい。
【0078】
50は絶縁性基板もしくは導電性基板60であり、本実施例では絶縁性基板である青板ガラス1.8mmtを用いた。他の基板として、各種ガラスなどの無機質基板、ポリカーボネートなどの有機樹脂基板、またアルミ基板やステンレス基板などの導電性基板を用いてもよい。
【0079】
61は光反射性導電膜であり、本実施例ではTi/Ag/Tiの積層膜を用いた。基板側のTi膜は密着性促進のためであり、Ag膜上のTi膜は半導体膜中へのAg拡散抑止のためである。Ag膜は、高光反射性を有し、高変換効率が得られやすい。他の材料構成として、Ti/Ag:Al合金/ZnO:Al、Ti/Ag/ITO、Ag/ITO、などでも構わない。
【0080】
70はPIN接合を有する結晶質シリコン系半導体膜であり、プラズマCVD法や触媒CVD法などで堆積して得られる比較的高い結晶化率を有する微結晶シリコン系の膜を用い、P型半導体膜とI型半導体膜とN型半導体膜の積層によるPIN接合半導体とした。I型半導体膜が微結晶であれば、P型半導体膜とN型半導体膜は微結晶もしくは非晶質のいずれでも構わない。
【0081】
本実施例では前記光反射性導電膜付きガラス基板上にプラズマCVD法によりNIP型半導体膜をそれぞれ連続して堆積した。光反射性導電膜側にN型半導体膜を設けたNIP接合としたが、逆接合のPIN接合でも構わない。また、微結晶シリコン合金系の膜でも構わない。本実施例ではプラズマCVD法を用いた。まず、N型μc−Si:H半導体膜を100Å堆積させた。N型μc−Si:Hの原料ガスとしてSiH4、H2ガス、PH3(H2で1000ppmに希釈したもの)を用い、これらのガスの流量をそれぞれ2sccm、30sccm、4sccmとした。続いてI型μc−Si:H半導体膜を1.8μm堆積させた。I型μc−Si:Hの原料ガスとしてSiH4、H2ガスを用い、これらのガスの流量をそれぞれ20sccm、100sccmとした。I型膜の結晶化率は70%であり、成長表面には自生凹凸が形成されていた。さらにP型a−Si:H半導体膜を90Å堆積させた。P型a−Si:H半導体のかわりにP型a−SiC:HやP型μc−Si:H膜やP型μc−SiC:H膜でも構わない。P型a−Si:Hの原料ガスとしてSiH4、H2ガス、B2H6(H2で500ppmに希釈したもの)を用い、これらのガスの流量をそれぞれ2sccm、400sccm、15sccmとした。基板温度はNIP膜の何れも240℃とした。
【0082】
80は、第3の透光性導電膜で、本実施例ではITO膜をスパッタ法で堆積した。他の第2の透光性導電膜として、不純物をドープしたSnO2系膜、ZnO系膜、In2O3系膜、などを用いてもよく、これらの積層膜でもよい。また、この上に前記同様の集電極を形成してもよい。
【0083】
92は断熱用気体層であり、本実施例では空気層とした。空気の他に、窒素、もしくはアルゴン、などでもよく、基板が厚く強度が確保できれば真空がより好ましい。91は透光性樹脂層であり、本実施例では透明封止樹脂のEVA(エチレン酢酸ビニル共重合樹脂)を用いた。EVAテープを両基体の端部周辺に挟み、これらを気体中にて、加熱による樹脂の溶融、EVAの圧着、熱硬化、一次冷却、二次冷却からなる工程によって薄膜光起電力素子を作製した。
【0084】
5cm角の基板サイズに1cm角の素子を各々2cm離して4個製作し、変換効率は4個の平均値とした。比較のため、従来の図2の構造にて、両面が平坦な白板ガラス(厚み1.8mm)を用いて、トップセルを非晶質シリコン半導体の製作条件と膜厚にて、ボトムセルを上記と同様の製作条件と膜厚にて素子を作製した。
【0085】
こうして得られた2種類の光電変換装置のAM1.5下、100mW/cmでの光安定化後の変換効率の結果は、比較例1の薄膜起電力装置の変換効率が7.6%に対し、実施例1の薄膜起電力装置の変換効率が8.3%で、より高い変換効率を示した。
<実施例2>
まず第1の薄膜起電力素子基体を前記実施例1と同様に製作した。
【0086】
第2の薄膜起電力素子基体の製作において、50の絶縁性基板として、青板ガラス1.8mmtを用い、その表面をサンドブラスト処理し、さらにフッ酸処理・洗浄し、凹凸を形成した。凹凸の高低差とピッチはそれぞれ約250nm〜350nmと約300nm〜400nmであった。この基板上に、前記実施例1と同じ条件で、順次、61の光反射性導電膜、70のNIP接合を有する結晶質シリコン系半導体膜、80の透光性導電膜、を形成した。そして、90の密接層を前記実施例1同様の構成として、本実施例2の薄膜起電力装置を製作した。比較例として、本実施例のように基板処理をする基板そのものが存在しないので、前記比較例1を用いた。
【0087】
こうして得られた2種類の光電変換装置のAM1.5下、100mW/cmでの光安定化後の変換効率の結果は、比較例1の薄膜起電力装置の変換効率が7.6%に対し、実施例2の薄膜起電力装置の変換効率が8.9%で、より高い変換効率を示した。
<実施例3>
この実施例では、第1の薄膜起電力素子基体の11の透光性基板と12の第1の透光性導電膜とを得るために、市販の多結晶性のSnO2:F(弗素ドープ二酸化錫)膜付きの白板ガラスを用いた。多結晶性のSnO2:F膜の自生凹凸の高低差とピッチは断面のTEM観察によればそれぞれ約100nm〜250nmと約200nm〜300nmであった。また、AFM測定によれば、算術平均粗さRaが26nm、 Power Spectral Densityの最多波長(最多ピッチ)が1.25μm/cycleであった。基板上に、前記実施例1と同じ条件で、順次、20のPIN接合を有する結晶質シリコン系半導体膜、30の第2の透光性導電膜、を形成した。そして、第2の薄膜起電力素子基体を前記実施例1と同様に製作した。
【0088】
そして、91の透光性樹脂を前記実施例1と同様に挟んだ構成として薄膜起電力装置を製作した。比較例3として、本実施例のように薄膜起電力素子基体の11の透光性基板と12の第1の透光性導電膜とを得るために、市販の多結晶性のSnO2:F(弗素ドープ二酸化錫)膜付きの白板ガラスを用いた。20のPIN接合を有するトップセルを非晶質シリコン半導体の製作条件と膜厚にて、30のPIN接合を有する結晶質シリコン系半導体膜、40の光反射性導電膜を、順次、比較例1と同様に製作した。
【0089】
こうして得られた2種類の光電変換装置のAM1.5下、100mW/cmでの光安定化後の変換効率の結果は、比較例3の薄膜起電力装置の変換効率が7.9%に対し、実施例3の薄膜起電力装置の変換効率が8.6%で、より高い変換効率を示した。
<実施例4>
本実施例4では、第1の薄膜起電力素子基体については、前記実施例3と同じ市販の多結晶性のSnO2:F(弗素ドープ二酸化錫)膜付きの白板ガラスを用いて他も同じ条件で製作した。また、第2の薄膜起電力素子基体については、前記実施例2と同じ青板ガラスの表面をサンドブラスト処理し、さらにフッ酸処理・洗浄し、凹凸を形成した基板を用い同じ条件で製作した。
【0090】
そして、91の透光性樹脂を前記実施例1同様に挟んだ構成として、本実施例4の薄膜起電力装置を製作した。比較例4として、本実施例のように基板のサンドブラスト処理をする基板そのものが存在しないので、前記比較例3を用いた。こうして得られた2種類の光電変換装置のAM1.5下、100mW/cmでの光安定化後の変換効率の結果は、比較例3の薄膜起電力装置の変換効率が7.9%に対し、実施例4の薄膜起電力装置の変換効率が9.3%で、より高い変換効率を示した。
【0091】
【発明の効果】
本発明の薄膜光電変換装置によれば、薄膜の製造上の中心値変動や面内バラツキなどの悪影響を軽減し、凹凸構造から成る光閉じ込め効果を高め、且つ断熱構造により、変換効率向上と大面積化と低コスト化が図れる。
【0092】
また、本発明の薄膜光電変換装置によれば、第1の薄膜光電変換素子と第2の薄膜光電変換素子にいずれも結晶質シリコン系半導体層を用いて非晶質シリコン系半導体を用いていないため、光劣化が無い。
【0093】
さらに詳しくは、請求項1の薄膜光電変換装置によれば、例えば、第1の薄膜光電変換素子において結晶質シリコン系半導体膜の膜厚に中心値変動や面内バラツキがあっても、これが第2の薄膜光電変換素子の光起電力とは無関係となり、第1の薄膜光電変換素子を最適動作点にシフトすることにより、全体としての変換効率の低下は無く、従来技術より高い変換効率となる。膜質についても同様である。そして、これらのパラメータの両セル間の設計調整や高度なシミュレーション技術が不要となり、且つ高度な製造技術が不要となるので製造が容易になる。
【0094】
また、第1と第2の薄膜光電変換素子間にシリコン系半導体と屈折率差の大きい気体成分を含む密接層を設けることにより、第1の結晶質シリコン系半導体層への光反射が大きくなり、第1の結晶質シリコン系半導体層の膜厚を薄くできて、第1の薄膜光電変換素子の製造コストを低減できる。さらに、第1と第2の薄膜光電変換素子間に気体成分を含む密接層を設けることにより、これら素子間の断熱化により、太陽光照射の実使用にて第2の薄膜光電変換素子の温度上昇を抑えて効率低下を防ぐことを目的とする。
【0095】
しかも付加効果として、密接層が主に断熱用気体層の場合、屈折率差及び断熱性も大きくより効果的である。また断熱用気体層を不活性ガスなどの気体層とすることにより、微結晶シリコン層の経時変化(酸素などの侵入による)を完全に無くすことができる。また断熱用気体層を減圧気体層もしくは真空層にすることにより、屈折率差及び断熱性も大きくより効果的である。密接層が断熱用気体層と透光性樹脂層との並層の場合、断熱用気体層による前記効果とともに、透光性樹脂層により両素子間の隙間を固定化できて薄膜光電変換装置の機械的安定性を保持できる。特に、非集積セルの場合外周を固定化し、集積セルの場合分離溝を固定化すると効率への悪影響が無く好都合である。密接層が気体と透光性樹脂材の混合層の場合、全面において隙間の固定が出来て機械的強度を備えることができ、気体と透光性樹脂材との繰り返しを光の波長オーダーとすることにより光の反射率を高めることができる。
【0096】
また、請求項2の薄膜光電変換装置によれば、第1の結晶質シリコン系半導体層が結晶質柱状堆積による自生凹凸部を有し、この自生凹凸部上に形成した前記第2の透光性導電層と該第2の透光性導電層上の前記気体成分を含む密接層との凹凸構成により、光閉じ込め効果を高めることができる。これにより、従来無かった積層構造の中間位置にさらに凹凸面を得たことになり、光の選択入射・反射・屈折そして吸収が第1及び第2の薄膜光電変換素子においてより活発となり、この光閉じ込め効果の向上により、従来に比し変換効率の向上をもたらす。
【0097】
また、請求項3の薄膜光電変換装置によれば、第2の結晶質シリコン系半導体層が結晶質柱状堆積による自生凹凸部を有し、この自生凹凸部上に形成した第3の透光性導電層とこの第3の透光性導電層上の気体成分を含む密接層との凹凸構成により、光閉じ込め効果を高めることができる。これにより、従来無かった積層構造の中間位置にさらに凹凸面を得たことになり、光の選択入射・反射・屈折そして吸収が第1及び第2の薄膜光電変換素子においてより活発となり、この光閉じ込め効果の向上により、従来に比し変換効率の向上をもたらす。
【0098】
また、請求項4の薄膜光電変換装置によれば、前記第2の結晶質シリコン系半導体層及び第2の一導電型シリコン系半導体層と接する導電性基板の表面もしくは導電層を備えた絶縁性基板の表面が凹凸をなすことを特徴とする。これにより、積層構造の背面位置に凹凸面を得たことになり、光の反射そして吸収が特に第2の薄膜光電変換素子でより活発となり、光閉じ込め効果のアップにより、変換効率の向上をもたらす。また、この凹凸部を第2の基板である導電性基板もしくは絶縁性基板上に新たに形成することができるので、凹凸形成の自由度と容易さが得られ、従来に比し高い変換効率をもたらす。
【0099】
また、請求項5の薄膜光電変換装置によれば、前記第1の結晶質シリコン系半導体層及び第1の一導電型シリコン系半導体層と接する少なくとも第1の透光性導電層表面もしくは第1の基板11表面が凹凸をなすことを特徴とする。これにより、積層構造の入射位置に凹凸面を得たことになり、光の選択入射・屈折そして吸収が特に第1の光電変換素子でより活発となり、光閉じ込め効果のアップにより、変換効率の向上をもたらす。
【0100】
また、請求項6の薄膜光電変換装置によれば、第2の結晶質シリコン系半導体層と接する光反射性の導電性基板もしくは導電層を備えた絶縁性基板の第1の凹凸(高低差とピッチ)が、前記第1の結晶質シリコン系半導体層と接する透光性基板もしくは第1の透光性導電層の第2の凹凸(高低差とピッチ)より大きいことを特徴とする。これにより、短波長光より光侵入が深い長波長光に対して、第1の凹凸がより光透過性となり、第2の凹凸がより光反射性となり、長波長光の光閉じ込め効果が増してより高い変換効率の向上をもたらす。
【0101】
また、請求項7の薄膜光電変換装置によれば、第1の結晶質シリコン系半導体層、第2の結晶質シリコン系半導体層が、化学気相成長法により連続堆積することなくそれぞれ独自の製膜条件で堆積されることを特徴とする。これにより、それぞれの基板に対して、異なった製膜条件もしくは異なった製膜装置で独立に製膜することが可能となり、一方のPIN半導体膜を堆積することが他方のPIN半導体膜の特性に悪影響を及ぼすことが無い。また、第1の結晶質シリコン系半導体層と第2の結晶質シリコン系半導体層とでは必要とされる分光感度が異なっており、それぞれ異なった製膜装置を用いることにより変換効率の向上が期待できる。特に、第1の結晶質シリコン系半導体層と第2の結晶質シリコン系半導体層とでは膜厚が異なっており製膜時間も異なっており、それぞれ異なった製膜装置を用いることにより効率のよい生産方法が可能となる。
【0102】
また、請求項8の薄膜光電変換装置によれば、第2の結晶質シリコン系半導体層の膜厚が、前記第1の結晶質シリコン系半導体層の膜厚より大きいことを特徴とする。これにより、減衰しやすい短波長光は薄い第1の結晶質シリコン系半導体層にてよく吸収され、減衰しにくい長波長光は厚い第2の結晶質シリコン系半導体層にてよく吸収され、変換効率の向上をもたらす。
【図面の簡単な説明】
【図1】本発明に係る薄膜光電変換装置の一実施形態を模式的に説明する断面図である。
【図2】従来の薄膜光電変換装置の一例を説明する断面図である。
【符号の説明】
1:薄膜光電変換装置
10:透光性基板(第1の基板)
11:透光性基板
12:第1の透光性導電層
20:第1の薄膜光電変換素子
21:第1の一導電型シリコン系半導体層
22:第1の結晶質シリコン系半導体層
23:第1の逆導電型シリコン系半導体層
30:第2の透光性導電層
50:絶縁性基板
