JP2006319068A - Multi-junction silicone thin film photoelectric converter and its manufacturing method - Google Patents

Multi-junction silicone thin film photoelectric converter and its manufacturing method Download PDF

Info

Publication number
JP2006319068A
JP2006319068A JP2005138990A JP2005138990A JP2006319068A JP 2006319068 A JP2006319068 A JP 2006319068A JP 2005138990 A JP2005138990 A JP 2005138990A JP 2005138990 A JP2005138990 A JP 2005138990A JP 2006319068 A JP2006319068 A JP 2006319068A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
layer
conversion unit
thin film
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005138990A
Other languages
Japanese (ja)
Inventor
Mitsuru Ichikawa
満 市川
Kenji Yamamoto
憲治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2005138990A priority Critical patent/JP2006319068A/en
Publication of JP2006319068A publication Critical patent/JP2006319068A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-junction silicon thin film photoelectric converter with high conversion efficiency, where short-circuit current density which occurs in respective thin film photoelectric conversion units is balanced with a high value, and to provide a manufacturing method of the converter. <P>SOLUTION: The multi-junction silicon thin film photoelectric converter is provided with the silicon thin film photoelectric conversion units which are connected in series through an intermediate layer. In the multi-junction silicon thin film photoelectric converter having multiple layers, the intermediate layer is formed of one or above n-type μc-Si layers and two or above conductive SiO<SB>X</SB>layers, which are formed by a plasma CVD method. Both faces of the n-type μc-Si layer are arranged so that they are brought into contact with the conductive SiO<SB>X</SB>layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は中間層を有する多接合型シリコン系薄膜光電変換装置およびその製造方法に関するものである。   The present invention relates to a multi-junction silicon-based thin film photoelectric conversion device having an intermediate layer and a method for manufacturing the same.

近年、半導体内部の光電効果を用いて光を電気に変換する光電変換装置が注目され、開発が精力的行われているが、その光電変換装置の中でもシリコン系薄膜光電変換装置は、低温で大面積のガラス基板やステンレス基板上に形成できることから、低コスト化が期待できる。   In recent years, photoelectric conversion devices that convert light into electricity using the photoelectric effect inside semiconductors have attracted attention and development has been vigorously conducted. Among these photoelectric conversion devices, silicon-based thin film photoelectric conversion devices are large at low temperatures. Since it can be formed on a glass substrate or a stainless steel substrate having an area, cost reduction can be expected.

薄膜光電変換装置は、一般に表面が絶縁性の基板上に順に積層された第一電極と、1つ以上の半導体薄膜光電変換ユニットと、及び第二電極とを含んでいる。ここで、光電変換ユニットは一般的にp型層、i型層、及びn型層の順に積層されてなり、その主要部を占めるi型の光電変換層が非晶質のものは非晶質光電変換ユニットと呼ばれ、i型層が結晶質のものは結晶質光電変換ユニットと呼ばれている。   A thin film photoelectric conversion device generally includes a first electrode, a surface of which is sequentially laminated on an insulating substrate, one or more semiconductor thin film photoelectric conversion units, and a second electrode. Here, the photoelectric conversion unit is generally laminated in the order of a p-type layer, an i-type layer, and an n-type layer, and the i-type photoelectric conversion layer that occupies the main part is amorphous when it is amorphous. It is called a photoelectric conversion unit, and a crystal whose i-type layer is crystalline is called a crystalline photoelectric conversion unit.

また、光電変換装置の変換効率を向上させる方法として、2つ以上の光電変換ユニットを積層した、多接合型と呼ばれる構造を採用した光電変換装置が知られている。この方法においては、光電変換装置の光入射側に大きな光学的禁制帯幅を有する光電変換層を含む前方光電変換ユニットを配置し、その後ろに順に小さなバンドギャップを有する光電変換層を含む後方光電変換ユニットを配置することにより、入射光の広い波長範囲にわたる光電変換を可能にし、入射する光を有効利用することにより装置全体としての変換効率の向上が図られている。(本願では、相対的に光入射側に配置された光電変換ユニットを前方光電変換ユニットと呼び、これよりも相対的に光入射側から遠い側に隣接して配置された光電変換ユニットを後方光電変換ユニットと呼ぶ。)
さらにこの後方光電変換ユニットの後方により小さなバンドギャップを有する光電変換層を含む光電変換ユニットを複数配置して、入射光のより広い波長範囲にわたる光電変換を可能とする三接合型、四接合型と呼ばれる構造を採用して装置全体の変換効率の向上を図る手法も開発されている。
As a method for improving the conversion efficiency of a photoelectric conversion device, a photoelectric conversion device employing a structure called a multi-junction type in which two or more photoelectric conversion units are stacked is known. In this method, a front photoelectric conversion unit including a photoelectric conversion layer having a large optical forbidden bandwidth is arranged on the light incident side of the photoelectric conversion device, and a rear photoelectric conversion including a photoelectric conversion layer having a small band gap in order behind the photoelectric conversion layer. By arranging the conversion unit, photoelectric conversion over a wide wavelength range of incident light is possible, and the conversion efficiency of the entire apparatus is improved by effectively using incident light. (In the present application, a photoelectric conversion unit disposed relatively on the light incident side is referred to as a front photoelectric conversion unit, and a photoelectric conversion unit disposed adjacent to a side farther from the light incident side than this is referred to as a rear photoelectric conversion unit. Called a conversion unit.)
In addition, a plurality of photoelectric conversion units including a photoelectric conversion layer having a smaller band gap at the rear of the rear photoelectric conversion unit are arranged to enable photoelectric conversion over a wider wavelength range of incident light. A technique for improving the conversion efficiency of the entire apparatus by adopting a so-called structure has been developed.

