JP2001308354A - Stacked solar cell - Google Patents
Stacked solar cellInfo
- Publication number
- JP2001308354A JP2001308354A JP2000122827A JP2000122827A JP2001308354A JP 2001308354 A JP2001308354 A JP 2001308354A JP 2000122827 A JP2000122827 A JP 2000122827A JP 2000122827 A JP2000122827 A JP 2000122827A JP 2001308354 A JP2001308354 A JP 2001308354A
- Authority
- JP
- Japan
- Prior art keywords
- film
- photoelectric conversion
- solar cell
- conversion layer
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は積層型太陽電池に
関するものであり、フォトセンサなどにも適用可能な低
コスト、高効率のシリコンタンデム型太陽電池に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stacked solar cell, and more particularly to a low-cost, high-efficiency silicon tandem solar cell applicable to a photosensor and the like.
【0002】[0002]
【従来の技術および発明が解決しようとする課題】半導
体或いはその他の内部光電効果を用いて太陽光を直接に
電気に変換する光電変換装置は太陽電池と呼ばれる。現
在、地上での各種用途に応じて、単一接合を有する単結
晶シリコン、多結晶シリコン、アモルファスシリコン太
陽電池などが使用されている。2. Description of the Related Art A photoelectric conversion device that directly converts sunlight into electricity by using a semiconductor or other internal photoelectric effect is called a solar cell. At present, monocrystalline silicon, polycrystalline silicon, amorphous silicon solar cells and the like having a single junction are used according to various uses on the ground.
【0003】更に低コストな電源とするためには一層の
高効率化が必要であるが、その根本的な改善を図るため
に、薄膜シリコンを用いてそれを積層型(タンデム型)
とすることが、太陽電池高効率化の研究方向の一つとな
っている。積層型太陽電池は、アモルファスシリコンな
どの高エネルギーバンドギャップの半導体材料で構成さ
れた上部光電変換層で短波長側の光を吸収し、結晶シリ
コンなどの低エネルギーバンドギャップの半導体材料で
構成された下部光電変換層で長波長側の光を吸収して入
射光の有効利用を図るものである。[0003] In order to further reduce the cost of the power supply, it is necessary to further increase the efficiency. However, in order to fundamentally improve the efficiency, a thin-film silicon (tandem type) is used.
This is one of the research directions for improving the efficiency of solar cells. Stacked solar cells are composed of a low energy bandgap semiconductor material such as crystalline silicon, which absorbs light on the short wavelength side with an upper photoelectric conversion layer made of a high energy bandgap semiconductor material such as amorphous silicon. The lower photoelectric conversion layer absorbs light on the long wavelength side to effectively use incident light.
【0004】通常、単一接合P−I−Nアモルファスシ
リコン太陽電池では、Ag或いはAlからなる裏面電極
の反射率は約95〜98%に達しており、短絡光電流密
度としては約16〜19mA/cm2 が得られる。ま
た、単一接合を有する結晶シリコン太陽電池の短絡光電
流密度は約32〜41mA/cm2 であるが、上部に薄
膜シリコン太陽電池を積層した場合、上部の光電変換層
で吸収されずに透過した入射光だけでも、約19〜27
mA/cm2の短絡光電流密度を発生する。Normally, in a single-junction PIN amorphous silicon solar cell, the reflectivity of the back electrode made of Ag or Al reaches about 95 to 98%, and the short-circuit photocurrent density is about 16 to 19 mA. / Cm 2 are obtained. The short-circuit photocurrent density of a crystalline silicon solar cell having a single junction is about 32 to 41 mA / cm 2 , but when a thin-film silicon solar cell is stacked on top, the light is transmitted without being absorbed by the upper photoelectric conversion layer. Approximately 19 to 27
Generates a short-circuit photocurrent density of mA / cm 2 .
【0005】ところが、積層型太陽電池全体の短絡光電
流密度は、上部光電変換層と下部光電変換層の各短絡光
電流密度のうち、小さい方の短絡光電流密度に制限され
る。従って、上部光電変換層にP−I−Nアモルファス
シリコンを用い、下部光電変換層に結晶シリコンを用い
てこれらを直列接続した場合、それぞれの光電変換層で
発生した短絡光電流密度のバランスが取れなくなり、光
電変換効率の向上を阻害する点が問題となっていた。[0005] However, the short-circuit photocurrent density of the entire stacked solar cell is limited to the smaller short-circuit photocurrent density of the short-circuit photocurrent densities of the upper photoelectric conversion layer and the lower photoelectric conversion layer. Therefore, when PIN-A-N amorphous silicon is used for the upper photoelectric conversion layer and crystalline silicon is used for the lower photoelectric conversion layer and these are connected in series, the short-circuit photocurrent density generated in each photoelectric conversion layer can be balanced. This has caused a problem that the improvement in photoelectric conversion efficiency is hindered.
【0006】上部光電変換層にP−I−Nアモルファス
シリコンを用いた場合、その光電変換効率を向上させる
手段としては、I型アモルファスシリコンの膜厚を厚く
して吸収光量を増加させることも考えられるが、I型ア
モルファスシリコンの膜質が不十分であるため、その膜
厚はおのずと約5000Å以下に制限される。このた
め、I型アモルファスシリコンの光学的バンドギャップ
より大きな光でも完全には吸収できず、I型アモルファ
スシリコンの膜厚によって上部光電変換層の光電変換効
率を向上させるのには限界がある。When PIN amorphous silicon is used for the upper photoelectric conversion layer, as a means for improving the photoelectric conversion efficiency, it is conceivable to increase the thickness of the I-type amorphous silicon to increase the amount of absorbed light. However, since the film quality of the I-type amorphous silicon is insufficient, the film thickness is naturally limited to about 5000 ° or less. Therefore, light larger than the optical band gap of the I-type amorphous silicon cannot be completely absorbed, and there is a limit to improving the photoelectric conversion efficiency of the upper photoelectric conversion layer depending on the thickness of the I-type amorphous silicon.
【0007】このような問題を解決するための方法とし
て、上部光電変換層と下部光電変換層との間に中間層と
して透明導電膜を挿入し、この膜で入射光のうちの短波
長領域の光を上部光電変換層へ選択的に反射させて上部
光電変換層の光電変換効率を向上させることにより、短
絡光電流密度のバランスをとる方法が知られている。As a method for solving such a problem, a transparent conductive film is inserted as an intermediate layer between an upper photoelectric conversion layer and a lower photoelectric conversion layer, and this film is used to cover a short wavelength region of incident light. There is known a method of balancing short-circuit photocurrent density by selectively reflecting light to an upper photoelectric conversion layer and improving the photoelectric conversion efficiency of the upper photoelectric conversion layer.
【0008】しかし、特開昭59−96777号公報に
記載されているように、透明導電膜の反射特性を考慮す
ることなく、この膜を上部、下部光電変換層間に挿入し
なく、直接接続し、短絡光電流密度のバランスをとるこ
とはやはりできず、光電変換効率の向上は望めない。However, as described in JP-A-59-96777, this film is directly connected without inserting the film between the upper and lower photoelectric conversion layers without considering the reflection characteristics of the transparent conductive film. Also, the short-circuit photocurrent density cannot be balanced, and improvement in photoelectric conversion efficiency cannot be expected.
【0009】また、特開昭60−35580号公報で
は、上部、下部光電変換層間に膜厚1000〜1500
ÅのITO膜を挿入している。このITO膜の反射特性
は図6に示すようなものであり、光入射側となる上部光
電変換層へは都合よく入射光量の増大を図れるが、下部
光電変換層へは入射光量が極端に減少するという問題が
発生する。Japanese Patent Application Laid-Open No. 60-35580 discloses a film thickness of 1000 to 1500 between the upper and lower photoelectric conversion layers.
The ITO film of Å is inserted. The reflection characteristic of this ITO film is as shown in FIG. 6, and the incident light amount can be conveniently increased to the upper photoelectric conversion layer on the light incident side, but the incident light amount decreases extremely to the lower photoelectric conversion layer. Problem arises.
【0010】また、特開昭63−77167号公報に記
載されているように、ITO膜の膜厚が100〜200
0Åであっても、光の有効利用を図ることは不可能であ
る。特に、その実施例に記載されている膜厚600Åの
ITO膜では、その反射特性がブロードとなり、下部光
電変換層の長波長感度も同時に大きく低下するので光の
有効利用を図ることができない。As described in JP-A-63-77167, the thickness of the ITO film is 100 to 200.
Even if it is 0 °, it is impossible to effectively use light. In particular, in the case of the ITO film having a film thickness of 600 ° described in the embodiment, its reflection characteristics become broad, and the long wavelength sensitivity of the lower photoelectric conversion layer is also greatly reduced, so that light cannot be effectively used.
【0011】その他、特開昭61−127847号公
報、特開昭62−84570号公報、特開昭63−68
82号公報にも類似する解決手段が記載されているが、
いずれも短波長領域の光に対する反射率が十分でないに
も関わらず、長波長領域の光に対する反射率が逆に高く
なってしまうという致命的な問題点がある。In addition, JP-A-61-127847, JP-A-62-84570, and JP-A-63-68.
No. 82 discloses a similar solution,
In any case, although the reflectivity for light in the short wavelength region is not sufficient, the reflectivity for light in the long wavelength region is conversely increased.