60:導電性基板(第2の基板)
61:導電層
70:第2の薄膜光電変換素子
71:第2の一導電型シリコン系半導体層
72:第2の結晶質シリコン系半導体層
73:第2の逆導電型シリコン系半導体層
80:第3の透光性導電層
90:密接層
91:透光性樹脂層
92:断熱用気体層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a mechanical stack type thin-film photoelectric conversion device in which photoelectric conversion elements formed on two substrates are attached to each other so as to face each other so that the two substrates are located outside, and electrical outputs are separately taken out. The present invention relates to a mechanical stack type thin film photoelectric conversion device having a light confinement structure (and a heat insulation structure) using crystalline thin film silicon-based semiconductor layers for both substrates.
[0002]
[Prior art]
Silicon-based thin-film solar cells are being actively developed for high conversion efficiency, suppression of light deterioration, large area, and low cost. In this context, active development of silicon-based thin-film solar cells with various concavo-convex structures using light confinement effect and stacked type in which multiple semiconductor junctions with different forbidden band widths are stacked in order to make effective use of solar energy distribution. is there. Development of amorphous silicon-based thin-film solar cells for suppressing photodegradation is active.
[0003]
As a conventional example 1, there is known a mechanical stack type thin film solar cell module in which two types of substrates composed of a group of photoelectric conversion elements are mechanically bonded to each other with an adhesive, and electric outputs are separately taken out. reference).
[0004]
This thin-film solar cell module has a photoelectric conversion region made of a first semiconductor, transparent electrodes on both sides, a first glass substrate provided with a plurality of separated unit cells connected in series, and a narrower than the first semiconductor. A photoelectric conversion region made of a second semiconductor having a band gap and a second glass substrate having a transparent electrode on the side opposite to the substrate and having a separately formed series-connected unit cell are positioned facing each other with both substrates outside. The substrates are hermetically connected to each other by glass, and the space between the unit cells on both substrates is blocked from the outside. In the embodiment disclosed in Patent Document 1, an amorphous silicon PIN junction is described as a first semiconductor, and an amorphous silicon germanium PIN junction is described as a second semiconductor.
[0005]
With this configuration, light incident from the cell side including the first semiconductor having a wide band gap is absorbed by the cell and a photocurrent is generated by junction, but light not absorbed is transmitted from the opposing second semiconductor having a narrow band gap. Since the photocurrent is generated again by being absorbed in the cell, the utilization efficiency of the incident light is improved. Also, in order to connect both ends of each of the two series solar cells, the first semiconductor is connected in 5 series, the second semiconductor is connected in 6 series, and the optimum operating voltages at both ends are almost equal. I am trying to become. The two substrates are sealed with low-melting glass, and an inert gas such as Ar is sealed therein to protect them from humidity and other external atmospheres.
[0006]
As Conventional Example 2, a mechanical stack type thin-film solar cell module is known (see Patent Document 2). This tandem solar cell module is composed of polycrystalline silicon, a lower first solar cell submodule having a large area, a transparent insulating intermediate layer acting as an optical coupler, and a large area transparent amorphous silicon made of hydrogenated amorphous silicon. The upper second solar cell sub-module is characterized by comprising unrelated electrical contacts of both sub-modules.
[0007]
Further, as the polycrystalline silicon, a thin film solar cell module in which a polycrystalline structure is formed by a recrystallization treatment, for example, annealing after a silicon material is deposited on the substrate other than the bulk single crystal silicon is preferable. The optical coupler is made of an electrically insulating material that does not absorb or reflect incident light. Further, the first solar cell sub-module and the second solar cell sub-module are characterized in that they have a stripe type structure having the same width.
[0008]
As Conventional Example 3, a silicon-based thin-film solar cell having a two-terminal tandem structure in which a plurality of semiconductor junctions having different forbidden band widths are stacked on one substrate and optically and electrically connected in series is known. (See Patent Document 3).
[0009]
This silicon-based thin-film solar cell has two PIN junctions (a top cell on the light incident side and a bottom cell on the light reflection side) stacked on one substrate, and the second I-type layer is first intrinsically or substantially. After forming an intrinsic amorphous semiconductor, it is irradiated with strong light to be crystallized, and the first and second semiconductor materials are morphologically different even if they are the same, that is, the first is amorphous, and the second is amorphous. It is characterized in that a difference of 0.15 eV or more is given to the band gap Eg of the I-type film without using expensive germane (GeH4) by crystallization. The first PIN-junction amorphous silicon-based semiconductor absorbs short-wavelength light well to generate photocurrent, and the second PIN-junction crystalline semiconductor well absorbs long-wavelength light to generate photocurrent. .
[0010]
As Conventional Example 4, a silicon-based thin-film solar cell having the same two-terminal tandem structure as Conventional Example 3 is known (see Patent Document 4).
[0011]
FIG. 2 shows a schematic sectional view of this silicon-based thin-film solar cell. According to this figure, it includes an oxide transparent electrode 12, at least one amorphous photoelectric conversion unit 20, at least one crystalline photoelectric conversion unit 30, and a back electrode 40, which are sequentially stacked on a transparent glass substrate 11, The transparent oxide electrode 12 and the crystalline photoelectric conversion unit 30 have an uneven surface structure.