ところが、多接合型光電変換装置全体の特性、特に短絡電流密度は前方光電変換ユニットと後部光電変換ユニットの各短絡電流密度のうち小さい方の短絡電流密度に制限される。したがって、多接合型光電変換装置全体の特性を向上するためには、それぞれの光電変換ユニットで発生した短絡電流密度のバランスを取る必要がある。   However, the characteristics of the entire multi-junction photoelectric conversion device, particularly the short-circuit current density, is limited to the smaller short-circuit current density of the short-circuit current densities of the front photoelectric conversion unit and the rear photoelectric conversion unit. Therefore, in order to improve the characteristics of the entire multi-junction photoelectric conversion device, it is necessary to balance the short-circuit current density generated in each photoelectric conversion unit.

そこで、近年積層された複数の光電変換ユニットの間に光透過性及び光反射性の双方を有し且つ導電性の中間層を介在させる構造を有する積層型の光電変換装置が提案されている。この場合、中間層に到達した光の一部が反射し、中間層よりも光入射側に位置する前方光電変換ユニット内での光吸収量が増加し、その前方光電変換ユニットで発生する電流値を増大させることができる。例えば、非晶質シリコン光電変換ユニットと結晶質シリコン光電変換ユニットからなるハイブリッド型光電変換装置に中間反射層を挿入した場合、非晶質シリコン層の膜厚を増やすことなく非晶質シリコン光電変換ユニットによって発生する電流を増加させることができる。もしくは、同一の電流値を得るために必要な非晶質シリコン層の膜厚を薄くできることから、非晶質シリコン層の膜厚増加に応じて顕著となる光劣化による非晶質シリコン光電変換ユニットの特性低下を押さえることが可能となる。このような中間層では、前方光電変換ユニットで吸収される光の波長領域を選択的に反射し、且つ後方光電変換ユニットで吸収される光の波長領域は選択的に透過することが好ましい。   Therefore, in recent years, there has been proposed a stacked photoelectric conversion device having a structure in which both a light transmitting property and a light reflecting property are interposed between a plurality of stacked photoelectric conversion units and a conductive intermediate layer is interposed. In this case, a part of the light reaching the intermediate layer is reflected, the amount of light absorption in the front photoelectric conversion unit located on the light incident side of the intermediate layer is increased, and the current value generated in the front photoelectric conversion unit Can be increased. For example, when an intermediate reflective layer is inserted into a hybrid photoelectric conversion device composed of an amorphous silicon photoelectric conversion unit and a crystalline silicon photoelectric conversion unit, the amorphous silicon photoelectric conversion is performed without increasing the film thickness of the amorphous silicon layer. The current generated by the unit can be increased. Alternatively, the amorphous silicon photoelectric conversion unit due to photodegradation that becomes conspicuous as the thickness of the amorphous silicon layer increases because the thickness of the amorphous silicon layer necessary to obtain the same current value can be reduced. It is possible to suppress the deterioration of characteristics. In such an intermediate layer, it is preferable that the wavelength region of light absorbed by the front photoelectric conversion unit is selectively reflected and the wavelength region of light absorbed by the rear photoelectric conversion unit is selectively transmitted.

例えば特許文献1には、中間層の反射特性を短波長領域の光に対しては反射率が高く、長波長領域の光に対しては反射率が低くなるように改善することにより、上部光電変換層と下部光電変換層の各光電流密度を高い値でバランスさせた光電変換効率の高い積層型太陽電池を提供するために、光電変換層間に介在して各光電変換層を電気的に直列接続する中間層が設けられ、中間層は2つ以上の材料を交互に積層して構成された多層膜であって、特定の波長領域の光を選択的に反射する特性を有している中間層が開示されている。
特開2001−308354号公報
For example, Patent Document 1 discloses that the reflection characteristics of the intermediate layer are improved so that the reflectance is high for light in the short wavelength region and low for light in the long wavelength region. In order to provide a stacked solar cell having a high photoelectric conversion efficiency in which the photoelectric current densities of the conversion layer and the lower photoelectric conversion layer are balanced at a high value, the photoelectric conversion layers are electrically connected in series with each other interposed between the photoelectric conversion layers. An intermediate layer to be connected is provided, and the intermediate layer is a multilayer film formed by alternately laminating two or more materials, and has a characteristic of selectively reflecting light in a specific wavelength region. A layer is disclosed.
JP 2001-308354 A

上述のように2つ以上の材料を交互に積層して構成された多層膜を用いて中間層を構成すれば、通常の1層で構成した中間層を用いるよりも短波長領域の光に対しては反射率が高く、長波長領域の光に対しては反射率が低くなるように改善できるが、このような特定の波長領域の光を選択的に反射する特性を有する中間層を形成するためには、従来CVDチャンバーとは別に中間層形成用のチャンバーが必要となり、コスト的な負担が大きかった。   If the intermediate layer is formed by using a multilayer film formed by alternately laminating two or more materials as described above, it is more suitable for light in a shorter wavelength region than using an intermediate layer formed by a single layer. It can be improved so that the reflectivity is high and the reflectivity is low for light in the long wavelength region, but an intermediate layer having the characteristic of selectively reflecting light in such a specific wavelength region is formed. For this purpose, a chamber for forming an intermediate layer is required separately from the conventional CVD chamber, and the cost burden is large.

この発明は以上のような事情を考慮してなされたものであり、本発明により波長選択制に優れた反射特性を示す中間層を有することにより、各シリコン系薄膜光電変換ユニットで発生する短絡電流密度を高い値でバランスさせた光電変換効率の高い多接合型シリコン系光電変換装置を提供し、また前記多接合型シリコン系光電変換装置を低コストで大面積に均一に形成できる製造方法を提供するものである。   The present invention has been made in consideration of the above-described circumstances, and has a short-circuit current generated in each silicon-based thin film photoelectric conversion unit by having an intermediate layer exhibiting a reflection characteristic excellent in wavelength selection according to the present invention. Provided a multi-junction silicon photoelectric conversion device with high photoelectric conversion efficiency that balances the density at a high value, and a manufacturing method capable of uniformly forming the multi-junction silicon photoelectric conversion device over a large area at a low cost. To do.