【0012】さらに、特開平2−237172号公報に
はITO膜の膜厚を2500Å程度とすることにより、
反射率のピークを波長約600nm付近に持ってくるこ
とが示されている。このITO膜の反射特性は図5に示
すようなものであり、反射率のピークである波長約60
0nm付近でもその反射率は約40%に過ぎず、やはり
上部光電変換層への入射光量の顕著な増加を図ることは
できない。さらには、長波長領域の光に対する反射率に
もまだ大きいという問題もある。Further, Japanese Patent Application Laid-Open No. 2-237172 discloses that the thickness of the ITO film is set to about 2500 °,
It is shown that the peak of the reflectance is brought near the wavelength of about 600 nm. The reflection characteristic of this ITO film is as shown in FIG.
Even at around 0 nm, the reflectance is only about 40%, so that the amount of light incident on the upper photoelectric conversion layer cannot be increased significantly. Further, there is a problem that the reflectance for light in a long wavelength region is still large.
【0013】つまり従来技術と同じように、透明導電膜
の単膜で中間層を構成し、材料や膜厚をいくら最適化し
ても、積層型太陽電池に最適な選択的反射特性を有する
中間層を得ることはできない。That is, as in the prior art, the intermediate layer is composed of a single transparent conductive film and has an optimum selective reflection characteristic for a stacked solar cell, no matter how much the material and film thickness are optimized. Can not get.
【0014】また、上記特開平2−237172号公報
の第2実施例では、中間層として開口部を有する二酸化
シリコン膜を(膜厚3100Å)用い、開口部にアモル
ファス・微結晶シリコンを充填することにより上部、下
部光電変換層を直列接続することが示されている。しか
し、この開口部にどのようにして、選択的にアモルファ
ス・微結晶シリコンを充填するかが記載されておらず、
仮にできるとしても、工程がかなり複雑になり工業生産
の観点から無意味になる。Further, in the second embodiment of Japanese Patent Application Laid-Open No. 2-237172, a silicon dioxide film having an opening (thickness: 3100 °) is used as an intermediate layer, and the opening is filled with amorphous / microcrystalline silicon. Indicates that the upper and lower photoelectric conversion layers are connected in series. However, it does not describe how to selectively fill the opening with amorphous / microcrystalline silicon.
Even if it could be done, the process would be quite complicated and insignificant from an industrial production point of view.
【0015】また、第2回太陽光発電世界会議(2nd
WORLD CONFERRE−NCE AND E
XHIBITION ON PHOTOVOLTAIC
SOLAR ENERGY CONVERSION,J
uly,1998,VIENNA,AUSTRIA)
で、スイスのNeuchatel大学からの報告(pp
728−731)では、上部のアモルファスシリコン光
電変換層と下部の多結晶薄膜光電変換層との間に膜厚を
最適化した透明導電膜(ZnO)を挿入しても、平坦表
面の場合には短絡電流は0.7mA/cm2 しか向上せ
ず、また、テクスチャ表面の場合でも2.0mA/cm
2 しか向上しないことが解明された。[0015] Also, the second solar power generation world conference (2nd
WORLD CONFERRE-NCE AND E
XHIBITION ON PHOTOVOLTAIC
SOLAR ENERGY CONVERSION, J
uly, 1998, VIENNA, AUSTRIA)
A report from the University of Neuchatel in Switzerland (pp.
In 728-731), even if a transparent conductive film (ZnO) whose film thickness is optimized is inserted between the upper amorphous silicon photoelectric conversion layer and the lower polycrystalline thin film photoelectric conversion layer, even if it is a flat surface, short-circuit current does not increase only 0.7 mA / cm 2, also, even for textured surface 2.0 mA / cm
It was found that only 2 improved.
【0016】以上のように、積層型太陽電池において発
電効率を向上させるには、上部光電変換層と下部光電変
換層の各短絡光電流密度のバランスをとることが重要で
ある。しかし、中間層にTCOやZnOなどの透明導電
膜を用いた従来の積層型太陽電池の場合、上部光電変換
層の短絡光電流密度は約12〜14mA/cm2 しか得
られないが、下部光電変換層は上部光電変換層を透過し
た入射光のみで約19〜26mA/cm2 の短絡光電流
密度を発生していた。このため、従来の積層型太陽電池
は、上部光電変換層と下部光電変換層の各短絡光電流密
度のバランスがとれず、積層型太陽電池全体の光電変換
効率が制限されていた。As described above, in order to improve the power generation efficiency in a stacked solar cell, it is important to balance the short-circuit photocurrent densities of the upper photoelectric conversion layer and the lower photoelectric conversion layer. However, in the case of a conventional laminated solar cell using a transparent conductive film such as TCO or ZnO for the intermediate layer, the short-circuit photocurrent density of the upper photoelectric conversion layer is only about 12 to 14 mA / cm 2 , but the lower photoelectric conversion layer is lower. The conversion layer generated a short-circuit photocurrent density of about 19 to 26 mA / cm 2 only by incident light transmitted through the upper photoelectric conversion layer. For this reason, in the conventional stacked solar cell, the short-circuit photocurrent densities of the upper photoelectric conversion layer and the lower photoelectric conversion layer cannot be balanced, and the photoelectric conversion efficiency of the entire stacked solar cell is limited.
【0017】つまり、中間層の反射特性を、上部光電変
換層が吸収しやすい短波長領域の光に対する反射率が高
く、下部光電変換層が吸収しやすい長波長領域の光に対
する反射率を低いものに改善することが積層型太陽電池
の光電変換効率を向上させるための重要な課題である。That is, the reflection characteristics of the intermediate layer are such that the upper photoelectric conversion layer has a high reflectance for light in a short wavelength region that is easily absorbed by the lower photoelectric conversion layer and has a low reflectance for light in a long wavelength region that is easily absorbed by the lower photoelectric conversion layer. Is an important issue for improving the photoelectric conversion efficiency of the stacked solar cell.
【0018】この発明は以上のような事情を考慮してな
されたものであり、中間層の反射特性を、短波長領域の
光に対しては反射率が高く、長波長領域の光に対しては
反射率が低いものに改善することにより、上部光電変換
層と下部光電変換層の各短絡光電流密度を高い値でバラ
ンスさせた光電変換効率の高い積層型太陽電池を提供す
るものである。The present invention has been made in view of the above-described circumstances, and has an advantage in that the reflection characteristics of the intermediate layer are high for light in the short wavelength region and high for light in the long wavelength region. The object of the present invention is to provide a stacked solar cell having a high photoelectric conversion efficiency in which the short-circuit photocurrent densities of the upper photoelectric conversion layer and the lower photoelectric conversion layer are balanced by a high value by improving the reflectance to a low value.
【0019】[0019]
【課題を解決するための手段】この発明は、半導体から
なる複数の光電変換層を積層した太陽電池において、そ
れぞれの光電変換層間に介在して各光電変換層を電気的
に直列接続する中間層が設けられ、中間層は2つ以上の
材料を交互に積層して構成された多層膜であって、特定
の波長領域の光を選択的に反射する特性を有しているこ
とを特徴とする積層型太陽電池を提供するものである。SUMMARY OF THE INVENTION The present invention relates to a solar cell having a plurality of photoelectric conversion layers made of a semiconductor, and an intermediate layer interposed between the photoelectric conversion layers and electrically connecting the photoelectric conversion layers in series. Is provided, and the intermediate layer is a multilayer film formed by alternately laminating two or more materials, and has a characteristic of selectively reflecting light in a specific wavelength region. It is intended to provide a stacked solar cell.
【0020】[0020]
【発明の実施の形態】この発明の積層型太陽電池は、複
数の光電変換層がそれぞれP−I−N構造を有するアモ
ルファスシリコンで形成された上部光電変換層と、単結
晶シリコン、多結晶シリコン又は微結晶シリコンで形成
された下部光電変換層とで構成され、中間層は上部光電
変換層で吸収できる波長領域の光に対する反射率が高
く、上部光電変換層で吸収できない波長領域の光に対す
る反射率が低くなるような反射特性を有しているもので
ある。BEST MODE FOR CARRYING OUT THE INVENTION A stacked solar cell according to the present invention comprises an upper photoelectric conversion layer in which a plurality of photoelectric conversion layers are each formed of amorphous silicon having a PIN structure, a single crystal silicon and a polycrystalline silicon. Or the lower photoelectric conversion layer formed of microcrystalline silicon, and the intermediate layer has a high reflectance for light in a wavelength region that can be absorbed by the upper photoelectric conversion layer and has a high reflectance for light in a wavelength region that cannot be absorbed by the upper photoelectric conversion layer. It has a reflection characteristic such that the ratio becomes low.
【0021】このように構成することにより、P−I−
Nアモルファスシリコン上部光電変換層で吸収できる短
波長領域の光を選択的に反射させつつ、結晶シリコン下
部光電変換層で吸収できる長波長領域の光を透過させる
ことができるようになる。従って、下部光電変換層への
透過光量の減少を極力抑えつつ、上部光電変換層の光吸
収量を増大させることができ、結果として積層型太陽電
池の光電変換効率を向上させることができる。With this configuration, P-I-
While selectively reflecting light in a short wavelength region that can be absorbed by the N-amorphous silicon upper photoelectric conversion layer, light in a long wavelength region that can be absorbed by the crystalline silicon lower photoelectric conversion layer can be transmitted. Therefore, it is possible to increase the amount of light absorbed by the upper photoelectric conversion layer while minimizing the decrease in the amount of light transmitted to the lower photoelectric conversion layer, and as a result, it is possible to improve the photoelectric conversion efficiency of the stacked solar cell.