[0012]
Here, one amorphous photoelectric conversion unit 20 is composed of one conductivity type layer 21, amorphous photoelectric conversion layer 22, and reverse conductivity type layer 23, and one crystalline photoelectric conversion unit 30 is one conductivity type layer 31. The back surface electrode 40 is composed of the oxide transparent conductive layer 41 and the metal layer 42. Further, a light-transmitting conductive layer called an intermediate layer may be inserted between the amorphous photoelectric conversion unit 20 and the crystalline photoelectric conversion unit 30.
[0013]
In the amorphous photoelectric conversion unit 20, short-wavelength light is better absorbed and a photocurrent is generated, and in the crystalline photoelectric conversion unit 30, long-wavelength light is better absorbed and a photocurrent is generated. Further, the boundary between the transparent electrode and the amorphous photoelectric conversion film is made uneven by crystal grains of the transparent electrode, and the boundary between the crystalline photoelectric conversion film and the back electrode is also made uneven by the crystal grains of the crystalline photoelectric conversion film. The light confinement effect of these two spontaneous irregularities is obtained, and the photocurrent is increased in both units. It is difficult to obtain high conversion efficiency with one photoelectric conversion unit, and two or more photoelectric conversion units having different forbidden band widths are stacked, and furthermore, high conversion efficiency is achieved by the light confinement effect due to unevenness of each photoelectric conversion unit film surface. Trying to get.
[0014]
In this two-terminal tandem structure, in order to obtain the maximum efficiency, it is necessary to optimize the two photoelectric conversion units so that the photoelectric currents of the two photoelectric conversion units coincide with each other to make the two photoelectric conversion units the optimal operating points. More specifically, optimization design is performed by adjusting the film quality, film thickness, irregularities, etc., based on the invasion light intensity of both photoelectric conversion units, and a method of realizing these optimum values by repeated experiments is taken. The insertion of the intermediate layer makes it easier to adjust the photocurrent of both photoelectric conversion units and is used for optimizing the operation.
[0015]
As Conventional Example 5, a tandem-type thin film photoelectric conversion device in which Conventional Example 4 is integrated is known (see Patent Document 5). It is separated by a plurality of substantially straight and parallel separation grooves to form a plurality of tandem photoelectric conversion cells, the plurality of cells being separated by the separation grooves, The cells are electrically connected in series to each other via a plurality of connection grooves parallel to the separation groove, and are integrated on one substrate.
[0016]
When a thin-film photoelectric conversion device having a single substrate is actually used as a solar cell as in Conventional Examples 3, 4, and 5, a back sheet or the like is adhered to the back electrode side of the substrate with a sealing resin, and the substrate is resistant to heat. Consideration is given to environmental characteristics.
[0017]
Further, as a conventional example 6, a solar cell panel in which a heat insulating material is adhered between a back electrode of a single cell and a back sheet is known (see Patent Document 6).
[0018]
Further, as a conventional example 7, a thin-film solar cell module in which a heat insulating layer is provided on the back surface of a single cell is known (see Patent Document 7).
[0019]
Further, as a conventional example 8, a thin-film solar cell module in which a vacuum heat insulating layer is provided on the back surface of a single cell is known (see Patent Document 8).
[0020]
Further, as a conventional example 9, a solar cell module provided with a foam in a single cell is known (see Patent Document 9).
[0021]
[Patent Document 1]
Japanese Patent Publication No. 5-27278
[Patent Document 2]
JP-A-1-68997
[Patent Document 3]
Japanese Patent Publication No. 5-25187
[Patent Document 4]
JP 2001-217440 A
[Patent Document 5]
JP-A-11-186585
[Patent Document 6]
JP-A-7-297435
[Patent Document 7]
JP 2002-111037 A
[Patent Document 8]
JP 2002-111026 A
[Patent Document 9]
JP-A-9-191121
[0022]
[Problems to be solved by the invention]
In Conventional Example 1, both of the two amorphous silicon-based semiconductors have a problem of light deterioration, and the total output obtained from these two cells causes a decrease in output corresponding to the sum of the respective light deteriorations. There was a problem. Further, the first semiconductor is amorphous silicon having a high light absorptivity for short-wavelength light, and there is no need to use a light confinement structure. Patent Document 1 does not disclose any unevenness of the photoelectric conversion surface. . In addition, the second semiconductor is an amorphous silicon-germanium having a high light absorptivity for long-wavelength light, and there is no need to use a light confinement structure. It has not been. In addition, an inert gas is sealed between the two substrates. However, both the first and second semiconductors are made of amorphous silicon which is photo-degraded. Patent Document 1 does not disclose any deterioration suppressing effect.
[0023]
In the conventional example 2, the first semiconductor is made of hydrogenated amorphous silicon, the second semiconductor is made of polycrystalline silicon, and the polycrystalline silicon may be a thin-film polycrystalline silicon recrystallized by annealing or the like. However, Patent Document 2 does not refer to any light confinement structure such as unevenness of the first and second photoelectric conversion surfaces, and determines whether or not the recrystallized thin-film polycrystalline silicon has surface unevenness. It is not clear whether the size is on the order of the wavelength of light. The presence or absence of this light confinement structure has an important effect on the future improvement of the conversion efficiency of the thin-film photoelectric conversion device, and is a necessary structure for the thin-film photoelectric conversion layer. Similarly, Patent Document 2 does not mention at all the light confinement structure such as the unevenness of the photoelectric conversion surface made of the first hydrogenated amorphous silicon. Further, the optical coupler is made of an electrically insulating material that does not absorb or reflect incident light. However, this cannot reduce the thickness of the hydrogenated amorphous silicon as the first semiconductor and cannot suppress light degradation. Also. The first solar cell submodule made of the first hydrogenated amorphous silicon has a problem of light deterioration, and has a problem of causing a decrease in output.
[0024]
In Conventional Example 3, the first cell was amorphous and had a problem of light degradation. Although the second cell is not considered to be photo-degraded due to crystallization, since the first and second photoelectric conversion cells are connected in series, their currents must be equal in terms of a circuit. There is a problem that the second cell is also affected by the photodeterioration of the cell, and the photocurrent is reduced. Further, if the second semiconductor is made of crystalline silicon having a low light absorptivity for long-wavelength light, the photocurrent of the second cell is small, and the efficiency of the whole series connection is low. The second cell has no light confinement structure such as unevenness of the photoelectric conversion surface.
[0025]
In the photoelectric conversion device having a thin-film two-terminal tandem structure of Conventional Example 4, since the first and second photoelectric conversion cells are connected in series, the photocurrent generated in the first photoelectric conversion cell and the second photoelectric conversion The photocurrent generated in the cell must be equal and this photocurrent must be the optimal operating point for each of these two electromotive cells. If these are not equal, only the smaller photocurrent, which is limited by the photoelectric conversion cell having the smaller photocurrent, can be taken out to the outside, which lowers the efficiency of the whole thin-film electromotive device.
[0026]
For this reason, conventionally, the unevenness for the light confinement effect together with the wavelength and intensity of the penetrating light, the film quality and the thickness of the PIN semiconductor film, and the like so that the photocurrents generated in the first and second photoelectric conversion cells are equal. Adjustment of such parameters has been performed, but complicated adjustment is required because of the large number of parameters. Although many adjustment parameters can be adjusted, there is a problem that many parameters are susceptible to the influence of the parameters.
[0027]
This has resulted in design difficulties and manufacturing difficulties. In other words, the design requires advanced simulation technology for a large number of parameters, and the manufacturing requires advanced manufacturing technology to ensure manufacturing stability and uniformity. It was difficult to provide batteries. In particular, it is very difficult to stably and uniformly manufacture these parameters in manufacturing, and these parameters always have a central value variation between manufacturing lots and in-plane variations between manufacturing lots and between lots. In all of the above-mentioned cases, the central value fluctuation of the photocurrent generated between the production lots and the in-plane variation of the photocurrent generated within the production lot and between the lots occurred in both cells. All of these variations are the rate-limiting factor of the photocurrent and cause problems such as a decrease in conversion efficiency and a decrease in yield, and there has been a major problem as a solar cell in which cost reduction per output cannot be easily realized.
[0028]
In addition to these parameters, it is known that the amorphous silicon-based semiconductor in the top cell has a photodegradation phenomenon, and the crystalline silicon-based semiconductor in the bottom cell does not undergo photodegradation. As a result, there is a problem in that the photocurrent of the bottom cell has to be reduced in terms of the circuit, which makes it difficult to optimize and lowers the efficiency.
[0029]
The intermediate film is used to enhance the reflection of short-wavelength light and to reduce the thickness of the top cell to suppress light degradation. It has problems of center value fluctuation and in-plane variation, and furthermore makes manufacturing difficult. Although a photocurrent can be output from this intermediate film, it is present in the multilayer film, and it is difficult to provide an extraction electrode in the film.
[0030]
In addition, since the first cell and the second cell are stacked directly or via a thin intermediate layer, the two cells cannot be thermally separated from each other. The second cell has a tendency to decrease in efficiency due to light degradation, while the second cell has a tendency to increase efficiency while the first cell has a tendency to deteriorate light degradation in low-temperature actual use. .
[0031]
As the first irregularities formed on the surface of the first light-transmitting conductive film in contact with the amorphous silicon-based semiconductor, spontaneous irregularities due to polycrystallization of the light-transmitting conductive film are usually used. Due to the deposition of the amorphous silicon-based semiconductor film on the uneven surface and the continuous deposition of the crystalline silicon-based semiconductor film, the amorphous silicon-based semiconductor film changes to the spontaneous unevenness. It was not always possible to change the shape of the dragging and light reflecting surface into an uneven shape suitable for long-wavelength light.
[0032]
In addition, due to the deposition of the amorphous silicon-based semiconductor film and the continuous deposition of the crystalline silicon-based semiconductor film, during the deposition of the crystalline silicon-based semiconductor film, mutual diffusion of impurities occurs at the PIN junction of the amorphous silicon-based semiconductor film. For example, it causes the diffusion of metal from the conductive film in contact with the amorphous silicon-based semiconductor film, thereby lowering the photoelectric conversion. In addition, since the long-wavelength light is sufficiently absorbed to generate a photocurrent, the thickness of the crystalline silicon-based semiconductor film is larger than the thickness of the amorphous silicon-based semiconductor film, and the deposition time of the crystalline silicon-based semiconductor film is not long. The diffusion time is longer than the deposition time of the amorphous silicon-based semiconductor film, and these diffusion problems are likely to occur.