本発明の多接合型シリコン系薄膜光電変換装置は、中間層を介して直列接続されたシリコン系薄膜光電変換ユニットを備えた多接合型シリコン系薄膜光電変換装置であって、該前記中間層がプラズマCVD法で製膜された1以上のn型μc−Si層と2以上の導電性SiOX層とからなり、該n型μc−Si層の両方の面が該導電性SiOX層と接するように配置された多層膜であることを特徴とするので、大面積に均一に反射特性に優れた中間層を各層界面に抵抗層を生じることなく形成することができ、さらに前記中間層をn型μc−Si層、及び導電性SiOX層の繰り返しからなる多層膜として特定の波長領域の光を選択的に反射することにより、各シリコン系薄膜光電変換ユニットで発生する短絡電流密度を高い値でバランスさせた光電変換効率の高い多接合型シリコン系薄膜光電変換装置を得ることができる。 The multi-junction silicon-based thin film photoelectric conversion device of the present invention is a multi-junction silicon-based thin film photoelectric conversion device including silicon-based thin film photoelectric conversion units connected in series via an intermediate layer, the intermediate layer being It is composed of one or more n-type μc-Si layers and two or more conductive SiO x layers formed by plasma CVD, and both surfaces of the n-type μc-Si layer are in contact with the conductive SiO x layers. Since the multilayer film is arranged in such a manner, it is possible to form an intermediate layer having a uniform and excellent reflection characteristic over a large area without forming a resistance layer at each layer interface. A high value of the short-circuit current density generated in each silicon-based thin film photoelectric conversion unit by selectively reflecting light in a specific wavelength region as a multilayer film composed of repeated type μc-Si layers and conductive SiO x layers Light balanced by It is possible to obtain a high conversion efficiency multijunction silicon-based thin-film photoelectric conversion device.

また、本発明の多接合型シリコン系薄膜光電変換装置では、前記シリコン系薄膜光電変換ユニットはp型層、i型層、及びn型層の順に積層されてなり、前記中間層が続けてn型μc−Si層から積層されてなる多接合型シリコン系薄膜光電変換装置とすることが好ましい。これによりシリコン系薄膜光電変換ユニットのn型層との電気的抵抗を最小にして中間層を形成することができる。   Further, in the multi-junction silicon thin film photoelectric conversion device of the present invention, the silicon thin film photoelectric conversion unit is laminated in the order of a p-type layer, an i-type layer, and an n-type layer, and the intermediate layer continues to n. A multi-junction silicon-based thin film photoelectric conversion device formed by laminating a type μc-Si layer is preferable. As a result, the intermediate layer can be formed while minimizing the electrical resistance with the n-type layer of the silicon-based thin film photoelectric conversion unit.

さらに、前記中間層における導電性SiOX層は結晶構造を有するSiを含むことが望ましい。これにより中間層を構成する半導体層が導電性の高い膜となり、中間層の前後に形成された光電変換ユニットの直列接続を容易に達成しつつ、多接合型シリコン系薄膜光電変換装置の中間層に起因する電気的損失を小さくすることができる。 Further, the conductive SiO x layer in the intermediate layer preferably contains Si having a crystal structure. As a result, the semiconductor layer constituting the intermediate layer becomes a highly conductive film, and the intermediate layer of the multi-junction silicon-based thin film photoelectric conversion device can be easily achieved in series connection of the photoelectric conversion units formed before and after the intermediate layer. It is possible to reduce the electrical loss caused by.

本発明においては、多接合型シリコン系薄膜光電変換装置を形成する際には、前記中間層は同一チャンバー内で連続して製膜することが望ましく、このような製造方法とすることで各層界面を抵抗層を生じることなく滑らかに、また容易に低コストで中間層を形成できる。   In the present invention, when forming a multi-junction silicon-based thin film photoelectric conversion device, it is desirable that the intermediate layer be continuously formed in the same chamber. The intermediate layer can be formed smoothly and easily at low cost without producing a resistance layer.

また、前記中間層における導電性SiOX層の製膜はシラン等の反応ガスにCO2ガスを導入することにより形成し、さらにCO2ガスのチャンバー内への導入量を連続的に変えることによって前記中間層を形成することが望ましく、この製造方法とすることで各層界面を抵抗層を生じることなく滑らかに、また容易に低コストで選択制の高い、反射特性に優れた中間層を形成できるためより高い特性の多接合型シリコン系光電変換装置を提供し得る。 Further, the formation of the conductive SiO x layer in the intermediate layer is formed by introducing CO 2 gas into a reaction gas such as silane, and by continuously changing the amount of CO 2 gas introduced into the chamber. It is desirable to form the intermediate layer, and by using this manufacturing method, it is possible to form an intermediate layer having excellent reflection characteristics with smooth, easy and low-cost selection at each layer interface without causing a resistance layer. Therefore, a multi-junction silicon-based photoelectric conversion device with higher characteristics can be provided.

この発明によれば、以下のような具体的効果が得られる。即ち、プラズマCVD法で製膜されたn型μc−Si層、及び導電性SiOX層の繰り返しからなる多層膜を中間層として用いることにより、各層界面を抵抗層を生じることなく、波長選択性に優れた反射特性を示す中間層を有する多接合型シリコン系光電変換装置を形成出来るため、多接合型シリコン系光電変換装置の特性を向上させることが出来る。 According to the present invention, the following specific effects can be obtained. That is, by using, as an intermediate layer, a multilayer film composed of an n-type μc-Si layer formed by a plasma CVD method and a conductive SiO x layer as an intermediate layer, the wavelength selectivity can be achieved without causing a resistance layer at each layer interface. Since the multi-junction silicon photoelectric conversion device having the intermediate layer exhibiting excellent reflection characteristics can be formed, the characteristics of the multi-junction silicon photoelectric conversion device can be improved.

また、中間層をプラズマCVDの同一チャンバー内で連続して製膜することにより、低コストで大面積に均一に中間層を形成できるため、製造工程の融通性を高めかつ生産効率を改善し得る製造方法を提供することができる。   In addition, since the intermediate layer can be formed uniformly in a large area at a low cost by continuously forming the intermediate layer in the same chamber of plasma CVD, the flexibility of the manufacturing process can be improved and the production efficiency can be improved. A manufacturing method can be provided.