【0022】また、この発明の積層型太陽電池は、中間
層が、第1膜と第2膜とを積層して構成され、第1膜は
屈折率が第2膜よりも低く、第1膜は上部光電変換層側
に設けられ、第2膜は下部光電変換層側に設けられてい
てもよい。Further, in the stacked solar cell according to the present invention, the intermediate layer is formed by stacking a first film and a second film, and the first film has a lower refractive index than the second film, and the first film has a lower refractive index. May be provided on the upper photoelectric conversion layer side, and the second film may be provided on the lower photoelectric conversion layer side.
【0023】また、この発明の積層型太陽電池は、中間
層が、第1膜と第2膜とが交互に積層された2層以上の
構成を有していてもよい。具体的には、下部光電変換層
の表面に第1膜を形成し、その上に第2膜を積層し、さ
らにその第2膜の上に第1膜を積層するという順序で積
層を重ね、最終的には第1膜が中間層の表面、つまり上
部光電変換層の裏面と接する面となるようにするとよ
い。Further, the stacked solar cell of the present invention may have a structure in which the intermediate layer has two or more layers in which the first film and the second film are alternately stacked. Specifically, a first film is formed on the surface of the lower photoelectric conversion layer, a second film is stacked thereon, and the first film is further stacked on the second film, in this order, Finally, it is preferable that the first film be the surface of the intermediate layer, that is, the surface in contact with the back surface of the upper photoelectric conversion layer.
【0024】また、この発明の積層型太陽電池は、第1
膜が透明導電膜であって導電性不純物を含有するIT
O、ZnO、TiO2 、SnO2 およびSiO2 のいず
れかで形成されていてもよい。Further, the laminated solar cell of the present invention has a first
IT whose film is a transparent conductive film and contains conductive impurities
It may be formed of any of O, ZnO, TiO 2 , SnO 2 and SiO 2 .
【0025】また、この発明の積層型太陽電池は、第2
膜が第1膜と同じ材料の透明導電膜であってもよい。ま
た、第2膜は、多結晶状態、微結晶状態およびアモルフ
ァスと微結晶とが混在した状態のうちのいずれかの状態
であって導電性不純物を含有するシリコン、シリコンカ
ーボンのいずれかで形成されている半導体膜であっても
よい。Further, the laminated solar cell of the present invention has a
The film may be a transparent conductive film of the same material as the first film. The second film is in any one of a polycrystalline state, a microcrystalline state, and a mixed state of amorphous and microcrystalline, and is formed of silicon or silicon carbon containing conductive impurities. Semiconductor film.
【0026】このように構成することにより、中間層を
構成する透明導電膜と半導体膜は、いずれも導電性のあ
る不純物を含む膜となり、上部光電変換層と下部光電変
換層との直列接続を容易に達成しつつ、積層型太陽電池
の電気的損失を低くすることができる。また、セル構成
上技術的に難しい直列抵抗損失も容易に軽減でき、光電
変換効率のより一層の向上を図ることができる。With this configuration, the transparent conductive film and the semiconductor film constituting the intermediate layer are both films containing conductive impurities, and the upper photoelectric conversion layer and the lower photoelectric conversion layer are connected in series. The electrical loss of the stacked solar cell can be reduced while easily achieving the same. Further, series resistance loss, which is technically difficult due to the cell configuration, can be easily reduced, and the photoelectric conversion efficiency can be further improved.
【0027】また、この発明の積層型太陽電池は、第1
膜が導電性不純物を含有する膜厚30〜74nmのZn
Oであり、第2膜が導電性不純物を含有する膜厚10〜
35nmの多結晶シリコンであってもよい。Further, the laminated solar cell of the present invention has a first
30-74 nm-thick Zn containing conductive impurities
O, and the second film has a thickness of 10 to 10 containing a conductive impurity.
It may be 35 nm polycrystalline silicon.
【0028】また、この発明の積層型太陽電池は、上部
光電変換層と接する第1膜が導電性不純物を含有するZ
nOで形成されていてもよい。Further, in the stacked solar cell according to the present invention, the first film in contact with the upper photoelectric conversion layer has a Z content containing a conductive impurity.
It may be formed of nO.
【0029】ZnO膜はプラズマによるダメージを受け
にくいので、このように構成するとアモルファスシリコ
ン上部光電変換層を成膜する際に中間層が受けるダメー
ジを最小限に留めることができるようになる。Since the ZnO film is less susceptible to plasma damage, such a configuration minimizes damage to the intermediate layer when forming the amorphous silicon upper photoelectric conversion layer.
【0030】また、この発明の積層型太陽電池は、上部
光電変換層と接しない第1膜がITO、SnO2 および
TiO2 のうちのいずれかで形成されていてもよい。つ
まり、上部光電変換層と接する第1膜は上述のとおりZ
nOであることが好ましいが、それ以外の第1膜は、必
ずしもZnOでなくともよい。Further, in the stacked solar cell of the present invention, the first film not in contact with the upper photoelectric conversion layer may be formed of any one of ITO, SnO 2 and TiO 2 . That is, the first film in contact with the upper photoelectric conversion layer has a Z
It is preferable that the first film is nO, but the other first film does not necessarily have to be ZnO.
【0031】また、この発明の積層型太陽電池は、中間
層を構成する第1、第2膜が、スパッタリング法で形成
されていてもよい。Further, in the stacked solar cell of the present invention, the first and second films constituting the intermediate layer may be formed by a sputtering method.
【0032】ここで多層構造の選択反射率の計算方法を
説明する。計算式はO.S He−vens,“Opt
ical Properties of Thin S
o−lid Films”,Butterworths
Science(1955)に記載されているような
通常の計算式を用いる。垂直入射の場合の多層膜の反射
率R(λ)は以下の式1〜3で算出することができる。Here, a method of calculating the selective reflectance of the multilayer structure will be described. The calculation formula is O.D. S He-vens, “Opt
ical properties of Thin S
o-lid Films ", Butterworths
An ordinary calculation formula as described in Science (1955) is used. The reflectance R (λ) of the multilayer film in the case of normal incidence can be calculated by the following formulas 1 to 3.
【0033】[0033]
【数1】 (Equation 1)
【0034】[0034]
【数2】 (Equation 2)
【0035】[0035]
【数3】 (Equation 3)
【0036】ここでMj は均質第j層層単層膜の特性行
列、Mは均質多層膜の特性行列、m 11、m12、m22は各
層に対応する特性行列の積行列の対角要素、η0 、η
l+1 及びηj は入射側の媒質、シリコン及び第j層膜の
実効屈折率であり、吸収性の媒質に対して複数屈折率N
j =nj −iKでおきかえればよい。δj =(2π/
δ)Nj dj で、dj は第j層膜の膜厚である。Where MjIs the characteristic line of the uniform j-th layer monolayer
Columns, M is the characteristic matrix of the homogeneous multilayer, m 11, M12, Mtwenty twoIs each
Diagonal element of the product matrix of the characteristic matrix corresponding to the layer, η0, Η
l + 1And ηjDenotes the medium on the incident side, silicon and the j-th layer film.
Effective refractive index, multiple refractive index N for absorptive medium
j= Nj-IK may be replaced. δj= (2π /
δ) NjdjAnd djIs the thickness of the j-th layer film.
【0037】図2に、上述の式に基づいて算出した膜厚
71nmのZnO膜と、膜厚31nmの多結晶シリコン
膜とを積層した2層構造の中間層の反射率データを示
す。図2に示されるように、この中間層の反射特性は、
約700nm以下の短波長領域の光に対して高い反射率
を示し、その反射率ピークは約87%となるが、約93
0〜1200nmの長波長領域の光に対する反射率は約
11%以下と低い。さらに層数が増えるに従い、短波長
領域の反射率が高くなる。例えば、三層以上の層があれ
ば約700nm以下の短波長領域の光に対する反射率は
約90%以上となる。FIG. 2 shows reflectance data of an intermediate layer having a two-layer structure in which a ZnO film having a thickness of 71 nm and a polycrystalline silicon film having a thickness of 31 nm are calculated based on the above formula. As shown in FIG. 2, the reflection characteristics of this intermediate layer are:
It shows a high reflectance for light in a short wavelength region of about 700 nm or less, and its reflectance peak is about 87%.
The reflectance for light in the long wavelength range of 0 to 1200 nm is as low as about 11% or less. As the number of layers further increases, the reflectance in the short wavelength region increases. For example, if there are three or more layers, the reflectance for light in a short wavelength region of about 700 nm or less is about 90% or more.