[0033]
For this reason, conventionally, a diffusion suppression film has been inserted between the PIs of the amorphous photoelectric conversion film to suppress the diffusion of boron (B). However, a complicated film configuration is required, and the production is performed as described above. Was causing the above problems.
[0034]
In the conventional example 5, the tandem type thin film photoelectric conversion devices of the conventional example 4 are integrated in series, the photocurrents generated in the respective integrated tandem type unit cells are equal, and these photocurrents are respectively If the tandem-type unit cell is not the optimal operating point, high conversion efficiency cannot be obtained by integration.
[0035]
Also, the in-plane variation of some of the above-mentioned parameters tends to increase with an increase in area, and the in-plane variation of these parameters becomes a rate-limiting factor of photocurrent due to serial connection, and conversion efficiency is reduced by integration. There was a problem. This is a serious problem in a thin-film type photoelectric conversion device that has a feature of reducing the cost by increasing the area.
[0036]
In the method of manufacturing a thin film photoelectric conversion device, in the case of Conventional Example 4 having a two-terminal tandem structure, continuous film formation is performed using an in-line type chemical vapor deposition apparatus while avoiding exposure to air during deposition of a thin film semiconductor. Since the film thickness of an amorphous silicon-based semiconductor is different from that of a crystalline silicon-based semiconductor by about an order of magnitude, there is a large difference in film formation time. Had become.
[0037]
In the conventional examples 6 to 8, a heat insulating material, a vacuum heat insulating layer, and a foam are provided to suppress the optical degradation of the amorphous silicon semiconductor, but all of them are installed on the back side of the single cell. Yes, not an effective configuration for tandem cells.
[0038]
The present invention has been made in view of such circumstances, and eliminates a complicated design adjustment between tandem cells, and reduces a central value variation of a parameter depending on a manufacturing lot and an adverse effect of an in-plane variation. The purpose is to provide. Another object of the present invention is to provide a thin-film photoelectric conversion device free from light deterioration by forming the first element (cell) and the second element (cell) with a crystalline silicon-based semiconductor. Further, the unevenness can be designed and manufactured independently for the first element (cell) and the second element (cell), and further, effective light confinement is provided between the first element and the second element. It is an object to provide a thin-film photoelectric conversion device having high conversion efficiency by providing a structure. In addition, by separating the manufacture of the first element and the second element, or by eliminating or reducing the role of the step of inserting a diffusion suppressing layer or the like, manufacturing is facilitated and low conversion cost and high conversion efficiency are achieved. It is an object to provide a thin-film photoelectric conversion device.
[0039]
Another object is to provide a thin-film photoelectric conversion device having an integrated structure with high conversion efficiency.
[0040]
Further, by providing a close layer having high light reflectance for a short wavelength between the first and second elements, the thickness of the first crystalline silicon-based semiconductor layer can be reduced, and the first photoelectric conversion can be performed. It is an object of the present invention to provide a thin-film photoelectric conversion device in which an element has a high light transmittance for a long wavelength.
[0041]
Further, a thin-film photoelectric conversion device capable of reducing a decrease in efficiency due to a rise in temperature of a second crystalline silicon-based semiconductor layer by providing the close contact layer having high heat insulation between the first and second elements. With the goal.
[0042]
Further, it is another object of the present invention to provide a thin-film photoelectric conversion device which eliminates a back sheet, can be reduced in cost, and has excellent environmental resistance.
[0043]
[Means for Solving the Problems]
In order to achieve the above object, a thin film photoelectric conversion device of the present invention includes a first thin film photoelectric conversion element including a first substrate having a light-transmitting property and a second substrate having a conductive surface. A second thin-film photoelectric conversion element facing each other so that the two substrates are located on the outside; and the first thin-film photoelectric conversion element has a first light-transmitting property on the first substrate. A conductive layer, a first one-conductivity-type silicon-based semiconductor layer, a substantially intrinsic crystalline silicon-based semiconductor layer having an uneven surface, a first reverse-conductivity-type silicon-based semiconductor layer, and a second light-transmitting layer The second thin-film photoelectric conversion element is formed on the second substrate by a second one-conductivity-type silicon-based semiconductor layer, which is substantially intrinsic and has an uneven surface. Crystalline silicon-based semiconductor layer, second reverse-conductivity-type silicon-based semiconductor layer, and third light-transmitting layer The first thin-film photoelectric conversion element and the second thin-film photoelectric conversion element have a close layer including a light-transmitting resin layer or a heat-insulating gas layer interposed between the first thin-film photoelectric conversion element and the second thin-film photoelectric conversion element. It is characterized by.
In particular, the first crystalline silicon-based semiconductor layer has a spontaneous uneven portion formed by crystalline columnar deposition, and the second translucent conductive layer formed on the spontaneous uneven portion and the second light transmissive layer. The light confinement effect is enhanced by the concavo-convex configuration with the close contact layer on the conductive conductive layer.
[0044]
In particular, the second crystalline silicon-based semiconductor layer has a spontaneous uneven portion formed by crystalline columnar deposition, and the third light-transmitting conductive layer formed on the spontaneous uneven portion and the third light-transmitting portion. The light confinement effect is enhanced by the concavo-convex configuration with the close contact layer on the conductive conductive layer.
[0045]
In particular, the surface of the second substrate in contact with the second crystalline silicon-based semiconductor layer and the second one-conductivity-type silicon-based semiconductor layer has an uneven shape.
[0046]
In particular, at least the surface of the first light-transmitting conductive layer or the surface of the first substrate that is in contact with the first crystalline silicon-based semiconductor layer and the first one-conductivity-type silicon-based semiconductor layer has an uneven shape. It is characterized by the following.
[0047]
In particular, the surface of the second substrate in contact with the second crystalline silicon-based semiconductor layer and the second one-conductivity-type silicon-based semiconductor layer has irregularities, and the first crystalline silicon-based semiconductor and At least the surface of the first light-transmitting conductive layer or the surface of the first substrate in contact with the first one-conductivity-type silicon-based semiconductor layer has an uneven shape, and the height of the uneven portion on the surface of the second substrate is high. The difference and the pitch are larger than the height difference and the pitch of the uneven portion on the surface of the first substrate.
[0048]
In particular, the first crystalline silicon-based semiconductor layer and the second crystalline silicon-based semiconductor layer are each deposited under unique film forming conditions without being continuously deposited by a chemical vapor deposition method. And
[0049]
More particularly, the thickness of the second crystalline silicon-based semiconductor layer is larger than the thickness of the first crystalline silicon-based semiconductor layer.
[0050]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view of the thin-film photoelectric conversion device of the present invention.
[0051]
As shown in FIG. 1, a thin-film photoelectric conversion device 1 includes a first thin-film photoelectric conversion element 20 having a first substrate 10 having a light-transmitting property and a second thin-film photoelectric conversion element having a second substrate 50. The conversion element 70 has a mechanical stack type structure in which the two substrates 11 and 50 are placed outside and facing each other.
[0052]
Here, the first thin-film photoelectric conversion element 20 is, on the light-transmitting substrate 11, sequentially a first light-transmitting conductive layer 12, a first one-conductivity-type silicon-based semiconductor layer 21, and is substantially intrinsic. A second thin-film photoelectric conversion element is formed by laminating a crystalline silicon-based semiconductor layer 22 having surface irregularities of columnar growth, a first reverse-conductivity-type silicon-based semiconductor layer 23, and a second light-transmitting conductive layer 30. Reference numeral 70 denotes a second one-conductivity-type silicon-based semiconductor layer 71, substantially on a conductive substrate 60 as a second substrate or on an insulating substrate 50 as a second substrate provided with a conductive layer 61. A second crystalline silicon-based semiconductor layer 72, a second reverse-conductivity-type silicon-based semiconductor layer 73, and a third light-transmitting conductive layer 80, each of which has an intrinsically intrinsic columnar growth surface irregularity, The close contact layer 90 between the two thin-film photoelectric conversion elements may be, for example, a light-transmitting resin layer 90. Ku is made of a transparent resin layer 91 and the thermal insulation gas layer 92.
[0053]
Thereby, for example, even if the center of the first crystalline silicon-based semiconductor film 22 has a variation in the center value or an in-plane variation in the film thickness of the first thin-film photoelectric conversion element 20, this is caused by the second thin-film photoelectric conversion element 70. By shifting the first thin-film photoelectric conversion element 20 to the optimum operating point without being related to the photovoltaic power, the overall conversion efficiency does not decrease and the conversion efficiency is higher than that of the conventional technique. The same applies to the film quality. In addition, design adjustment of these parameters between the two cells and advanced simulation technology are not required, and advanced manufacturing technology is not required.
[0054]
The first thin-film photoelectric conversion element 20 and the second thin-film photoelectric conversion element 70 include a first crystalline silicon-based semiconductor layer 22 and a second crystalline silicon-based semiconductor layer 72, respectively. Since a high-quality silicon-based semiconductor is not used, there is no light deterioration, and the conversion efficiency after light stabilization is higher than that of the prior art.
[0055]
Further, an adhesion layer 90 mainly including a heat insulating gas layer (including a reduced pressure gas layer or a vacuum layer) between the first and second thin film photoelectric conversion elements, or as shown in FIG. By providing a close contact layer 90 having a large refractive index difference composed of a mixed layer of a gas and a translucent resin material, or a close contact layer 90 having a parallel layer with a light resin layer, Due to the heat insulating effect caused by the gas component of the close contact layer 90, a temperature rise of the second crystalline silicon-based semiconductor layer 72 is suppressed, and a decrease in efficiency due to a temperature rise of the second thin film photoelectric conversion element is suppressed. Here, the adhesive layer 90 is formed by using a liquid adhesive such as silicone, for example, taking in bubbles while stirring the liquid, and performing a curing step by heating without performing vacuum defoaming of the adhesive or decompression during the bonding step. It may be formed. Further, using a solid sheet adhesive such as EVA (ethylene-vinyl acetate copolymer resin) or PVB (polyvinyl butyral), a layer in which a gas layer is mixed in a solid-state sheet in advance by a punching step, or a ring-shaped layer It may be. In addition, as other resin materials, an ethylene-methyl acrylate copolymer (EMA), an ethylene-ethyl acrylate copolymer (EEA), a fluororesin, or the like can be considered.