以上のような効果により、本発明によれば高性能かつ低コストの多接合型シリコン系光電変換装置を提供することができる。   Due to the above effects, the present invention can provide a high-performance and low-cost multi-junction silicon-based photoelectric conversion device.

以下において本発明の好ましい実施の形態について図面を参照しつつ説明する。なお本願の各図において、厚さや長さなどの寸法関係については図面の明瞭化と簡略化のため適宜変更されており、実際の寸法関係を表してはいない。また、各図において、同一の参照符号は同一部分または相当部分を表している。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each drawing of the present application, dimensional relationships such as thickness and length are appropriately changed for clarity and simplification of the drawings, and do not represent actual dimensional relationships. Moreover, in each figure, the same referential mark represents the same part or an equivalent part.

図1に、本発明の実施形態の一例による多接合型シリコン系光電変換装置の断面図を示す。透明基板1上に、透明電極層2、前方光電変換ユニット3、中間層4、後方光電変換ユニット5、および裏面電極層6の順に配置されている。なお、図1には光電変換ユニットが前方光電変換ユニットと後方光電変換ユニットの2つで構成された二接合型光電変換装置となっているが、本発明は光電変換ユニットを3段以上積層した多接合型シリコン系光電変換装置にも適用し得る。例えば光入射側から第一光電変換ユニット、第二光電変換ユニット、第三光電変換ユニットの順に配置された3接合型シリコン系光電変換装置において、第一光電変換ユニットと第二光電変換ユニットを、それぞれ前方光電変換ユニットと後方光電変換ユニットと見なし、両者の境界近傍に中間層を設けても良い。あるいは第二光電変換ユニットと第三光電変換ユニットを、それぞれ前方光電変換ユニットと後方光電変換ユニットと見なし、両者の境界近傍に中間層を設けても良い。むろん、第一光電変換ユニットと第二光電変換ユニットの境界近傍および第二光電変換ユニットと第三光電変換ユニットの境界近傍の両方にシリコン複合層を設けた構造でも良い。3接合型シリコン系光電変換装置としては、例えば第一光電変換ユニットに非晶質シリコン光電変換ユニット、第二光電変換ユニットに非晶質シリコンゲルマニウムあるいは結晶質シリコン系光電変換ユニット、第三光電変換ユニットに非晶質シリコンゲルマニウムあるいは結晶質シリコン系光電変換ユニットを適用する場合などが挙げられるが、組み合わせはこの限りではない。   FIG. 1 shows a cross-sectional view of a multi-junction silicon-based photoelectric conversion device according to an example of an embodiment of the present invention. On the transparent substrate 1, it arrange | positions in order of the transparent electrode layer 2, the front photoelectric conversion unit 3, the intermediate | middle layer 4, the back photoelectric conversion unit 5, and the back surface electrode layer 6. FIG. In FIG. 1, the photoelectric conversion unit is a two-junction photoelectric conversion device including a front photoelectric conversion unit and a rear photoelectric conversion unit. In the present invention, three or more photoelectric conversion units are stacked. It can also be applied to a multi-junction silicon-based photoelectric conversion device. For example, in the three-junction silicon-based photoelectric conversion device arranged in the order of the first photoelectric conversion unit, the second photoelectric conversion unit, and the third photoelectric conversion unit from the light incident side, the first photoelectric conversion unit and the second photoelectric conversion unit are Each may be regarded as a front photoelectric conversion unit and a rear photoelectric conversion unit, and an intermediate layer may be provided in the vicinity of the boundary between them. Alternatively, the second photoelectric conversion unit and the third photoelectric conversion unit may be regarded as a front photoelectric conversion unit and a rear photoelectric conversion unit, respectively, and an intermediate layer may be provided in the vicinity of the boundary between them. Of course, a structure in which a silicon composite layer is provided both near the boundary between the first photoelectric conversion unit and the second photoelectric conversion unit and near the boundary between the second photoelectric conversion unit and the third photoelectric conversion unit may be used. Examples of the 3-junction silicon photoelectric conversion device include an amorphous silicon photoelectric conversion unit as the first photoelectric conversion unit, an amorphous silicon germanium or crystalline silicon photoelectric conversion unit as the second photoelectric conversion unit, and a third photoelectric conversion unit. Examples include the case where an amorphous silicon germanium or crystalline silicon photoelectric conversion unit is applied to the unit, but the combination is not limited thereto.

基板側から光を入射するタイプの光電変換装置にて用いられる透明基板1には、ガラス、透明樹脂等から成る板状部材やシート状部材が用いられる。透明電極層2はSnO2、ZnO等の導電性金属酸化物から成ることが好ましく、CVD、スパッタ、蒸着等の方法を用いて形成されることが好ましい。透明電極層2はその表面に微細な凹凸を有することにより、入射光の散乱を増大させる効果を有することが望ましい。 A plate-like member or a sheet-like member made of glass, transparent resin or the like is used for the transparent substrate 1 used in a photoelectric conversion device of a type in which light enters from the substrate side. The transparent electrode layer 2 is preferably made of a conductive metal oxide such as SnO 2 or ZnO, and is preferably formed using a method such as CVD, sputtering, or vapor deposition. The transparent electrode layer 2 desirably has the effect of increasing the scattering of incident light by having fine irregularities on its surface.

裏面電極層6としては、Al、Ag、Au、Cu、PtおよびCrから選ばれる少なくとも一つの材料からなる少なくとも一層の金属層をスパッタ法または蒸着法により形成することが好ましい。また、光電変換ユニットと金属電極との間に、ITO、SnO2、ZnO等の導電性酸化物からなる層を形成しても構わない(図示せず)。 As the back electrode layer 6, it is preferable to form at least one metal layer made of at least one material selected from Al, Ag, Au, Cu, Pt and Cr by sputtering or vapor deposition. Between the photoelectric conversion unit and the metal electrode, ITO, may be formed a layer made of SnO 2, conductive oxides such as ZnO (not shown).