【0038】図3に、上述の式に基づいて算出した、上
記ZnO膜と多結晶シリコン膜との積層を交互に繰り返
した4層構造の中間層の反射率データを示す。図3に示
されるように、アモルファスシリコン上部光電変換層
と、結晶シリコン下部光電変換層とを有する積層型太陽
電池の中間層として、最も理想的と思われる選択的反射
特性、つまり、約700nm以下の短波長領域の光を反
射し、約700nm以上の波長領域の光を透過させると
いう良好な選択的反射特性を示している。FIG. 3 shows reflectance data of an intermediate layer having a four-layer structure in which the ZnO film and the polycrystalline silicon film are alternately laminated, calculated based on the above equation. As shown in FIG. 3, as an intermediate layer of a stacked solar cell having an amorphous silicon upper photoelectric conversion layer and a crystalline silicon lower photoelectric conversion layer, a selective reflection characteristic considered to be most ideal, that is, about 700 nm or less. And reflects light in the short wavelength region and transmits light in the wavelength region of about 700 nm or more.
【0039】この発明においては、上述のように中間層
の反射特性を自由に設定することができ、下部光電変換
層の構成(ポリシリコン或いは微結晶材料など)に応じ
て、中間層を最適な反射特性のものとすることができ
る。これは積層型太陽電池の高効率化において、非常に
有力な手段の一つとなる。According to the present invention, as described above, the reflection characteristics of the intermediate layer can be freely set, and the intermediate layer can be optimally selected according to the configuration (polysilicon or microcrystalline material, etc.) of the lower photoelectric conversion layer. It can be of a reflective nature. This is one of the very powerful means for increasing the efficiency of the stacked solar cell.
【0040】なお、図2および図3に示されたこの発明
の中間層の反射特性は、いずれも約600nm付近の短
波長領域の光に対して反射率が最大となるように設定さ
れているが、この理由について以下に記す。The reflection characteristics of the intermediate layer of the present invention shown in FIG. 2 and FIG. 3 are set so that the reflectance becomes maximum with respect to light in a short wavelength region around 600 nm. However, the reason for this will be described below.
【0041】アモルファスシリコン光電変換層は、約3
00nm〜750nmにかけての短波長領域の光を吸収
して発電する。アモルファスシリコンは非常に光の吸収
係数が大きく、通常の約300nm〜800nmの膜厚
では、上記の吸収される範囲の波長領域のうち、非常に
波長の短い光は中間層まで到達することなくアモルファ
スシリコン光電変換層で吸収される。従って、中間層ま
で到達する波長領域の光の中で、特にアモルファスシリ
コン光電変換層の発電に寄与する波長領域の光、つま
り、波長約600nm付近の短波長領域の光に対する反
射率を高めれば、アモルファスシリコン光電変換層の光
の吸収量を大きくすることができるのである。The amorphous silicon photoelectric conversion layer has a thickness of about 3
Power is generated by absorbing light in the short wavelength region from 00 nm to 750 nm. Amorphous silicon has a very large light absorption coefficient. At a normal film thickness of about 300 nm to 800 nm, light having a very short wavelength in the above-absorbed wavelength range does not reach the intermediate layer. It is absorbed by the silicon photoelectric conversion layer. Therefore, among the light in the wavelength region reaching the intermediate layer, particularly, the light in the wavelength region that contributes to the power generation of the amorphous silicon photoelectric conversion layer, that is, by increasing the reflectance for light in the short wavelength region near the wavelength of about 600 nm, The light absorption amount of the amorphous silicon photoelectric conversion layer can be increased.
【0042】この発明による中間層を用いた場合、上部
光電変換層で吸収できる光に対する反射率が約90%以
上と大幅に向上するので、上部光電変換層の光電変換効
率をより一層向上させることができる。また、上部光電
変換層が吸収できない波長領域の光に対しては、反射率
を低く抑えることができるので、下部光電変換層への透
過光量も大きく低下しない。これらの効果により、上部
光電変換層の短絡光電流密度を向上させるとともに、下
部光電変換層の短絡光電流密度の低下も最小限に抑える
ことができ、上部光電変換層と下部光電変換層の各短絡
光電流密度を高い値でバランスさせることができる。し
たがって、積層型太陽電池の光電変換効率が向上する。When the intermediate layer according to the present invention is used, the reflectivity for light that can be absorbed by the upper photoelectric conversion layer is greatly improved to about 90% or more, so that the photoelectric conversion efficiency of the upper photoelectric conversion layer is further improved. Can be. In addition, since the reflectance of light in a wavelength region that cannot be absorbed by the upper photoelectric conversion layer can be suppressed to a low level, the amount of light transmitted to the lower photoelectric conversion layer does not significantly decrease. With these effects, the short-circuit photocurrent density of the upper photoelectric conversion layer can be improved, and the decrease of the short-circuit photocurrent density of the lower photoelectric conversion layer can be minimized. The short-circuit photocurrent density can be balanced at a high value. Therefore, the photoelectric conversion efficiency of the stacked solar cell is improved.
【0043】また、アモルファスシリコン太陽電池にお
いては、その膜質が十分ではないため、通常、P−I−
Nの構造を用いる。アモルファスシリコン太陽電池の光
電変換効率は、結晶系太陽電池に対して低く、また光照
射による特性劣化現象(いわゆるステブラーロンスキー
効果)が発生するが、克服する目処がたっていない現状
ではI型の厚さを薄くすることによりこの特性劣化現象
を軽減するしかない。しかし、この発明の中間層を用い
れば、I型層を薄くしても十分な短絡光電流密度が得ら
れるとともに、ステブラーロンスキー現象も軽減するこ
とができる。In the case of an amorphous silicon solar cell, the film quality is not sufficient.
The structure of N is used. The photoelectric conversion efficiency of an amorphous silicon solar cell is lower than that of a crystalline solar cell, and a characteristic deterioration phenomenon (a so-called Stellar-Lonski effect) occurs due to light irradiation. The only way to reduce this characteristic degradation phenomenon is to reduce the thickness. However, if the intermediate layer of the present invention is used, a sufficient short-circuit photocurrent density can be obtained even if the I-type layer is thinned, and the Stepler-Lonski phenomenon can be reduced.
【0044】[0044]
【実施例】以下に図面に示す実施例に基づいてこの発明
を詳述する。なお、この実施例によってこの発明が限定
されるものではない。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on embodiments shown in the drawings. The present invention is not limited by the embodiment.
【0045】この発明の実施例について図1に基づいて
説明する。図1はこの発明による中間層を備える積層型
太陽電池の断面図である。An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a sectional view of a stacked solar cell having an intermediate layer according to the present invention.
【0046】図1に示されるように、積層型太陽電池2
1は、上部、下部光電変換層11、12間に介在して上
部、下部光電変換層11、12を電気的に直列接続する
中間層5が設けられ、中間層5は2つ以上の材料を交互
に積層して構成された多層膜であって、特定の波長領域
の光を選択的に反射する特性を有している。As shown in FIG. 1, the stacked solar cell 2
1 is provided with an intermediate layer 5 interposed between the upper and lower photoelectric conversion layers 11 and 12 to electrically connect the upper and lower photoelectric conversion layers 11 and 12 in series, and the intermediate layer 5 is made of two or more materials. It is a multilayer film formed by alternately stacking, and has a characteristic of selectively reflecting light in a specific wavelength region.
【0047】以下、図1を参照しつつ、積層型太陽電池
21の作製方法について詳述する。まず、下部光電変換
層12の作製では結晶面(100)、抵抗率0.1〜
1.0Ω−cmのN型多結晶シリコン基板3を用いた。
N型多結晶シリコン基板3をアルカリ性(NH4 OH:
H2 O2 :H2 O=1:1:5)および酸性(HCl:
H2 O2 :H2 O=1:1:5)の化学溶液で、それぞ
れ80℃で30分間洗浄後、塗布液でその表面層を保護
してから、N型多結晶シリコン基板3の裏面側に熱拡散
法によって厚さ約0.3μm、不純物濃度約1020cm
-3のN型多結晶シリコン層2を形成した。Hereinafter, a method of manufacturing the stacked solar cell 21 will be described in detail with reference to FIG. First, in the production of the lower photoelectric conversion layer 12, a crystal plane (100) and a resistivity of 0.1 to
An N-type polycrystalline silicon substrate 3 of 1.0 Ω-cm was used.
The N-type polycrystalline silicon substrate 3 is made alkaline (NH 4 OH:
H 2 O 2 : H 2 O = 1: 1: 5) and acidic (HCl:
After washing with a chemical solution (H 2 O 2 : H 2 O = 1: 1: 5) at 80 ° C. for 30 minutes, the surface layer is protected with a coating solution and then the back surface of the N-type polycrystalline silicon substrate 3 The thickness is about 0.3 μm by thermal diffusion on the side, and the impurity concentration is about 10 20 cm.
-3 N-type polycrystalline silicon layer 2 was formed.
【0048】その後、N型多結晶シリコン層2の表面酸
化シリコンを除去してから、Ti、PdおよびAgから
なる三層メタル電極1を蒸着し、窒素の雰囲気でアニー
ルする。その後、N型多結晶シリコン基板3の表面側に
薄いP型微結晶シリコン膜4(或いはP型アモルファス
シリコン膜)を成膜し、ヘテロ接合構造を持つ下部光電
変換層12が形成された。After the surface silicon oxide of the N-type polycrystalline silicon layer 2 is removed, a three-layer metal electrode 1 made of Ti, Pd and Ag is deposited and annealed in a nitrogen atmosphere. Thereafter, a thin P-type microcrystalline silicon film 4 (or a P-type amorphous silicon film) was formed on the surface side of the N-type polycrystalline silicon substrate 3 to form a lower photoelectric conversion layer 12 having a heterojunction structure.