[0056]
In addition, by providing the close contact layer 90 made of the light-transmitting resin layer 90 as described above, light reflection to the first crystalline silicon-based semiconductor layer is increased, and the first crystalline silicon-based semiconductor layer 22 The film thickness can be reduced, and the manufacturing cost of the first thin-film photoelectric conversion element 20 can be reduced.
[0057]
That is, when the close contact layer 90 is mainly a heat insulating gas layer, the refractive index difference and the heat insulating property are large and more effective. In addition, when the heat insulating gas layer is a reduced pressure gas layer or a vacuum layer, the refractive index difference and the heat insulating property are large and more effective. When the close contact layer 90 is a parallel layer of a gas layer for heat insulation and a light-transmitting resin layer, in addition to the effect of the gas layer for heat insulation, the gap between the two elements can be fixed by the light-transmitting resin layer, and the thin film photoelectric conversion can be performed. The mechanical stability of the device can be maintained. In particular, it is convenient to fix the outer periphery in the case of a non-integrated cell and fix the separation groove in the case of an integrated cell without adversely affecting efficiency. When the close contact layer 90 is a mixed layer of a gas and a light-transmitting resin material, the gap can be fixed on the entire surface and mechanical strength can be provided, and the repetition of the gas and the light-transmitting resin material can be performed in the order of the wavelength of light. By doing so, the light reflectance can be increased.
[0058]
Further, in the thin film photoelectric conversion device of the present invention, the first crystalline silicon-based semiconductor layer 22 has a spontaneous uneven portion formed by crystalline columnar deposition, and the second light-transmitting conductive layer formed on the spontaneous uneven portion. 30 and a heat insulating gas layer (including a reduced pressure gas layer or a vacuum layer) on the second light transmitting conductive layer 30, or a parallel layer of a heat insulating gas layer and a light transmitting resin layer, or a gas and light transmitting layer The concavo-convex configuration with the close contact layer 90 made of a mixed layer of a resin material can enhance the light confinement effect. Here, the degree of the spontaneous irregularities can be expressed by the volume crystallization ratio of silicon. That is, crystal growth in a certain direction in a columnar manner from the substrate (referred to as orientation) results in a protruding and irregular surface shape, and between these columnar microcrystalline phases is an amorphous phase, and the degree of spontaneous irregularities is the crystal phase / It is almost proportional to the magnitude of the volume crystallization ratio (%), which is the ratio of (crystal phase + amorphous phase). Generally, the case where the volume crystallization ratio is 60% or more is referred to as spontaneous unevenness, and the case where the volume crystallization ratio is less than 60% is referred to as non-self-generated unevenness.
[0059]
As a result, an uneven surface is further obtained at an intermediate position of the laminated structure, which has not existed conventionally, and selective incidence, reflection, refraction and absorption of light become more active in the first and second thin film photoelectric conversion elements 20 and 70. By improving the light confinement effect, the conversion efficiency is improved as compared with the related art.
[0060]
Further, in the thin film photoelectric conversion device of the present invention, the second crystalline silicon-based semiconductor layer 72 has a spontaneous uneven portion formed by crystalline columnar deposition, and the third light-transmitting conductive layer formed on the spontaneous uneven portion. 80 and a heat insulating gas layer (including a reduced pressure gas layer or a vacuum layer) on the third light transmitting conductive layer 80, or a parallel layer of a heat insulating gas layer and a light transmitting resin layer, or a gas and light transmitting The concavo-convex configuration with the close contact layer 90 made of a mixed layer of a conductive resin material can enhance the light confinement effect.
[0061]
As a result, an uneven surface is further obtained at an intermediate position of the laminated structure, which has not existed conventionally, and selective incidence, reflection, refraction and absorption of light become more active in the first and second thin film photoelectric conversion elements 20 and 70. By improving the light confinement effect, the conversion efficiency is improved as compared with the related art.
[0062]
In addition, the thin-film photoelectric conversion device according to the present invention includes an insulating layer provided with the surface of the conductive substrate 60 or the conductive layer 61 in contact with the second crystalline silicon-based semiconductor layer 72 and the second one-conductivity-type silicon-based semiconductor layer 71. The surface of the substrate 50 is uneven.
[0063]
As a result, an uneven surface is obtained at the back position of the laminated structure, and light reflection and absorption become more active particularly in the second thin-film photoelectric conversion element 70, and the conversion efficiency is improved by increasing the light confinement effect. Bring. In addition, since the concavities and convexities can be newly formed on the conductive substrate 60 or the insulating substrate 50 as the second substrate, the degree of freedom and ease of forming the concavities and convexities can be obtained, and the conversion efficiency is higher than in the past. Bring.
[0064]
In addition, the thin film photoelectric conversion device of the present invention provides at least the surface of the first transparent conductive layer 12 or the first transparent silicon conductive layer 12 in contact with the first crystalline silicon-based semiconductor layer 22 and the first one-conductivity-type silicon-based semiconductor layer 21. The surface of the substrate 11 has irregularities. As a result, an uneven surface is obtained at the incident position of the laminated structure, and selective incidence, refraction, and absorption of light become more active particularly in the first photoelectric conversion element, and the conversion efficiency is improved by increasing the light confinement effect. Bring.
[0065]
Further, in the thin film photoelectric conversion device of the present invention, the first unevenness of the light-reflective conductive substrate 60 or the insulating substrate 50 including the conductive layer 61 in contact with the second crystalline silicon-based semiconductor layer 72 is different. And the pitch is larger than the height difference and the pitch of the second unevenness of the light transmitting substrate 11 or the first light transmitting conductive layer 12 in contact with the first crystalline silicon-based semiconductor layer 22. As a result, the first unevenness becomes more light-transmissive and the second unevenness becomes more light-reflective for long-wavelength light where light penetration is deeper than short-wavelength light, and the light confinement effect of long-wavelength light increases. This results in higher conversion efficiency. Here, the height difference and the pitch of the unevenness can be confirmed (measured) by cross-sectional TEM (transmission electron microscope) photograph or surface observation by AFM (atomic force microscope).
[0066]
Further, according to the thin-film photoelectric conversion device of the present invention, the first crystalline silicon-based semiconductor layer 22 and the second crystalline silicon-based semiconductor layer 72 are each independently formed without being continuously deposited by the chemical vapor deposition method. It is characterized by being deposited under film forming conditions.
[0067]
This makes it possible to independently form a film on each substrate under different film forming conditions or different film forming apparatuses, and the deposition of one PIN semiconductor film has an effect on the characteristics of the other PIN semiconductor film. There is no adverse effect. As a result, crystallization deposition suitable for each wavelength becomes easy, and furthermore, the first crystalline silicon-based semiconductor layer 22 on which the second crystalline silicon-based semiconductor layer 72 is deposited has an adverse effect such as impurity diffusion. Without any effect, between the first crystalline silicon semiconductor layer 22 and the first one-conductivity-type silicon-based semiconductor layer 21 or between the first one-conductivity-type silicon-based semiconductor layer 21 and the first transparent conductive layer 12 In addition, since high conversion efficiency can be obtained without providing a special diffusion suppressing film, a diffusion suppressing film is not required.
[0068]
In particular, the first crystalline silicon-based semiconductor layer 22 requiring short-wavelength sensitivity and the second crystalline silicon-based semiconductor layer 72 requiring long-wavelength sensitivity have optimum crystal grain size and crystallization ratio. Since the film qualities are different and different film forming apparatuses and film forming conditions are used, deposition with high film quality and high conversion efficiency can be performed. In addition, the first crystalline silicon-based semiconductor layer and the second crystalline silicon-based semiconductor layer have different film thicknesses and different deposition times, and the efficiency is improved by using different deposition devices. The production method becomes possible.
[0069]
According to the thin-film photoelectric conversion device of the present invention, the thin-film photoelectric conversion device according to claim 1, wherein the thickness of the second crystalline silicon-based semiconductor layer is equal to the thickness of the first crystalline silicon-based semiconductor layer. It is characterized by being larger than the thickness of the semiconductor layer.
[0070]
As a result, short-wavelength light that is easily absorbed is better absorbed in the first crystalline silicon-based semiconductor layer 22, and long-wavelength light that is hardly absorbed is better absorbed in the second crystalline silicon-based semiconductor layer 72. Therefore, it is not necessary to use semiconductors having different forbidden bandwidths as in the related art. In particular, it is not possible to obtain a high open-circuit voltage of the first cell (top cell) having a large forbidden band width as in the prior art. However, even with a semiconductor having the same forbidden band width, the light confinement effect due to the unevenness is obtained. Accordingly, the first thin-film photoelectric conversion element 20 having a large short-circuit current can be obtained.
[0071]
As described above, the short-wavelength light is rapidly attenuated, and the solar energy distribution can be more effectively reduced when the thickness of the first crystalline silicon-based semiconductor layer is smaller than that of the second crystalline silicon-based semiconductor layer. Available and convenient.
[0072]
【Example】
Hereinafter, Examples 1 to 4 showing the present invention more specifically will be described.
<Example 1>
Description will be made by taking the thin-film photoelectric conversion device 1 shown in FIG. 1 as an example. As described above, reference numeral 11 denotes a translucent substrate. In this embodiment, a white plate glass (thickness: 1.8 mm) having flat surfaces on both sides is used. As other translucent substrates, a transparent inorganic substrate such as blue plate glass or sapphire, or a transparent organic resin substrate such as polycarbonate may be used. Reference numeral 12 denotes a first light-transmitting conductive film. In this embodiment, an ITO (Indium Tin Oxide) film deposited by a sputtering method is used. As another method for producing the light-transmitting conductive film, a vacuum evaporation method, a spray pyrolysis method, an ion plating method, a dip coating method, a sol-gel method, or the like may be used. As another light-transmitting conductive film, a SnO 2 -based film, a ZnO-based film, an In 2 O 3 -based film, or the like doped with an impurity may be used, or a stack of these light-transmitting conductive films may be used. Reference numeral 20 denotes a crystalline silicon-based semiconductor film having a PIN junction, which is a hydrogenated microcrystalline silicon-based film. A PIN junction semiconductor is formed by laminating a P-type semiconductor film, an I-type semiconductor film, and an N-type semiconductor film, and is deposited by the plasma CVD method in this embodiment, but may be deposited by a catalytic CVD method or the like.