光入射側からみて透明電極2の後方に、複数の光電変換ユニットが配置される。図1のように2つの光電変換ユニットが積層された構造の場合、光入射側に配置された前方光電変換ユニット3には相対的にバンドギャップの広い材料、例えば非晶質シリコン系材料による光電変換ユニットなどが用いられる。その後方に配置された後方光電変換ユニット5には、それよりも相対的にバンドギャップの狭い材料、例えば結晶質を含むシリコン系材料による光電変換ユニットや、非晶質シリコンゲルマニウム光電変換ユニットなどが用いられる。   A plurality of photoelectric conversion units are arranged behind the transparent electrode 2 when viewed from the light incident side. In the case of a structure in which two photoelectric conversion units are stacked as shown in FIG. 1, the front photoelectric conversion unit 3 disposed on the light incident side has a relatively wide bandgap material, for example, an amorphous silicon-based material. A conversion unit or the like is used. The rear photoelectric conversion unit 5 arranged on the rear side includes a material having a relatively narrow band gap, for example, a photoelectric conversion unit made of a silicon-based material containing crystalline material, an amorphous silicon germanium photoelectric conversion unit, or the like. Used.

各々の光電変換ユニットは、p型層、実質的に真性な光電変換層であるi型層、およびn型層から成るpin接合によって構成されるのが好ましい。このうちi型層に非晶質シリコンを用いたものを非晶質シリコン光電変換ユニット、結晶質を含むシリコンを用いたものを結晶質シリコン光電変換ユニットと呼ぶ。なお、非晶質あるいは結晶質のシリコン系材料としては、半導体を構成する主要元素としてシリコンのみを用いる場合だけでなく、炭素、酸素、窒素、ゲルマニウムなどの元素をも含む合金材料であってもよい。また、導電型層の主要構成材料としては、必ずしもi型層と同質のものである必要はなく、例えば非晶質シリコン光電変換ユニットのp型層に非晶質シリコンカーバイドを用い得るし、n型層に結晶質を含むシリコン層(μc−Siとも呼ばれる)も用い得る。   Each photoelectric conversion unit is preferably configured by a pin junction including a p-type layer, an i-type layer that is a substantially intrinsic photoelectric conversion layer, and an n-type layer. Among these, those using amorphous silicon for the i-type layer are called amorphous silicon photoelectric conversion units, and those using crystalline silicon are called crystalline silicon photoelectric conversion units. Note that the amorphous or crystalline silicon-based material is not only a case where only silicon is used as a main element constituting a semiconductor, but also an alloy material including elements such as carbon, oxygen, nitrogen, and germanium. Good. The main constituent material of the conductive layer is not necessarily the same as that of the i-type layer. For example, amorphous silicon carbide can be used for the p-type layer of the amorphous silicon photoelectric conversion unit, and n A silicon layer (also referred to as μc-Si) containing crystal in the mold layer can also be used.

本発明では、前方光電変換ユニットと後方光電変換ユニットとの間に前方光電変換ユニットで吸収できる波長領域の光に対する反射率が高く、前方光電変換ユニットで吸収できない波長領域の光に対する反射率が低くなるような反射特性を有する中間層4を用いている。上記中間層4はn型μc−Si層、及び導電性SiOX層の繰り返しからなる多層膜を用いることを特徴としており、中間反射層として機能させるためには、前方光電変換ユニット3内の光電変換層と後方光電変換ユニット5内の光電変換層との間のいずれかの位置に配置させる必要がある。また、この中間層4は光電変換ユニット内の導電型層の一部を兼ねることができる。 In the present invention, between the front photoelectric conversion unit and the rear photoelectric conversion unit, the reflectance for light in the wavelength region that can be absorbed by the front photoelectric conversion unit is high, and the reflectance for light in the wavelength region that cannot be absorbed by the front photoelectric conversion unit is low. An intermediate layer 4 having such reflection characteristics is used. The intermediate layer 4 is characterized by using a multilayer film formed by repeating an n-type μc-Si layer and a conductive SiO x layer. In order to function as an intermediate reflection layer, the photoelectric layer in the front photoelectric conversion unit 3 is used. It is necessary to arrange at any position between the conversion layer and the photoelectric conversion layer in the rear photoelectric conversion unit 5. Moreover, this intermediate | middle layer 4 can serve as a part of conductive type layer in a photoelectric conversion unit.

本発明の中間層4では、前記のような選択的な反射特性を実現するために、中間層をn型μc−Si層、及び導電性SiOX層の繰り返しからなる多層膜を積層して構成してなる多層膜中間層を用いる。このような構造を取ることにより中間層の反射特性を自由に設定することができ、中間層の前後に配置された光電変換ユニットの構成に応じて最適な反射特性とすることができるため、前方光電変換ユニットの短絡光電流密度を向上させるとともに、後部光電変換ユニットの短絡光電流密度の低下も最小限に抑えることができ、上部光電変換層と下部光電変換層の各短絡光電流密度を高い値でバランスさせることができる。 In the intermediate layer 4 of the present invention, in order to realize the selective reflection characteristics as described above, the intermediate layer is formed by laminating a multilayer film composed of repeated n-type μc-Si layers and conductive SiO x layers. A multilayer intermediate layer is used. By adopting such a structure, the reflection characteristics of the intermediate layer can be freely set, and the optimum reflection characteristics can be obtained according to the configuration of the photoelectric conversion units arranged before and after the intermediate layer. The short-circuit photocurrent density of the photoelectric conversion unit can be improved, and the decrease of the short-circuit photocurrent density of the rear photoelectric conversion unit can be minimized, and the short-circuit photocurrent density of the upper photoelectric conversion layer and the lower photoelectric conversion layer is increased. Can be balanced by value.