【0049】その後、この下部光電変換部分12の上に
ZnO膜と多結晶シリコン膜をスパッタリング法(D
C)で交互に積層し、中間層5を形成した。詳しくは、
まず、下部光電変換層12から数えて第一層目は、スパ
ッタ蒸着装置のチャンバでアルゴン(Ar)と酸素(O
2 )との混合気体の雰囲気を用い、真空度約6×10-3
Torr程度に制御しながら、膜厚約71nmのZnO
膜を形成した。次に、第二層目は同一のスパッタ蒸着装
置でのチャンバで、不純物とする燐を含む膜厚約31n
mのN型の多結晶シリコン膜を形成した。Thereafter, a ZnO film and a polycrystalline silicon film are formed on the lower photoelectric conversion portion 12 by a sputtering method (D
C) to form an intermediate layer 5 alternately. For more information,
First, the first layer counted from the lower photoelectric conversion layer 12 is argon (Ar) and oxygen (O 2) in a chamber of a sputter deposition apparatus.
2 ) and a degree of vacuum of about 6 × 10 -3
While controlling to about Torr, ZnO with a thickness of about 71 nm
A film was formed. Next, the second layer is a chamber in the same sputter deposition apparatus and has a film thickness of about 31 n containing phosphorus as an impurity.
An m-type N-type polycrystalline silicon film was formed.
【0050】以降、同様の積層を繰り返し、第三層目と
して膜厚約71nmのZnO膜、第四層目として膜厚約
31nmの多結晶シリコン膜、第五層目として膜厚約7
1nmのZnO膜、第六層目として膜厚約31nmの多
結晶シリコン膜、第七層目として厚さ約71nmのZn
O膜を積層し、7層からなる多層構造の中間層5が形成
された。Thereafter, the same lamination is repeated to form a ZnO film having a thickness of about 71 nm as a third layer, a polycrystalline silicon film having a thickness of about 31 nm as a fourth layer, and a polycrystalline silicon film having a thickness of about 7 nm as a fifth layer.
A 1 nm ZnO film, a polycrystalline silicon film having a thickness of about 31 nm as a sixth layer, and a Zn film having a thickness of about 71 nm as a seventh layer.
O films were stacked to form an intermediate layer 5 having a multilayer structure consisting of seven layers.
【0051】その後、同一のスパッタ蒸着装置のチャン
バを用い、約200℃の窒素の雰囲気でアニールを行っ
た。その後、中間層5の上に上部光電変換層11をプラ
ズマCVD法により形成した。詳しくは、基板温度約1
50〜180℃程度、成膜室の圧力は約0.3Tor
r、プラズマに供給するエネルギーは約30mW/cm
2 とし、原料ガスとしては、SiH4 (シラン)、H2
(高純度水素)、B2 H6 (ジボラン)、PH3(ホス
フィン)を用いてN型水素化アモルファスシリコン層
6、I型水素化アモルファスシリコン層7(厚さ約30
0nm)およびP型水素化アモルファスシリコン層8を
それぞれ形成した。Thereafter, annealing was performed in a nitrogen atmosphere at about 200 ° C. using the same chamber of the sputter deposition apparatus. Thereafter, the upper photoelectric conversion layer 11 was formed on the intermediate layer 5 by a plasma CVD method. Specifically, the substrate temperature is about 1
About 50-180 ° C, pressure of film forming chamber is about 0.3 Torr
r, energy supplied to the plasma is about 30 mW / cm
2 and the source gases are SiH 4 (silane), H 2
(High-purity hydrogen), B 2 H 6 (diborane) and PH 3 (phosphine) using an N-type hydrogenated amorphous silicon layer 6 and an I-type hydrogenated amorphous silicon layer 7 (thickness of about 30).
0 nm) and a P-type hydrogenated amorphous silicon layer 8 were formed.
【0052】その後、スパッタリング法によりITOか
らなる膜厚約107nmの透明導電膜9を蒸着した。さ
らに、電子ビーム蒸着でAgからなる表面集電極10を
形成し、積層型太陽電池21を完成させた。Thereafter, a transparent conductive film 9 made of ITO and having a thickness of about 107 nm was deposited by a sputtering method. Further, the surface collector electrode 10 made of Ag was formed by electron beam evaporation, and the stacked solar cell 21 was completed.
【0053】このように、この実施例においては7層構
造の中間層を用いたが、上部光電変換層11で吸収でき
る波長領域(約450〜650nm)に対しては、反射
率約90%以上が得られ、一方、約700nm以上の長
波長領域の光に対する反射率は低く抑えることができ、
入射光を選択的に反射させて有効に利用することができ
た。これらの効果により、上部光電変換層11の短絡光
電流密度を向上させるとともに、下部光電変換層12の
短絡光電流密度の低下を最小限とし、上部光電変換層1
1と下部光電変換層12の各短絡光電流密度を平衡状態
に近づけることができた。As described above, in this embodiment, the intermediate layer having the seven-layer structure is used. However, in the wavelength region (about 450 to 650 nm) that can be absorbed by the upper photoelectric conversion layer 11, the reflectance is about 90% or more. On the other hand, the reflectance for light in a long wavelength region of about 700 nm or more can be kept low,
The incident light was selectively reflected and used effectively. By these effects, the short-circuit photocurrent density of the upper photoelectric conversion layer 11 is improved, and the decrease in the short-circuit photocurrent density of the lower photoelectric conversion layer 12 is minimized.
Each of the short-circuit photocurrent densities of No. 1 and the lower photoelectric conversion layer 12 could be brought close to an equilibrium state.
【0054】この結果、積層型太陽電池21全体の光電
流密度は従来の約12〜13mA/cm2 から、約16
〜18mA/cm2 に改善され、積層型太陽電池21の
光電変換効率は従来の約12%から約16〜18%へと
大幅に向上した。As a result, the photocurrent density of the entire stacked solar cell 21 is increased from the conventional value of about 12 to 13 mA / cm 2 to about 16
1818 mA / cm 2, and the photoelectric conversion efficiency of the stacked solar cell 21 was greatly improved from the conventional value of about 12% to about 16-18%.
【0055】なお、この実施例では、第1膜の材料とし
てZnOを用いたが、導電性のある透明度の高いもので
あれば、膜厚の最適化をそれぞれの材料ごとに行えば、
ZnO以外の材料も使用可能である。例えば、ITO、
SnO2 、SiO2 及び酸化タンタル(TiO2 )を用
いた場合でも同様の効果を奏する。In this embodiment, ZnO is used as the material of the first film. However, if the material is conductive and has high transparency, the film thickness can be optimized for each material.
Materials other than ZnO can be used. For example, ITO,
Similar effects can be obtained even when SnO 2 , SiO 2 and tantalum oxide (TiO 2 ) are used.
【0056】ところが、上述のようにアモルファスシリ
コンからなる上部光電変換層11は高周波プラズマで形
成するため、中間層5の形成後に水素プラズマに晒され
ることを考慮すると、少なくとも中間層5の表面となる
第1膜は耐水素プラズマ性に優れたZnO(二酸化亜
鉛)を主成分とした材料で形成されることが望ましい。However, since the upper photoelectric conversion layer 11 made of amorphous silicon is formed by high-frequency plasma as described above, it is at least the surface of the intermediate layer 5 in consideration of exposure to hydrogen plasma after the formation of the intermediate layer 5. The first film is desirably formed of a material mainly composed of ZnO (zinc dioxide) having excellent hydrogen plasma resistance.
【0057】また、第2膜の材料としては多結晶シリコ
ンを用いたが、導電性のある光吸収係数の低いものであ
れば、膜厚を最適化することにより使用可能である。例
えば、アモルファスシリコンや、アモルファス或いは微
結晶状態のシリコンカーボンを用いても、同様の効果を
奏する。Although polycrystalline silicon is used as the material of the second film, any material having a low light absorption coefficient having conductivity can be used by optimizing the film thickness. For example, the same effect can be obtained by using amorphous silicon or silicon carbon in an amorphous or microcrystalline state.
【0058】また、この実施例では、積層した光電変換
層の数は2つであったが、積層する光電変換層が3つの
場合でも、この発明による技術思想による中間層を用い
れば同様の効果を奏する。さらに、この実施例では、下
部光電変換層にN型の多結晶シリコンを用いたが、P型
の単結晶シリコンを用いても同様の効果を奏する。即
ち、この実施例では、光入射側からPIN−PNという
構造であったが、言うまでもなく、N側入射のNIP−
NP構造にも同様に適用できる。In this embodiment, the number of the stacked photoelectric conversion layers is two. However, even when the number of the stacked photoelectric conversion layers is three, the same effect can be obtained by using the intermediate layer according to the technical concept of the present invention. To play. Further, in this embodiment, although N-type polycrystalline silicon is used for the lower photoelectric conversion layer, the same effect can be obtained by using P-type single crystal silicon. That is, in this embodiment, the PIN-PN structure is used from the light incident side.
The same applies to the NP structure.