[0073]
In the present embodiment, a PIN junction in which a P-type semiconductor film is provided on the side of the first light-transmitting conductive film is used, but an NIP junction of a reverse junction may be used. If the I-type semiconductor film is crystalline microcrystalline or polycrystalline, the P-type semiconductor film and / or the N-type semiconductor film may be amorphous. Further, a hydrogenated microcrystalline silicon alloy-based film or a hydrogenated amorphous silicon alloy-based film may be used. For example, for the P film on the light incident side, hydrogenated amorphous silicon carbide is more preferable because it enhances the light transmission and reduces light penetration loss.
[0074]
In this embodiment, first, a PIN type semiconductor film was continuously deposited on the light-transmitting substrate with the first light-transmitting conductive film by a plasma CVD method. First, a P-type μc-Si: H semiconductor film was deposited at 200 ° (0.02 μm). Here, μc refers to a so-called microcrystalline material having a particle size of submicron or less. A P-type μc-SiC: H film may be used instead of the P-type μc-Si: H semiconductor. SiH 4, H 2 gas, and B 2 H 6 (diluted to 500 ppm with H 2) were used as source gases of P-type μc-Si: H, and the flow rates of these gases were 1 sccm, 200 sccm, and 10 sccm, respectively.
[0075]
Subsequently, an I-type semiconductor film was deposited at 10,000 ° (= 1 μm). SiH4 and H2 gases were used as source gases for I-type μc-Si: H, and the flow rates of these gases were 10 sccm and 100 sccm, respectively. The crystallization ratio of the I-type film was 70%, and spontaneous irregularities were formed on the growth surface.
[0076]
Further, an N-type a-Si: H semiconductor film was deposited at 120 °. SiH4, H2 gas, and PH3 (diluted to 1000 ppm with H2) were used as source gases of N-type a-Si: H, and the flow rates of these gases were 3 sccm, 30 sccm, and 6 sccm, respectively. The substrate temperature was 220 ° C. for all of the PIN films.
[0077]
Reference numeral 30 denotes a second light-transmitting conductive film, on which an ITO film was deposited by a sputtering method. As the other second light-transmitting conductive film, a SnO 2 -based film doped with impurities, a ZnO-based film, an In 2 O 3 -based film, or the like may be used, or a stacked film thereof may be used. Further, a collector electrode having an Ag film deposited thereon to form an electrode pattern such as a comb shape may be provided.
[0078]
Reference numeral 50 denotes an insulating substrate or a conductive substrate 60. In this embodiment, 1.8 mmt of soda lime glass, which is an insulating substrate, is used. As another substrate, an inorganic substrate such as various kinds of glass, an organic resin substrate such as polycarbonate, or a conductive substrate such as an aluminum substrate or a stainless steel substrate may be used.
[0079]
Reference numeral 61 denotes a light-reflective conductive film. In this example, a laminated film of Ti / Ag / Ti was used. The Ti film on the substrate side is for promoting adhesion, and the Ti film on the Ag film is for suppressing Ag diffusion into the semiconductor film. The Ag film has high light reflectivity, and high conversion efficiency is easily obtained. As other material configurations, Ti / Ag: Al alloy / ZnO: Al, Ti / Ag / ITO, Ag / ITO, and the like may be used.
[0080]
Reference numeral 70 denotes a crystalline silicon-based semiconductor film having a PIN junction, which is a microcrystalline silicon-based film having a relatively high crystallization ratio obtained by deposition by a plasma CVD method, a catalytic CVD method, or the like. And a PIN junction semiconductor formed by laminating an I-type semiconductor film and an N-type semiconductor film. If the I-type semiconductor film is microcrystalline, the P-type semiconductor film and the N-type semiconductor film may be microcrystalline or amorphous.
[0081]
In this example, NIP type semiconductor films were continuously deposited on the glass substrate with the light-reflective conductive film by a plasma CVD method. Although the NIP junction in which the N-type semiconductor film is provided on the light reflective conductive film side is used, a PIN junction of a reverse junction may be used. Alternatively, a microcrystalline silicon alloy-based film may be used. In this embodiment, a plasma CVD method is used. First, an N-type μc-Si: H semiconductor film was deposited at 100 °. SiH 4, H 2 gas, and PH 3 (diluted to 1000 ppm with H 2) were used as source gases for N-type μc-Si: H, and the flow rates of these gases were 2 sccm, 30 sccm, and 4 sccm, respectively. Subsequently, a 1.8 μm I-type μc-Si: H semiconductor film was deposited. SiH4 and H2 gases were used as source gases for I-type μc-Si: H, and the flow rates of these gases were set to 20 sccm and 100 sccm, respectively. The crystallization ratio of the I-type film was 70%, and spontaneous irregularities were formed on the growth surface. Further, a P-type a-Si: H semiconductor film was deposited at 90 °. Instead of the P-type a-Si: H semiconductor, a P-type a-SiC: H, a P-type μc-Si: H film, or a P-type μc-SiC: H film may be used. SiH4, H2 gas, and B2H6 (diluted to 500 ppm with H2) were used as source gases for P-type a-Si: H, and the flow rates of these gases were 2 sccm, 400 sccm, and 15 sccm, respectively. The substrate temperature was 240 ° C. for all of the NIP films.
[0082]
Reference numeral 80 denotes a third light-transmitting conductive film. In this embodiment, an ITO film is deposited by a sputtering method. As the other second light-transmitting conductive film, a SnO 2 -based film doped with impurities, a ZnO-based film, an In 2 O 3 -based film, or the like may be used, or a stacked film thereof may be used. Further, a collector electrode similar to the above may be formed thereon.
[0083]
Reference numeral 92 denotes a gas layer for heat insulation, which is an air layer in this embodiment. In addition to air, nitrogen or argon may be used. Vacuum is more preferable if the substrate is thick and the strength can be secured. Reference numeral 91 denotes a light-transmitting resin layer. In this example, a transparent sealing resin EVA (ethylene-vinyl acetate copolymer resin) was used. An EVA tape was sandwiched around the ends of both substrates, and a thin film photovoltaic element was produced by a process consisting of melting resin by heating, pressing EVA, thermosetting, primary cooling, and secondary cooling in a gas. .
[0084]
Four 1 cm-square elements were manufactured on a 5 cm-square substrate size at a distance of 2 cm from each other, and the conversion efficiency was an average value of four elements. For comparison, in the conventional structure shown in FIG. 2, a white plate glass (thickness: 1.8 mm) having flat surfaces on both sides was used, the top cell was made the same as the amorphous silicon semiconductor manufacturing conditions and the film thickness, and the bottom cell was made the above. An element was manufactured under the same manufacturing conditions and film thickness.
[0085]
100 mW / cm of the two types of photoelectric conversion devices thus obtained under AM1.5. 2 As a result of the conversion efficiency after light stabilization, the conversion efficiency of the thin film electromotive device of Example 1 was 8.3%, while the conversion efficiency of the thin film electromotive device of Comparative Example 1 was 7.6%. It showed higher conversion efficiency.
<Example 2>
First, a first thin-film electromotive element substrate was manufactured in the same manner as in Example 1.
[0086]
In the production of the second thin film electromotive element base, 1.8 mmt of soda lime glass was used as 50 insulating substrates, and the surface thereof was subjected to sandblasting, and further treated with hydrofluoric acid and washed to form irregularities. The height difference and the pitch of the unevenness were about 250 nm to 350 nm and about 300 nm to 400 nm, respectively. On this substrate, 61 light-reflective conductive films, 70 crystalline silicon-based semiconductor films having an NIP junction, and 80 light-transmitting conductive films were sequentially formed under the same conditions as in Example 1. Then, the thin film electromotive device of the second embodiment was manufactured by setting the 90 close layers to the same configuration as the first embodiment. As a comparative example, the above-described comparative example 1 was used because there was no substrate to be subjected to substrate processing as in this example.
[0087]
100 mW / cm of the two types of photoelectric conversion devices thus obtained under AM1.5. 2 As a result of the conversion efficiency after light stabilization, the conversion efficiency of the thin film electromotive device of Example 2 was 8.9%, while the conversion efficiency of the thin film electromotive device of Comparative Example 1 was 7.6%. It showed higher conversion efficiency.
<Example 3>
In this embodiment, a commercially available polycrystalline SnO2: F (fluorine-doped dioxide) is used to obtain 11 light-transmitting substrates and 12 first light-transmitting conductive films of the first thin film electromotive element substrate. A white plate glass with a (tin) film was used. The height difference and pitch of the spontaneous unevenness of the polycrystalline SnO2: F film were about 100 nm to 250 nm and about 200 nm to 300 nm, respectively, according to the TEM observation of the cross section. According to the AFM measurement, the arithmetic average roughness Ra was 26 nm, and the most frequent wavelength (most frequent pitch) of Power Spectral Density was 1.25 μm / cycle. Under the same conditions as in Example 1, a crystalline silicon-based semiconductor film having 20 PIN junctions and a 30 second light-transmitting conductive film were sequentially formed on the substrate. Then, a second thin-film electromotive element substrate was manufactured in the same manner as in Example 1.
[0088]
Then, a thin-film electromotive device was manufactured with a configuration in which the translucent resin of No. 91 was sandwiched in the same manner as in Example 1. As Comparative Example 3, a commercially available polycrystalline SnO2: F () was obtained in order to obtain 11 light-transmitting substrates and 12 first light-transmitting conductive films of the thin film electromotive element substrate as in this example. A white plate glass with a (fluorine-doped tin dioxide) film was used. A crystalline silicon-based semiconductor film having a PIN junction of 30 and a light-reflective conductive film of 40 were sequentially formed on a top cell having a PIN junction of 20 under the manufacturing conditions and thickness of an amorphous silicon semiconductor in Comparative Example 1. It was manufactured in the same way as.
[0089]
100 mW / cm of the two types of photoelectric conversion devices thus obtained under AM1.5. 2 As a result of the conversion efficiency after light stabilization, the conversion efficiency of the thin film electromotive device of Example 3 was 8.6%, while the conversion efficiency of the thin film electromotive device of Comparative Example 3 was 7.9%. It showed higher conversion efficiency.