本中間層4では導電性SiOX層を用いているが、この導電性SiOX層はn型μc−Si層のプラズマCVD法による作製時と同様の条件で、追加的にCO2ガスをチャンバー内へ導入することにより作製することが可能であり、作製時のCO2ガス流量をコントロールすることにより、作製する導電性SiOX層の屈折率を広範囲にコントロール可能である。このため、同一のプラズマCVDチャンバー内で導入するCO2ガス流量を連続的に変化させることにより容易に導電性SiOX層とn型μc−Si層との積層構造が作製できる。また、この導電性SiOX層は結晶構造を有するSiを含むことが望ましい。これにより中間層を構成する半導体層が導電性の高い膜となり、中間層の前後に形成された光電変換ユニットの直列接続を用意に達成しつつ、多接合型シリコン系薄膜光電変換装置の中間層に起因する電気的損失を小さくすることができる。 In this intermediate layer 4, a conductive SiO x layer is used, and this conductive SiO x layer is additionally supplied with a CO 2 gas in a chamber under the same conditions as those for producing the n-type μc-Si layer by the plasma CVD method. The refractive index of the conductive SiO x layer to be manufactured can be controlled over a wide range by controlling the flow rate of the CO 2 gas at the time of manufacturing. For this reason, a laminated structure of the conductive SiO x layer and the n-type μc-Si layer can be easily produced by continuously changing the flow rate of the CO 2 gas introduced in the same plasma CVD chamber. The conductive SiO x layer desirably contains Si having a crystal structure. As a result, the semiconductor layer constituting the intermediate layer becomes a highly conductive film, and the intermediate layer of the multi-junction silicon-based thin film photoelectric conversion device is prepared while achieving serial connection of the photoelectric conversion units formed before and after the intermediate layer. It is possible to reduce the electrical loss caused by.

本発明における中間層4の形成例を具体的に述べると以下のようである。導電性SiOX層の作製は、反応ガスとしてSiH4、CO2、H2、PH3を用い、H2/SiH4比が大きいいわゆる微結晶作製条件で、かつCO2/SiH4比が2以上の範囲を用いてプラズマCVD法で作製される。このときのプラズマCVDの条件は、例えば容量結合型の平行平板電極を用いて、電源周波数10〜100MHz、パワー密度50〜500mW/cm2、圧力50〜1500Pa、基板温度150〜250℃である。CO2/SiH4比を増加させると膜中酸素濃度が単調に増加する。またドーピングガスとしてPH3の代わりにB26を用いても良いし、PH3とB26の両方のガスを混合させても良い。さらにn型μc−Si層の作製時には、反応ガスとしてSiH4、CO2、H2、PH3を用い、H2/SiH4比が大きい条件でプラズマCVD法により作製され、このときのプラズマCVDの条件は、例えば容量結合型の平行平板電極を用いて、電源周波数10〜100MHz、パワー密度50〜500mW/cm2、圧力50〜1500Pa、基板温度150〜250℃である。 A specific example of forming the intermediate layer 4 in the present invention is as follows. The conductive SiO x layer is produced by using SiH 4 , CO 2 , H 2 , and PH 3 as reaction gases under so-called microcrystal production conditions with a large H 2 / SiH 4 ratio and a CO 2 / SiH 4 ratio of 2. The plasma CVD method is used for the above range. The conditions of plasma CVD at this time are, for example, a power coupled frequency of 10 to 100 MHz, a power density of 50 to 500 mW / cm 2 , a pressure of 50 to 1500 Pa, and a substrate temperature of 150 to 250 ° C. using capacitively coupled parallel plate electrodes. When the CO 2 / SiH 4 ratio is increased, the oxygen concentration in the film increases monotonously. Also may be using B 2 H 6 in place of PH 3 as a doping gas, it may be mixed both gas PH 3 and B 2 H 6. Furthermore, at the time of producing the n-type μc-Si layer, SiH 4 , CO 2 , H 2 , and PH 3 are used as the reaction gas, and it is produced by the plasma CVD method under a condition where the H 2 / SiH 4 ratio is large. The conditions are, for example, a power coupling frequency of 10 to 100 MHz, a power density of 50 to 500 mW / cm 2 , a pressure of 50 to 1500 Pa, and a substrate temperature of 150 to 250 ° C. using capacitively coupled parallel plate electrodes.

さらに本発明では、プラズマCVD法を用いて前方光電変換ユニット3を形成し、その基板を一旦大気中に取り出した後、再度プラズマCVD法により中間層4および後方光電変換ユニット5を引き続き形成するという製造方法があるが、このような製造方法においても上記中間層4を形成する場合には最初にn型μc−Si層を作製してから導電性SiOX層を作製することが望ましい。このようにすることで前方光電変換ユニット3のn型導電型層と中間層との界面における直列接続を容易に達成しつつ、多接合型シリコン系太陽電池の電気的損失を小さくすることができるため、光電変換特性を高めることができる。 Furthermore, in the present invention, the front photoelectric conversion unit 3 is formed using the plasma CVD method, the substrate is once taken out into the atmosphere, and then the intermediate layer 4 and the rear photoelectric conversion unit 5 are continuously formed again by the plasma CVD method. Although there is a manufacturing method, even in such a manufacturing method, when the intermediate layer 4 is formed, it is desirable to first form an n-type μc-Si layer and then a conductive SiO x layer. In this way, the electrical loss of the multi-junction silicon solar cell can be reduced while easily achieving series connection at the interface between the n-type conductivity type layer and the intermediate layer of the front photoelectric conversion unit 3. Therefore, photoelectric conversion characteristics can be improved.