【0059】[0059]
【発明の効果】この発明によれば、中間層を多層膜で構
成するので、中間層の反射特性を、上部光電変換層で吸
収できる短波長領域の光に対しては反射率が最大とな
り、かつ、上部光電変換層が吸収できない長波長領域の
光に対しては、反射率が低くなるような反射特性とする
ことができ、上部光電変換層と下部光電変換層の各短絡
光電流密度を高い値でバランスさせた光電変換効率の高
い積層型太陽電池を提供することができる。According to the present invention, since the intermediate layer is composed of a multilayer film, the reflectance of the intermediate layer is maximized with respect to light in a short wavelength region that can be absorbed by the upper photoelectric conversion layer. In addition, for light in a long wavelength region that cannot be absorbed by the upper photoelectric conversion layer, it is possible to have a reflection characteristic such that the reflectance is reduced, and the short-circuit photocurrent density of each of the upper photoelectric conversion layer and the lower photoelectric conversion layer is reduced. A stacked solar cell with high photoelectric conversion efficiency balanced at a high value can be provided.
【図1】この発明の実施例に係る積層型太陽電池の断面
図である。FIG. 1 is a sectional view of a stacked solar cell according to an embodiment of the present invention.
【図2】ZnO膜と多結晶シリコン膜とを積層した2層
構造中間層の反射特性を示すグラフ図である。FIG. 2 is a graph showing reflection characteristics of a two-layer intermediate layer in which a ZnO film and a polycrystalline silicon film are stacked.
【図3】ZnO膜と多結晶シリコン膜とを積層した4層
構造中間層の反射特性を示すグラフ図である。FIG. 3 is a graph showing reflection characteristics of a four-layer intermediate layer in which a ZnO film and a polycrystalline silicon film are stacked.
【図4】従来の膜厚1000ÅのITO膜からなる中間
層と、膜厚1500ÅのITOからなる中間層のそれぞ
れの反射特性を示すグラフ図である。FIG. 4 is a graph showing respective reflection characteristics of a conventional intermediate layer made of an ITO film having a thickness of 1000 ° and an intermediate layer made of an ITO film having a thickness of 1500 °.
【図5】従来の膜厚2500ÅのITO膜からなる中間
層の反射特性を示すグラフ図である。FIG. 5 is a graph showing the reflection characteristics of a conventional intermediate layer made of an ITO film having a thickness of 2500 °.
1・・・三層メタル電極 2・・・N型多結晶シリコン層 3・・・N型多結晶シリコン基板 4・・・P型微結晶シリコン膜 5・・・中間層 6・・・N型水素化アモルファスシリコン層 7・・・I型水素化アモルファスシリコン層 8・・・P型水素化アモルファスシリコン層 9・・・透明導電膜 10・・・表面集電極 11・・・上部光電変換層 12・・・下部光電変換層 21・・・積層型太陽電池 DESCRIPTION OF SYMBOLS 1 ... Three-layer metal electrode 2 ... N-type polycrystalline silicon layer 3 ... N-type polycrystalline silicon substrate 4 ... P-type microcrystalline silicon film 5 ... Intermediate layer 6 ... N-type Hydrogenated amorphous silicon layer 7 ... I-type hydrogenated amorphous silicon layer 8 ... P-type hydrogenated amorphous silicon layer 9 ... Transparent conductive film 10 ... Surface collecting electrode 11 ... Top photoelectric conversion layer 12 ... Lower photoelectric conversion layer 21 ... Stacked solar cell
Claims (11)
した太陽電池において、それぞれの光電変換層間に介在
して各光電変換層を電気的に直列接続する中間層が設け
られ、中間層は2つ以上の材料を交互に積層して構成さ
れた多層膜であって、特定の波長領域の光を選択的に反
射する特性を有していることを特徴とする積層型太陽電
池。In a solar cell in which a plurality of photoelectric conversion layers made of a semiconductor are stacked, an intermediate layer is provided between the photoelectric conversion layers to electrically connect the photoelectric conversion layers in series. A multilayer solar cell, which is a multilayer film formed by alternately laminating two or more materials, and has a characteristic of selectively reflecting light in a specific wavelength region.
構造を有するアモルファスシリコンで形成された上部光
電変換層と、単結晶シリコン、多結晶シリコン又は微結
晶シリコンで形成された下部光電変換層とで構成され、
中間層は上部光電変換層で吸収できる波長領域の光に対
する反射率が高く、上部光電変換層で吸収できない波長
領域の光に対する反射率が低くなるような反射特性を有
することを特徴とする請求項1に記載の積層型太陽電
池。2. A plurality of photoelectric conversion layers each having a PIN
An upper photoelectric conversion layer formed of amorphous silicon having a structure, and a lower photoelectric conversion layer formed of single crystal silicon, polycrystalline silicon, or microcrystalline silicon,
The intermediate layer has a reflection characteristic such that the reflectance for light in a wavelength region that can be absorbed by the upper photoelectric conversion layer is high and the reflectance for light in a wavelength region that cannot be absorbed by the upper photoelectric conversion layer is low. 2. The stacked solar cell according to 1.
構成され、第1膜は屈折率が第2膜よりも低く、第1膜
は上部光電変換層側に設けられ、第2膜は下部光電変換
層側に設けられていることを特徴とする請求項1又は2
に記載の積層型太陽電池。3. The intermediate layer is formed by laminating a first film and a second film. The first film has a lower refractive index than the second film, and the first film is provided on the upper photoelectric conversion layer side. And the second film is provided on the lower photoelectric conversion layer side.
3. The stacked solar cell according to item 1.
層された2層以上の構成を有することを特徴とする請求
項3に記載の積層型太陽電池。4. The stacked solar cell according to claim 3, wherein the intermediate layer has a configuration of two or more layers in which first films and second films are alternately stacked.
純物を含有するITO、ZnO、TiO2 、SnO2 お
よびSiO2 のいずれかで形成されていることを特徴と
する請求項3又は4に記載の積層型太陽電池。5. The first film according to claim 3, wherein the first film is a transparent conductive film and is made of any of ITO, ZnO, TiO 2 , SnO 2 and SiO 2 containing a conductive impurity. Or the laminated solar cell according to 4.
膜であることを特徴とする請求項3又は4に記載の積層
型太陽電池。6. The stacked solar cell according to claim 3, wherein the second film is a transparent conductive film made of the same material as the first film.
びアモルファスと微結晶とが混在した状態のうちのいず
れかの状態であって導電性不純物を含有するシリコン、
シリコンカーボンのいずれかで形成されている半導体膜
であることを特徴とする請求項3又は4に記載の積層型
太陽電池。7. The semiconductor device according to claim 7, wherein the second film is in any one of a polycrystalline state, a microcrystalline state, and a state in which amorphous and microcrystalline are mixed, and contains silicon containing conductive impurities.
The stacked solar cell according to claim 3, wherein the stacked solar cell is a semiconductor film formed of any one of silicon carbon.
0〜74nmのZnOであり、第2膜が導電性不純物を
含有する膜厚10〜35nmの多結晶シリコンであるこ
とを特徴とする請求項3又は4に記載の積層型太陽電
池。8. A film having a thickness of 3 in which the first film contains a conductive impurity.
The stacked solar cell according to claim 3, wherein the second solar cell is ZnO having a thickness of 0 to 74 nm, and the second film is polycrystalline silicon having a thickness of 10 to 35 nm containing a conductive impurity.
不純物を含有するZnOで形成されていることを特徴と
する請求項4に記載の積層型太陽電池。9. The stacked solar cell according to claim 4, wherein the first film in contact with the upper photoelectric conversion layer is formed of ZnO containing a conductive impurity.
TO、SnO2 およびTiO2 のうちのいずれかで形成
されていることを特徴とする請求項4又は9に記載の積
層型太陽電池。10. The first film which is not in contact with the upper photoelectric conversion layer is I
The laminated solar cell according to claim 4, wherein the laminated solar cell is formed of any one of TO, SnO 2, and TiO 2 .