<Example 4>
In the fourth embodiment, the first thin-film electromotive element substrate is made of the same commercially available white plate glass with a polycrystalline SnO2: F (fluorine-doped tin dioxide) film as in the third embodiment, and the other conditions are the same. Made in. The second thin-film electromotive element substrate was manufactured under the same conditions using the same substrate as that of Example 2 except that the surface of the soda lime glass was subjected to sandblasting, further treated with hydrofluoric acid, and washed to form irregularities.
[0090]
Then, the thin film electromotive force device of the fourth embodiment was manufactured by sandwiching the translucent resin of 91 in the same manner as in the first embodiment. Comparative Example 4 was used as Comparative Example 4 because there was no substrate itself for sandblasting the substrate as in this example. 100 mW / cm of the two types of photoelectric conversion devices thus obtained under AM1.5. 2 As a result of the conversion efficiency after light stabilization, the conversion efficiency of the thin film electromotive device of Example 4 was 9.3%, while the conversion efficiency of the thin film electromotive device of Comparative Example 3 was 7.9%. It showed higher conversion efficiency.
[0091]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the thin-film photoelectric conversion device of this invention, the bad influence of center value fluctuation | variation in a thin film manufacture, in-plane variation, etc. is reduced, the light confinement effect which consists of an uneven | corrugated structure is improved, and conversion efficiency is improved by a heat insulation structure. Area and cost can be reduced.
[0092]
According to the thin-film photoelectric conversion device of the present invention, neither the first thin-film photoelectric conversion element nor the second thin-film photoelectric conversion element uses a crystalline silicon-based semiconductor layer and does not use an amorphous silicon-based semiconductor. Therefore, there is no light deterioration.
[0093]
More specifically, according to the thin-film photoelectric conversion device of the first aspect, for example, even if the thickness of the crystalline silicon-based semiconductor film in the first thin-film photoelectric conversion element has a center value variation or an in-plane variation, this does not occur. The second thin-film photoelectric conversion element is independent of the photovoltaic power, and the first thin-film photoelectric conversion element is shifted to the optimum operating point, so that the conversion efficiency as a whole does not decrease and the conversion efficiency is higher than that of the prior art. . The same applies to the film quality. In addition, design adjustment of these parameters between the two cells and advanced simulation technology are not required, and advanced manufacturing technology is not required.
[0094]
In addition, by providing a close layer containing a gas component having a large difference in refractive index from the silicon-based semiconductor between the first and second thin-film photoelectric conversion elements, light reflection to the first crystalline silicon-based semiconductor layer is increased. In addition, the thickness of the first crystalline silicon-based semiconductor layer can be reduced, and the manufacturing cost of the first thin-film photoelectric conversion element can be reduced. Further, by providing a close layer containing a gas component between the first and second thin-film photoelectric conversion elements, the insulation between these elements is provided, so that the temperature of the second thin-film photoelectric conversion element in actual use of sunlight irradiation is increased. The purpose is to prevent the decrease in efficiency by suppressing the rise.
[0095]
Moreover, as an additional effect, when the close contact layer is mainly a heat insulating gas layer, the refractive index difference and the heat insulating property are large and more effective. Further, when the heat insulating gas layer is a gas layer of an inert gas or the like, a temporal change of the microcrystalline silicon layer (due to entry of oxygen or the like) can be completely eliminated. In addition, when the heat insulating gas layer is a reduced pressure gas layer or a vacuum layer, the refractive index difference and the heat insulating property are large and more effective. When the close contact layer is a parallel layer of the heat-insulating gas layer and the light-transmitting resin layer, in addition to the above-described effect of the heat-insulating gas layer, the light-transmitting resin layer can fix the gap between the two elements, and the thin-film photoelectric conversion device Can maintain mechanical stability. In particular, it is convenient to fix the outer periphery in the case of a non-integrated cell and fix the separation groove in the case of an integrated cell without adversely affecting efficiency. When the close layer is a mixed layer of a gas and a translucent resin material, the gap can be fixed on the entire surface and mechanical strength can be provided, and the repetition of the gas and the translucent resin material is on the order of the wavelength of light. This can increase the light reflectance.
[0096]
Further, according to the thin-film photoelectric conversion device of the second aspect, the first crystalline silicon-based semiconductor layer has a spontaneous uneven portion formed by crystalline columnar deposition, and the second light-transmitting portion formed on the spontaneous uneven portion. The concavo-convex structure of the conductive layer and the close layer containing the gas component on the second light-transmitting conductive layer can enhance the light confinement effect. As a result, an uneven surface is further obtained at an intermediate position of the laminated structure, which has not been conventionally provided, and selective incidence, reflection, refraction, and absorption of light become more active in the first and second thin-film photoelectric conversion elements. By improving the confinement effect, the conversion efficiency is improved as compared with the related art.
[0097]
Further, according to the thin film photoelectric conversion device of the third aspect, the second crystalline silicon-based semiconductor layer has a self-generated uneven portion formed by crystalline columnar deposition, and the third light-transmitting portion formed on the self-formed uneven portion. The concavo-convex structure of the conductive layer and the close layer containing the gas component on the third light-transmitting conductive layer can enhance the light confinement effect. As a result, an uneven surface is further obtained at an intermediate position of the laminated structure, which has not been conventionally provided, and selective incidence, reflection, refraction, and absorption of light become more active in the first and second thin-film photoelectric conversion elements. By improving the confinement effect, the conversion efficiency is improved as compared with the related art.
[0098]
Further, according to the thin-film photoelectric conversion device of the fourth aspect, the insulating film provided with the surface of the conductive substrate or the conductive layer in contact with the second crystalline silicon-based semiconductor layer and the second one-conductivity-type silicon-based semiconductor layer. The surface of the substrate is uneven. As a result, an uneven surface is obtained at the rear position of the laminated structure, and light reflection and absorption become more active particularly in the second thin film photoelectric conversion element, and the light confinement effect is increased, thereby improving the conversion efficiency. . In addition, since the uneven portion can be newly formed on the conductive substrate or the insulating substrate as the second substrate, the degree of freedom and ease of forming the unevenness can be obtained, and a higher conversion efficiency than the conventional one can be obtained. Bring.
[0099]
According to the thin-film photoelectric conversion device of claim 5, at least the surface of the first light-transmitting conductive layer or the first light-transmitting conductive layer in contact with the first crystalline silicon-based semiconductor layer and the first one-conductivity-type silicon-based semiconductor layer. The surface of the substrate 11 has irregularities. As a result, an uneven surface is obtained at the incident position of the laminated structure, and selective incidence, refraction, and absorption of light become more active particularly in the first photoelectric conversion element, and the conversion efficiency is improved by increasing the light confinement effect. Bring.
[0100]
Further, according to the thin film photoelectric conversion device of the sixth aspect, the first unevenness (the difference between the height and the height) of the light-reflective conductive substrate in contact with the second crystalline silicon-based semiconductor layer or the insulating substrate having the conductive layer. (Pitch) is larger than the second unevenness (height difference and pitch) of the light-transmitting substrate or the first light-transmitting conductive layer in contact with the first crystalline silicon-based semiconductor layer. As a result, the first unevenness becomes more light-transmissive and the second unevenness becomes more light-reflective for long-wavelength light where light penetration is deeper than short-wavelength light, and the light confinement effect of long-wavelength light increases. This results in higher conversion efficiency.
[0101]
Further, according to the thin film photoelectric conversion device of the seventh aspect, the first crystalline silicon-based semiconductor layer and the second crystalline silicon-based semiconductor layer are independently formed without being continuously deposited by the chemical vapor deposition method. It is characterized by being deposited under film conditions. This makes it possible to independently form a film on each substrate under different film forming conditions or different film forming apparatuses, and the deposition of one PIN semiconductor film has an effect on the characteristics of the other PIN semiconductor film. There is no adverse effect. Further, the required spectral sensitivity is different between the first crystalline silicon-based semiconductor layer and the second crystalline silicon-based semiconductor layer, and improvement in conversion efficiency is expected by using different film forming apparatuses. it can. In particular, the first crystalline silicon-based semiconductor layer and the second crystalline silicon-based semiconductor layer have different film thicknesses and different film-forming times, and the efficiency is improved by using different film-forming apparatuses. Production method becomes possible.
[0102]
According to the thin-film photoelectric conversion device of the eighth aspect, the thickness of the second crystalline silicon-based semiconductor layer is larger than the thickness of the first crystalline silicon-based semiconductor layer. As a result, short-wavelength light that is easily attenuated is well absorbed by the thin first crystalline silicon-based semiconductor layer, and long-wavelength light that is hardly attenuated is well absorbed by the thick second crystalline silicon-based semiconductor layer. Brings increased efficiency.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically illustrating one embodiment of a thin-film photoelectric conversion device according to the present invention.
FIG. 2 is a cross-sectional view illustrating an example of a conventional thin-film photoelectric conversion device.