本発明の中間層4における導電性SiOX層は、600nmの波長の光に対する屈折率が2.5以下、あるいは膜中酸素濃度が25原子%以上とすることが好ましい。屈折率と膜中酸素濃度の関係は比較的高い相関がある。屈折率の低い方が中間反射層として選択性に優れた反射特性を得るための膜厚を薄くする事が出来る。この中間層4は光電変換には寄与しない不活性な層であり、ここで吸収される光はほとんど発電に寄与しないため、中間層4は可能な限り薄くする必要があり、またここで導電性SiOX層の屈折率として600nmの波長の光での値を指標とした理由は以下の点が挙げられる。積層型光電変換装置の一つである、非晶質シリコン系光電変換ユニットと結晶質シリコン系光電変換ユニットを2段積層したハイブリッド型光電変換装置において、非晶質シリコン系光電変換ユニットの分光感度電流の立下りと、結晶質シリコン系光電変換ユニットの分光感度電流の立ち上りは600nm付近の波長で交錯する。このため600nm付近の光を良く反射する膜、即ち、600nmの光に対する屈折率が小さい膜が、選択制に優れた反射特性を容易に得ることができ、前方光電変換ユニットの発電電流を増加するのに好適となる。なお、屈折率は例えば分光エリプソメトリ法などを用いて評価可能である。 The conductive SiO x layer in the intermediate layer 4 of the present invention preferably has a refractive index of 2.5 or less for light having a wavelength of 600 nm, or an oxygen concentration in the film of 25 atomic% or more. The relationship between the refractive index and the oxygen concentration in the film has a relatively high correlation. The lower the refractive index, the thinner the film thickness for obtaining reflective properties with excellent selectivity as the intermediate reflective layer. The intermediate layer 4 is an inactive layer that does not contribute to photoelectric conversion, and light absorbed here hardly contributes to power generation. Therefore, the intermediate layer 4 needs to be as thin as possible, and the conductive layer is conductive here. The reason why the value of light having a wavelength of 600 nm is used as the index of refraction of the SiO x layer is as follows. Spectral sensitivity of the amorphous silicon photoelectric conversion unit is one of the stacked photoelectric conversion devices in a hybrid photoelectric conversion device in which an amorphous silicon photoelectric conversion unit and a crystalline silicon photoelectric conversion unit are stacked in two stages. The fall of the current and the rise of the spectral sensitivity current of the crystalline silicon photoelectric conversion unit intersect at a wavelength near 600 nm. Therefore, a film that reflects light in the vicinity of 600 nm, that is, a film having a small refractive index with respect to 600 nm light, can easily obtain a reflection characteristic that is excellent in selection, and increases the generated current of the front photoelectric conversion unit. It becomes suitable for. The refractive index can be evaluated using, for example, a spectroscopic ellipsometry method.

以下においては、上述の実施の形態に対応する積層構造を含む多接合型シリコン系光電変換装置の製造方法の実施例として、非晶質シリコン光電変換ユニットと結晶質シリコン光電変換ユニットとが積層された2スタック型スーパーストレート構造の多接合型シリコン系光電変換装置を挙げ、比較例と比較しつつ詳細に説明する。各図において同様の部材には同一の参照符号を付し、重複する説明は省略する。また、本発明はその趣旨を超えない限り以下の実施例に限定されるものではない。   In the following, an amorphous silicon photoelectric conversion unit and a crystalline silicon photoelectric conversion unit are stacked as an example of a method for manufacturing a multi-junction silicon-based photoelectric conversion device including a stacked structure corresponding to the above-described embodiment. Further, a multi-junction silicon photoelectric conversion device having a two-stack superstrate structure will be given and will be described in detail while comparing with a comparative example. In the drawings, the same members are denoted by the same reference numerals, and redundant description is omitted. Moreover, this invention is not limited to a following example, unless the meaning is exceeded.

(実施例1および比較例1)
図1を参照して説明された第一の実施の形態に対応して、実施例1としての多接合シリコン太陽電池が作製された。透明基板1にはガラスを用い、透明電極層2にはSnO2を用いた。この際の透明電極層2の膜厚は800nm、シート抵抗は10オーム/□、ヘイズ率は15〜20%とした。この上に、ボロンドープのp型シリコンカーバイド(SiC)層を10nm、ノンドープの非晶質シリコン光電変換層を300nm、リンドープのn型μc−Si層を20nmの膜厚で、それぞれプラズマCVD法により製膜した。これにより、前方光電変換ユニットであるpin接合の非晶質シリコン光電変換ユニット3を形成した。
(Example 1 and Comparative Example 1)
Corresponding to the first embodiment described with reference to FIG. 1, a multi-junction silicon solar cell as Example 1 was fabricated. Glass was used for the transparent substrate 1 and SnO 2 was used for the transparent electrode layer 2. The film thickness of the transparent electrode layer 2 at this time was 800 nm, the sheet resistance was 10 ohm / □, and the haze ratio was 15 to 20%. On top of this, a boron-doped p-type silicon carbide (SiC) layer has a thickness of 10 nm, a non-doped amorphous silicon photoelectric conversion layer has a thickness of 300 nm, and a phosphorus-doped n-type μc-Si layer has a thickness of 20 nm. Filmed. Thereby, the amorphous silicon photoelectric conversion unit 3 of the pin junction which is a front photoelectric conversion unit was formed.

さらに非晶質シリコン光電変換ユニット3の上に中間層として導電性SiOX層41を70nm、n型μc−Si層42を30nm、さらにその上に導電性SiOX層43を70nmの膜厚でそれぞれプラズマCVD法により、前記前方光電変換ユニットを構成するn型μc−Si層を製膜したチャンバーと同一のチャンバー内で連続的に製膜することにより中間層4を形成した。 Further, on the amorphous silicon photoelectric conversion unit 3, a conductive SiO x layer 41 is formed as an intermediate layer with a thickness of 70 nm, an n-type μc-Si layer 42 is formed with a thickness of 30 nm, and a conductive SiO x layer 43 is formed thereon with a thickness of 70 nm. The intermediate layer 4 was formed by continuously depositing each of the n-type μc-Si layers constituting the front photoelectric conversion unit in the same chamber as that formed by the plasma CVD method.