パッタリング法で形成されていることを特徴とする請求
項3〜10のいずれか1つに記載の積層型太陽電池。11. The stacked solar cell according to claim 3, wherein the first and second films constituting the intermediate layer are formed by a sputtering method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000122827A JP2001308354A (en) | 2000-04-24 | 2000-04-24 | Stacked solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000122827A JP2001308354A (en) | 2000-04-24 | 2000-04-24 | Stacked solar cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001308354A true JP2001308354A (en) | 2001-11-02 |
Family
ID=18633265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000122827A Pending JP2001308354A (en) | 2000-04-24 | 2000-04-24 | Stacked solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001308354A (en) |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1463124A2 (en) * | 2003-03-26 | 2004-09-29 | Canon Kabushiki Kaisha | Stacked photovoltaic element and method for producing the same |
JP2005057251A (en) * | 2003-07-24 | 2005-03-03 | Kyocera Corp | Multijunction semiconductor element and solar cell element using it |
JP2006319068A (en) * | 2005-05-11 | 2006-11-24 | Kaneka Corp | Multi-junction silicone thin film photoelectric converter and its manufacturing method |
JP2007519237A (en) * | 2004-01-20 | 2007-07-12 | シリアム・テクノロジーズ・インコーポレーテッド | Solar cell with epitaxially grown quantum dot material |
WO2008120498A1 (en) | 2007-03-29 | 2008-10-09 | Mitsubishi Heavy Industries, Ltd. | Photoelectric conversion device and method for manufacturing the same |
JP2008270562A (en) * | 2007-04-20 | 2008-11-06 | Sanyo Electric Co Ltd | Multi-junction type solar cell |
JP2009033206A (en) * | 2003-03-26 | 2009-02-12 | Canon Inc | Multi-layer photovoltaic element, and method of manufacturing the same |
WO2009057698A1 (en) * | 2007-11-02 | 2009-05-07 | Kaneka Corporation | Thin-film photoelectric conversion device |
JP2009117463A (en) * | 2007-11-02 | 2009-05-28 | Kaneka Corp | Thin-film photoelectric conversion device |
JP2009147172A (en) * | 2007-12-14 | 2009-07-02 | Kaneka Corp | Multi-junction silicon thin-film photoelectric converter |
JP2009193675A (en) * | 2008-02-12 | 2009-08-27 | Kaneka Corp | Transparent conductive film |
JP2009231781A (en) * | 2008-03-25 | 2009-10-08 | Kaneka Corp | Multijunction silicon thin film photoelectric converter |
WO2009129156A3 (en) * | 2008-04-14 | 2010-01-14 | Sunlight Photonics Inc. | Multi-junction solar array |
JP2010087205A (en) * | 2008-09-30 | 2010-04-15 | Kaneka Corp | Multi-junction thin-film photoelectric converter |
JP2010245192A (en) * | 2009-04-02 | 2010-10-28 | Mitsubishi Electric Corp | Thin-film solar cell and method of manufacturing the same |
WO2011040078A1 (en) | 2009-09-29 | 2011-04-07 | 三菱重工業株式会社 | Photoelectric conversion device |
WO2011105171A1 (en) * | 2010-02-26 | 2011-09-01 | 三洋電機株式会社 | Solar cell and manufacturing method thereof |
WO2011105170A1 (en) * | 2010-02-26 | 2011-09-01 | 三洋電機株式会社 | Solar cell |
JP2011181608A (en) * | 2010-02-26 | 2011-09-15 | Mitsubishi Electric Corp | Photoelectric converter and manufacturing method of photoelectric converter |
US20110226318A1 (en) * | 2010-03-17 | 2011-09-22 | Seung-Yeop Myong | Photovoltaic device including flexible or inflexibel substrate and method for manufacturing the same |
JP2011249497A (en) * | 2010-05-26 | 2011-12-08 | Sharp Corp | Intermediate layer for laminated type photoelectric conversion device, laminated type photoelectric conversion device, and method of manufacturing laminated type photoelectric conversion device |
US8110428B2 (en) | 2008-11-25 | 2012-02-07 | Sunlight Photonics Inc. | Thin-film photovoltaic devices |
WO2012029250A1 (en) * | 2010-08-31 | 2012-03-08 | 株式会社カネカ | Parallel stacked photoelectric conversion device and series integrated photoelectric conversion device |
US8138410B2 (en) | 2008-10-01 | 2012-03-20 | International Business Machines Corporation | Optical tandem photovoltaic cell panels |
JP2012114296A (en) * | 2010-11-25 | 2012-06-14 | Mitsubishi Electric Corp | Thin-film solar cell and method of manufacturing the same |
JP2012134440A (en) * | 2010-12-21 | 2012-07-12 | Lg Electronics Inc | Thin film solar cell |
WO2012099198A1 (en) * | 2011-01-21 | 2012-07-26 | 三洋電機株式会社 | Solar cell |
WO2013002102A1 (en) * | 2011-06-29 | 2013-01-03 | 三洋電機株式会社 | Photoelectric conversion device |
KR101275840B1 (en) | 2009-04-20 | 2013-06-18 | 한국전자통신연구원 | Transparent Solar Cell |
JP2013179297A (en) * | 2012-02-10 | 2013-09-09 | Tokyo Institute Of Technology | Solar cell having optical control layer |
JP2013183012A (en) * | 2012-03-01 | 2013-09-12 | Mitsubishi Electric Corp | Photoelectric conversion device and manufacturing method thereof and photoelectric conversion module |
KR101321552B1 (en) * | 2011-11-04 | 2013-10-23 | (주)이모트 | Silicon Solar cell |
JP2014055111A (en) * | 2013-12-11 | 2014-03-27 | Sharp Corp | Conductive silicon nitride film, conductive silicon nitride film laminate and photoelectric conversion device |
JP5518045B2 (en) * | 2009-03-18 | 2014-06-11 | 三菱電機株式会社 | Photoelectric conversion device and manufacturing method thereof |
US8835748B2 (en) | 2009-01-06 | 2014-09-16 | Sunlight Photonics Inc. | Multi-junction PV module |
EP2296194A3 (en) * | 2009-09-11 | 2014-09-24 | Intellectual Discovery Co., Ltd. | Photovoltaic Device and Method for Manufacturing the Same |
JP2014192257A (en) * | 2013-03-26 | 2014-10-06 | Toshiba Corp | Solar battery |
US8994009B2 (en) | 2011-09-07 | 2015-03-31 | Semiconductor Energy Laboratory Co., Ltd. | Photoelectric conversion device |
US9018515B2 (en) | 2004-01-20 | 2015-04-28 | Cyrium Technologies Incorporated | Solar cell with epitaxially grown quantum dot material |
US9052425B2 (en) | 2008-01-29 | 2015-06-09 | Samwon Fa Co., Ltd. | Silicon solar cell |
KR101558911B1 (en) * | 2007-12-28 | 2015-10-08 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Photoelectric conversion device and manufacturing method thereof |
US9437758B2 (en) | 2011-02-21 | 2016-09-06 | Semiconductor Energy Laboratory Co., Ltd. | Photoelectric conversion device |
US9680044B2 (en) | 2008-10-01 | 2017-06-13 | International Business Machines Corporation | Tandem nanofilm photovoltaic cells joined by wafer bonding |
CN107195714A (en) * | 2017-05-12 | 2017-09-22 | 中国计量大学 | A kind of lamination solar cell containing graphical optical isolation layer |
US10043929B1 (en) | 2007-03-06 | 2018-08-07 | Sunlight Photonics Inc. | Spectrally adaptive multijunction photovoltaic thin film device and method of producing same |
US10985288B2 (en) * | 2005-01-04 | 2021-04-20 | Azur Space Solar Power Gmbh | Monolithic multiple solar cells |
-
2000
- 2000-04-24 JP JP2000122827A patent/JP2001308354A/en active Pending
Cited By (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1463124A2 (en) * | 2003-03-26 | 2004-09-29 | Canon Kabushiki Kaisha | Stacked photovoltaic element and method for producing the same |
CN1330003C (en) * | 2003-03-26 | 2007-08-01 | 佳能株式会社 | Laminated photoelectric element and making method thereof |
US7897868B2 (en) | 2003-03-26 | 2011-03-01 | Canon Kabushiki Kaisha | Stacked photovoltaic element and method for producing the same |
JP4574709B2 (en) * | 2003-03-26 | 2010-11-04 | キヤノン株式会社 | Manufacturing method of stacked photovoltaic device |
JP2009033206A (en) * | 2003-03-26 | 2009-02-12 | Canon Inc | Multi-layer photovoltaic element, and method of manufacturing the same |
EP1463124A3 (en) * | 2003-03-26 | 2013-06-12 | Canon Kabushiki Kaisha | Stacked photovoltaic element and method for producing the same |
JP4565912B2 (en) * | 2003-07-24 | 2010-10-20 | 京セラ株式会社 | Multi-junction semiconductor element and solar cell element using the same |
JP2005057251A (en) * | 2003-07-24 | 2005-03-03 | Kyocera Corp | Multijunction semiconductor element and solar cell element using it |
US9018515B2 (en) | 2004-01-20 | 2015-04-28 | Cyrium Technologies Incorporated | Solar cell with epitaxially grown quantum dot material |
JP2007519237A (en) * | 2004-01-20 | 2007-07-12 | シリアム・テクノロジーズ・インコーポレーテッド | Solar cell with epitaxially grown quantum dot material |
US10985288B2 (en) * | 2005-01-04 | 2021-04-20 | Azur Space Solar Power Gmbh | Monolithic multiple solar cells |
US11329182B2 (en) | 2005-01-04 | 2022-05-10 | Azur Space Solar Power Gmbh | Monolithic multiple solar cells |
JP2006319068A (en) * | 2005-05-11 | 2006-11-24 | Kaneka Corp | Multi-junction silicone thin film photoelectric converter and its manufacturing method |
US10043929B1 (en) | 2007-03-06 | 2018-08-07 | Sunlight Photonics Inc. | Spectrally adaptive multijunction photovoltaic thin film device and method of producing same |