[Explanation of symbols]
1: Thin-film photoelectric conversion device
10: translucent substrate (first substrate)
11: Translucent substrate
12: first light-transmitting conductive layer
20: First thin film photoelectric conversion element
21: First one conductivity type silicon-based semiconductor layer
22: first crystalline silicon-based semiconductor layer
23: first reverse conductivity type silicon-based semiconductor layer
30: Second translucent conductive layer
50: insulating substrate
60: conductive substrate (second substrate)
61: conductive layer
70: Second thin film photoelectric conversion element
71: Second one-conductivity-type silicon-based semiconductor layer
72: second crystalline silicon-based semiconductor layer
73: second reverse conductivity type silicon-based semiconductor layer
80: Third translucent conductive layer
90: Close layer
91: Translucent resin layer
92: Gas layer for heat insulation

Claims (8)

透光性を有する第1の基板を備えた第1の薄膜光電変換素子と、表面が導電性の第2の基板を備えた第2の薄膜光電変換素子とを、前記両基板が外側に位置するように互いに対向させて成る薄膜光電変換装置であって、前記第1の薄膜光電変換素子は、前記第1の基板上に、第1の透光性導電層、第1の一導電型シリコン系半導体層、実質的に真性であり表面が凹凸状の第1の結晶質シリコン系半導体層、第1の逆導電型シリコン系半導体層、及び第2の透光性導電層が順次積層されて成るとともに、前記第2の薄膜光電変換素子は、前記第2の基板上に、第2の一導電型シリコン系半導体層、実質的に真性であり表面が凹凸状の第2の結晶質シリコン系半導体層、第2の逆導電型シリコン系半導体層、及び第3の透光性導電層が順次積層されて成り、且つ前記第1の薄膜光電変換素子と前記第2の薄膜光電変換素子との間に透光性樹脂層もしくは断熱用気体層を含む密接層を介在させたことを特徴とする薄膜光電変換装置。A first thin-film photoelectric conversion element provided with a first substrate having a light-transmitting property and a second thin-film photoelectric conversion element provided with a second substrate having a conductive surface, wherein the two substrates are located outside. Wherein the first thin-film photoelectric conversion element comprises a first light-transmitting conductive layer, a first one-conductivity-type silicon on the first substrate. System semiconductor layer, a first intrinsic crystalline silicon-based semiconductor layer having an uneven surface, a first reverse-conductivity-type silicon-based semiconductor layer, and a second light-transmitting conductive layer are sequentially stacked. And the second thin-film photoelectric conversion element comprises a second one-conductivity-type silicon-based semiconductor layer on the second substrate, a second intrinsic crystalline silicon-based semiconductor layer having an uneven surface. A semiconductor layer, a second opposite conductivity type silicon-based semiconductor layer, and a third light-transmitting conductive layer are sequentially stacked; And a close-contact layer including a light-transmitting resin layer or a heat-insulating gas layer is interposed between the first thin-film photoelectric conversion element and the second thin-film photoelectric conversion element. Conversion device. 請求項1に記載の薄膜光電変換装置であって、前記第1の結晶質シリコン系半導体層が結晶質柱状堆積による自生凹凸部を有し、この自生凹凸部上に形成した前記第2の透光性導電層と該第2の透光性導電層上の前記密接層との凹凸構成により、光閉じ込め効果を高めたことを特徴とする薄膜光電変換装置。2. The thin-film photoelectric conversion device according to claim 1, wherein the first crystalline silicon-based semiconductor layer has a spontaneous uneven portion formed by crystalline columnar deposition, and the second transparent semiconductor formed on the spontaneous uneven portion. 3. A thin-film photoelectric conversion device, wherein a light confinement effect is enhanced by a concavo-convex structure of a photoconductive layer and the close contact layer on the second translucent conductive layer. 請求項1に記載の薄膜光電変換装置であって、前記第2の結晶質シリコン系半導体層が結晶質柱状堆積による自生凹凸部を有し、この自生凹凸部上に形成した前記第3の透光性導電層と該第3の透光性導電層上の前記密接層との凹凸構成により、光閉じ込め効果を高めたことを特徴とする薄膜光電変換装置。2. The thin-film photoelectric conversion device according to claim 1, wherein the second crystalline silicon-based semiconductor layer has a spontaneous uneven portion formed by crystalline columnar deposition, and the third transparent semiconductor formed on the spontaneous uneven portion. 3. A thin-film photoelectric conversion device, wherein a light confinement effect is enhanced by a concavo-convex structure of a photoconductive layer and the close layer on the third light-transmitting conductive layer. 請求項1に記載の薄膜光電変換装置であって、前記第2の結晶質シリコン系半導体層及び前記第2の一導電型シリコン系半導体層と接する前記第2の基板表面が凹凸状を成していることを特徴とする薄膜光電変換装置。2. The thin-film photoelectric conversion device according to claim 1, wherein a surface of the second substrate in contact with the second crystalline silicon-based semiconductor layer and the second one-conductivity-type silicon-based semiconductor layer has an uneven shape. A thin-film photoelectric conversion device. 請求項1に記載の薄膜光電変換装置であって、前記第1の結晶質シリコン系半導体層及び前記第1の一導電型シリコン系半導体層と接する少なくとも前記第1の透光性導電層表面もしくは前記第1の基板表面が凹凸状を成すことを特徴とする薄膜光電変換装置。2. The thin-film photoelectric conversion device according to claim 1, wherein at least a surface of the first light-transmitting conductive layer in contact with the first crystalline silicon-based semiconductor layer and the first one-conductivity-type silicon-based semiconductor layer or The thin-film photoelectric conversion device, wherein the surface of the first substrate has an uneven shape. 請求項1に記載の薄膜光電変換装置であって、前記第2の結晶質シリコン系半導体層及び前記第2の一導電型シリコン系半導体層と接する前記第2の基板表面が凹凸状を成すとともに、前記第1の結晶質シリコン系半導体及び前記第1の一導電型シリコン系半導体層と接する少なくとも前記第1の透光性導電層表面もしくは前記第1の基板表面が凹凸状を成し、且つ前記第2の基板表面の凹凸部の高低差とピッチが、前記第1の基板表面の凹凸部の高低差とピッチより大きいことを特徴とする薄膜光電変換装置。2. The thin-film photoelectric conversion device according to claim 1, wherein a surface of the second substrate in contact with the second crystalline silicon-based semiconductor layer and the second one-conductivity-type silicon-based semiconductor layer has an uneven shape. 3. At least the surface of the first light-transmitting conductive layer or the surface of the first substrate that is in contact with the first crystalline silicon-based semiconductor and the first one-conductivity-type silicon-based semiconductor layer has an uneven shape; A thin film photoelectric conversion device, wherein a height difference and a pitch of the uneven portion on the surface of the second substrate are larger than a height difference and a pitch of the uneven portion on the surface of the first substrate. 請求項1に記載の薄膜光電変換装置であって、前記第1の結晶質シリコン系半導体層及び前記第2の結晶質シリコン系半導体層が、化学気相成長法により連続堆積することなくそれぞれ独自の製膜条件で堆積されることを特徴とする薄膜光電変換装置。2. The thin-film photoelectric conversion device according to claim 1, wherein the first crystalline silicon-based semiconductor layer and the second crystalline silicon-based semiconductor layer are independently formed without being continuously deposited by a chemical vapor deposition method. A thin-film photoelectric conversion device characterized by being deposited under the following film-forming conditions. 請求項1に記載の薄膜光電変換装置であって、前記第2の結晶質シリコン系半導体層の膜厚が、前記第1の結晶質シリコン系半導体層の膜厚より大きいことを特徴とする薄膜光電変換装置。2. The thin film photoelectric conversion device according to claim 1, wherein the thickness of the second crystalline silicon-based semiconductor layer is larger than the thickness of the first crystalline silicon-based semiconductor layer. Photoelectric conversion device.
JP2002316815A 2002-10-30 2002-10-30 Thin-film photoelectric converting device Pending JP2004153028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002316815A JP2004153028A (en) 2002-10-30 2002-10-30 Thin-film photoelectric converting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002316815A JP2004153028A (en) 2002-10-30 2002-10-30 Thin-film photoelectric converting device

Publications (1)

Publication Number Publication Date
JP2004153028A true JP2004153028A (en) 2004-05-27

Family

ID=32460411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002316815A Pending JP2004153028A (en) 2002-10-30 2002-10-30 Thin-film photoelectric converting device

Country Status (1)

Country Link
JP (1) JP2004153028A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006359A1 (en) * 2004-07-13 2006-01-19 Kaneka Corporation Thin-film photoelectric converter
WO2010086136A3 (en) * 2009-01-29 2010-10-21 Schott Ag Thin-film solar cell
KR101086260B1 (en) 2010-03-26 2011-11-24 한국철강 주식회사 Photovoltaic device including flexible substrate or inflexible substrate and method for manufacturing the same
JP2012522403A (en) * 2009-05-06 2012-09-20 シンシリコン・コーポレーション Photovoltaic cell and method for enhancing light capture in a semiconductor layer stack
US9087950B2 (en) 2009-06-05 2015-07-21 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method for manufacturing the same
CN109196678A (en) * 2016-05-09 2019-01-11 株式会社钟化 Laminated type photoelectric conversion device and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006359A1 (en) * 2004-07-13 2006-01-19 Kaneka Corporation Thin-film photoelectric converter
WO2010086136A3 (en) * 2009-01-29 2010-10-21 Schott Ag Thin-film solar cell
JP2012522403A (en) * 2009-05-06 2012-09-20 シンシリコン・コーポレーション Photovoltaic cell and method for enhancing light capture in a semiconductor layer stack
US9087950B2 (en) 2009-06-05 2015-07-21 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method for manufacturing the same
KR101086260B1 (en) 2010-03-26 2011-11-24 한국철강 주식회사 Photovoltaic device including flexible substrate or inflexible substrate and method for manufacturing the same
CN109196678A (en) * 2016-05-09 2019-01-11 株式会社钟化 Laminated type photoelectric conversion device and its manufacturing method

Similar Documents

Publication Publication Date Title
EP1724840B1 (en) Photoelectric cell
CN109004053B (en) Crystalline silicon/thin film silicon heterojunction solar cell with double-sided light receiving function and manufacturing method thereof
US6750394B2 (en) Thin-film solar cell and its manufacturing method
US6870088B2 (en) Solar battery cell and manufacturing method thereof
US6288325B1 (en) Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts
US20080156372A1 (en) Thin film solar cell module of see-through type and method of fabricating the same
JP5180590B2 (en) Stacked photoelectric conversion device
JP2001308354A (en) Stacked solar cell
US8575472B2 (en) Photoelectric conversion device and method for producing same
JPWO2005011002A1 (en) Silicon-based thin film solar cell
JP4284582B2 (en) Multi-junction thin film solar cell and manufacturing method thereof
JP2016029675A (en) Light-transmissible insulation board for thin film solar battery and integration type thin film silicon solar battery
US8759667B2 (en) Photoelectric conversion device
JP5232362B2 (en) A manufacturing method of an integrated thin film photoelectric conversion device, and an integrated thin film photoelectric conversion device obtainable by the manufacturing method.
JP2007035914A (en) Thin film photoelectric converter
JP2004153028A (en) Thin-film photoelectric converting device
JP2004111557A (en) Thin-film photoelectric converter
JP2004179560A (en) Integrated thin-film photovoltaic device
JP2007059799A (en) Solar cell and its manufacturing method
JP4443274B2 (en) Photoelectric conversion device
JP2004095784A (en) Thin film photoelectric converter
JPWO2006049003A1 (en) Method for manufacturing thin film photoelectric conversion device
WO2011105166A1 (en) Photoelectric conversion module and method for manufacturing same
US20100307573A1 (en) Solar cell and manufacturing method thereof
US20110083724A1 (en) Monolithic Integration of Photovoltaic Cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104