WO2008120498A1 (en) | 2007-03-29 | 2008-10-09 | Mitsubishi Heavy Industries, Ltd. | Photoelectric conversion device and method for manufacturing the same |
JP2008270562A (en) * | 2007-04-20 | 2008-11-06 | Sanyo Electric Co Ltd | Multi-junction type solar cell |
JP2009117463A (en) * | 2007-11-02 | 2009-05-28 | Kaneka Corp | Thin-film photoelectric conversion device |
US8410355B2 (en) | 2007-11-02 | 2013-04-02 | Kaneka Corporation | Thin film photoelectric conversion device having a stacked transparent oxide and carbon intermediate layer |
WO2009057698A1 (en) * | 2007-11-02 | 2009-05-07 | Kaneka Corporation | Thin-film photoelectric conversion device |
JP2009147172A (en) * | 2007-12-14 | 2009-07-02 | Kaneka Corp | Multi-junction silicon thin-film photoelectric converter |
KR101558911B1 (en) * | 2007-12-28 | 2015-10-08 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Photoelectric conversion device and manufacturing method thereof |
US9052425B2 (en) | 2008-01-29 | 2015-06-09 | Samwon Fa Co., Ltd. | Silicon solar cell |
JP2009193675A (en) * | 2008-02-12 | 2009-08-27 | Kaneka Corp | Transparent conductive film |
JP2009231781A (en) * | 2008-03-25 | 2009-10-08 | Kaneka Corp | Multijunction silicon thin film photoelectric converter |
WO2009129156A3 (en) * | 2008-04-14 | 2010-01-14 | Sunlight Photonics Inc. | Multi-junction solar array |
US10211353B2 (en) | 2008-04-14 | 2019-02-19 | Sunlight Photonics Inc. | Aligned bifacial solar modules |
JP2010087205A (en) * | 2008-09-30 | 2010-04-15 | Kaneka Corp | Multi-junction thin-film photoelectric converter |
US9882076B2 (en) | 2008-10-01 | 2018-01-30 | International Businss Machines Corporation | Optical tandem photovoltaic cell panels |
US9680044B2 (en) | 2008-10-01 | 2017-06-13 | International Business Machines Corporation | Tandem nanofilm photovoltaic cells joined by wafer bonding |
US8138410B2 (en) | 2008-10-01 | 2012-03-20 | International Business Machines Corporation | Optical tandem photovoltaic cell panels |
US9837571B2 (en) | 2008-10-01 | 2017-12-05 | International Business Machines Corporation | Tandem nanofilm photovoltaic cells joined by wafer bonding |
US8110428B2 (en) | 2008-11-25 | 2012-02-07 | Sunlight Photonics Inc. | Thin-film photovoltaic devices |
US9087948B1 (en) | 2009-01-06 | 2015-07-21 | Sunlight Photonics Inc. | Manufacturing method of multi-junction PV modules |
US8835748B2 (en) | 2009-01-06 | 2014-09-16 | Sunlight Photonics Inc. | Multi-junction PV module |
US8766085B2 (en) | 2009-03-18 | 2014-07-01 | Mitsubishi Electric Corporation | Photoelectric conversion device and method of manufacturing the same |
JP5518045B2 (en) * | 2009-03-18 | 2014-06-11 | 三菱電機株式会社 | Photoelectric conversion device and manufacturing method thereof |
JP2010245192A (en) * | 2009-04-02 | 2010-10-28 | Mitsubishi Electric Corp | Thin-film solar cell and method of manufacturing the same |
KR101275840B1 (en) | 2009-04-20 | 2013-06-18 | 한국전자통신연구원 | Transparent Solar Cell |
EP2296194A3 (en) * | 2009-09-11 | 2014-09-24 | Intellectual Discovery Co., Ltd. | Photovoltaic Device and Method for Manufacturing the Same |
CN102379044A (en) * | 2009-09-29 | 2012-03-14 | 三菱重工业株式会社 | Photoelectric conversion device |
WO2011040078A1 (en) | 2009-09-29 | 2011-04-07 | 三菱重工業株式会社 | Photoelectric conversion device |
JP2011077128A (en) * | 2009-09-29 | 2011-04-14 | Mitsubishi Heavy Ind Ltd | Photoelectric converter |
JP2011199235A (en) * | 2010-02-26 | 2011-10-06 | Sanyo Electric Co Ltd | Solar cell |
CN102782878A (en) * | 2010-02-26 | 2012-11-14 | 三洋电机株式会社 | Solar cell and manufacturing method thereof |
CN102763224A (en) * | 2010-02-26 | 2012-10-31 | 三洋电机株式会社 | Solar cell |
WO2011105171A1 (en) * | 2010-02-26 | 2011-09-01 | 三洋電機株式会社 | Solar cell and manufacturing method thereof |
WO2011105170A1 (en) * | 2010-02-26 | 2011-09-01 | 三洋電機株式会社 | Solar cell |
JP2011181608A (en) * | 2010-02-26 | 2011-09-15 | Mitsubishi Electric Corp | Photoelectric converter and manufacturing method of photoelectric converter |
US8502065B2 (en) * | 2010-03-17 | 2013-08-06 | Kisco | Photovoltaic device including flexible or inflexibel substrate and method for manufacturing the same |
US20110226318A1 (en) * | 2010-03-17 | 2011-09-22 | Seung-Yeop Myong | Photovoltaic device including flexible or inflexibel substrate and method for manufacturing the same |
JP2011249497A (en) * | 2010-05-26 | 2011-12-08 | Sharp Corp | Intermediate layer for laminated type photoelectric conversion device, laminated type photoelectric conversion device, and method of manufacturing laminated type photoelectric conversion device |
JP5905824B2 (en) * | 2010-08-31 | 2016-04-20 | 株式会社カネカ | Parallel photoelectric conversion laminated device and series integrated photoelectric conversion device |
WO2012029250A1 (en) * | 2010-08-31 | 2012-03-08 | 株式会社カネカ | Parallel stacked photoelectric conversion device and series integrated photoelectric conversion device |
JP2012114296A (en) * | 2010-11-25 | 2012-06-14 | Mitsubishi Electric Corp | Thin-film solar cell and method of manufacturing the same |
JP2012134440A (en) * | 2010-12-21 | 2012-07-12 | Lg Electronics Inc | Thin film solar cell |
WO2012099198A1 (en) * | 2011-01-21 | 2012-07-26 | 三洋電機株式会社 | Solar cell |
US9437758B2 (en) | 2011-02-21 | 2016-09-06 | Semiconductor Energy Laboratory Co., Ltd. | Photoelectric conversion device |
WO2013002102A1 (en) * | 2011-06-29 | 2013-01-03 | 三洋電機株式会社 | Photoelectric conversion device |
US8994009B2 (en) | 2011-09-07 | 2015-03-31 | Semiconductor Energy Laboratory Co., Ltd. | Photoelectric conversion device |
KR101321552B1 (en) * | 2011-11-04 | 2013-10-23 | (주)이모트 | Silicon Solar cell |
JP2013179297A (en) * | 2012-02-10 | 2013-09-09 | Tokyo Institute Of Technology | Solar cell having optical control layer |
JP2013183012A (en) * | 2012-03-01 | 2013-09-12 | Mitsubishi Electric Corp | Photoelectric conversion device and manufacturing method thereof and photoelectric conversion module |
JP2014192257A (en) * | 2013-03-26 | 2014-10-06 | Toshiba Corp | Solar battery |
JP2014055111A (en) * | 2013-12-11 | 2014-03-27 | Sharp Corp | Conductive silicon nitride film, conductive silicon nitride film laminate and photoelectric conversion device |
CN107195714A (en) * | 2017-05-12 | 2017-09-22 | 中国计量大学 | A kind of lamination solar cell containing graphical optical isolation layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001308354A (en) | Stacked solar cell | |
US11588065B2 (en) | Solar cell and photovoltaic module | |
TWI438904B (en) | Method for obtaining high performance thin film devices deposited on highly textured substrates | |
JP4222500B2 (en) | Silicon-based thin film photoelectric conversion device | |
US8410355B2 (en) | Thin film photoelectric conversion device having a stacked transparent oxide and carbon intermediate layer | |
JP4928337B2 (en) | Method for manufacturing photoelectric conversion device | |
JP2006319068A (en) | Multi-junction silicone thin film photoelectric converter and its manufacturing method | |
JPWO2005011002A1 (en) | Silicon-based thin film solar cell | |
JP2003142709A (en) | Laminated solar battery and method for manufacturing the same | |
TW201021229A (en) | Solar cell having reflective structure | |
JP2008270562A (en) | Multi-junction type solar cell | |
JP2001267598A (en) | Laminated solar cell | |
CN117855305B (en) | Silicon-based thin film back contact solar cell, manufacturing method thereof and battery module | |
JP5291633B2 (en) | Silicon-based thin film photoelectric conversion device and manufacturing method thereof | |
JP4904311B2 (en) | Method for manufacturing substrate with transparent conductive film for thin film photoelectric conversion device | |
JP4789131B2 (en) | Solar cell and method for manufacturing solar cell | |
JP5197845B2 (en) | Thin film solar cell and manufacturing method thereof | |
WO2012171146A1 (en) | Thin film solar cell with new type anti-reflection layer and fabrication method thereof | |
JP3025392B2 (en) | Thin film solar cell and manufacturing method | |
JP5469298B2 (en) | Transparent conductive film for photoelectric conversion device and method for producing the same | |
JP2004111557A (en) | Thin-film photoelectric converter | |
JP2004153028A (en) | Thin-film photoelectric converting device | |
JP2010272651A (en) | Thin-film solar cell and method of manufacturing the same | |
US20120305053A1 (en) | Solar cell and manufacturing method thereof | |
CN220796756U (en) | Silicon heterojunction solar cell, solar photovoltaic module and photovoltaic system |