導電性SiOX層41および43は、平行平板型高周波プラズマCVD法で堆積した。そのときの製膜条件については、プラズマの励起周波数を13.56MHz、下地温度を160℃、反応室内圧力を6Torrとして形成した。プラズマCVD反応室内に導入される原料ガスとしてSiH4、PH3、B26、CO2、およびH2を用いた。以上の条件で70nmの導電性SiOX層41を製膜した後、そのまま同一チャンバー内でCO2のガス供給を止め、n型μc−Si層42を30nm製膜した。さらにn型μc−Si層42を製膜したのと同一のチャンバー内でCO2のガス供給を再開し、前記導電性SiOX層の製膜条件と同一の条件で導電性SiOX層43を70nm製膜した。 Conductive SiO X layer 41 and 43, were deposited in a parallel plate type RF plasma CVD method. Regarding the film forming conditions at that time, the plasma excitation frequency was 13.56 MHz, the substrate temperature was 160 ° C., and the pressure in the reaction chamber was 6 Torr. SiH 4 , PH 3 , B 2 H 6 , CO 2 , and H 2 were used as source gases introduced into the plasma CVD reaction chamber. After forming a 70 nm conductive SiO x layer 41 under the above conditions, the CO 2 gas supply was stopped in the same chamber as it was, and an n-type μc-Si layer 42 was formed to a thickness of 30 nm. Furthermore the gas supply of CO 2 to resume in the same chamber as that film formation of n-type [mu] c-Si layer 42, the conductive SiO X layer 43 under the same conditions as film formation conditions of the conductive SiO X layer A 70 nm film was formed.

また、上記導電性SiOX層をラマン散乱分光法により測定すると、結晶シリコンに特有の520cm-1の波数におけるピークが観察され、微結晶構造を有する事がわかっている。また、本ラマン散乱分光法による結晶シリコンおよびアモルファスシリコンに起因するピークの比率は2〜6程度であった。 Further, when the conductive SiO x layer is measured by Raman scattering spectroscopy, a peak at a wave number of 520 cm −1 peculiar to crystalline silicon is observed, and it is known that it has a microcrystalline structure. Moreover, the ratio of the peak resulting from crystalline silicon and amorphous silicon by this Raman scattering spectroscopy was about 2-6.

さらに前記中間層4の上にボロンドープのp型微結晶シリコン層を15nm、ノンドープの結晶質シリコン光電変換層を1.7μm、リンドープのn型微結晶シリコン層を20nmの膜厚で、それぞれプラズマCVD法により製膜した。これにより、後方光電変換ユニットであるpin接合の結晶質シリコン光電変換ユニット5を形成した。さらに後方光電変換ユニット5の上に、裏面電極層6としてZnO膜を80nm、Ag膜を300nmの膜厚で、それぞれスパッタ法により形成した。   Further, on the intermediate layer 4, a boron-doped p-type microcrystalline silicon layer having a thickness of 15 nm, a non-doped crystalline silicon photoelectric conversion layer having a thickness of 1.7 μm, and a phosphorus-doped n-type microcrystalline silicon layer having a thickness of 20 nm are formed by plasma CVD. The film was formed by the method. Thereby, the crystalline silicon photoelectric conversion unit 5 of the pin junction which is a back photoelectric conversion unit was formed. Further, a ZnO film having a thickness of 80 nm and an Ag film having a thickness of 300 nm were formed as the back electrode layer 6 on the rear photoelectric conversion unit 5 by sputtering.

本実施例ではn型μc−Si層と導電性SiOX層の繰り返しが2層となる構造の中間層を用いることにより、前方光電変換ユニットが吸収する光の波長領域に対しては広い波長範囲で80%を越す反射率が得られ、一方で700から800nm以上の長波長領域の光に対する反射率は低くなるため、後方光電変換ユニットが吸収する光の波長領域に対しては広い範囲で90%以上の光透過率を示し、入射光を選択的に反射させて有効に活用することが出来る。これらの効果により、前方光電変換ユニット3の短絡電流密度を向上させるとともに、後方光電変換ユニット5の短絡電流密度の低下を防ぎ、各光電変換ユニットにより生成される短絡電流密度のバランスを取ることが出来た。 In this embodiment, by using an intermediate layer having a structure in which the n-type μc-Si layer and the conductive SiO x layer are repeated in two layers, the wavelength range of light that is absorbed by the front photoelectric conversion unit is wide. On the other hand, the reflectance with respect to light in the long wavelength region of 700 to 800 nm or more is low, and thus the reflectance in the wavelength region of light absorbed by the rear photoelectric conversion unit is 90 in a wide range. % Light transmittance can be effectively utilized by selectively reflecting incident light. With these effects, the short circuit current density of the front photoelectric conversion unit 3 can be improved, the short circuit current density of the rear photoelectric conversion unit 5 can be prevented from being lowered, and the short circuit current density generated by each photoelectric conversion unit can be balanced. done.

同じく図1に示す構成の多接合型薄膜シリコン太陽電池を比較例1として作製した。本比較例1では中間層4がn型SiOX層のみで構成されており、前記n型SiOX層の厚さを70nmとして、それ以外の製膜条件は実施例1と同一とした。本比較例では前記のn型SiOX層1層による中間層を用いるため、前方光電変換ユニットが吸収する光の波長領域に対しては反射率が最大でも70%程度にとどまり、また、後方光電変換ユニットが吸収する光の波長領域に対しても低い光透過率を示し、入射光の選択的な反射が充分に出来ない。本比較例1では前記n型SiOX層の膜厚を薄膜化することにより短波長領域の光反射率を上げ、かつ長波長領域の光透過率も高くする事が出来るが、n型SiOX層の薄膜化による反射率の調整では500nmから700nm程度の波長領域の光が十分に前方光電変換ユニット側に反射されない現象が起き、前方光電変換ユニットが吸収する光の波長領域に対して充分な選択性を持つ中間層とはなり得ない。 Similarly, a multi-junction thin film silicon solar cell having the configuration shown in FIG. Intermediate layer 4 in Comparative Example 1 is constituted only by n-type SiO X layer, as 70nm thickness of the n-type SiO X layer, other film forming conditions were the same as in Example 1. In this comparative example, since the intermediate layer composed of one n-type SiO x layer is used, the reflectance is limited to about 70% at the maximum with respect to the wavelength region of light absorbed by the front photoelectric conversion unit. The light transmittance is low even in the wavelength region of light absorbed by the conversion unit, and the selective reflection of incident light cannot be performed sufficiently. While in Comparative Example 1 the film thickness of the n-type SiO X layer to increase the light reflectance in a short wavelength region by thinning, and it is possible to higher light transmittance in a long wavelength region, n-type SiO X When the reflectance is adjusted by thinning the layer, a phenomenon occurs in which light in the wavelength region of about 500 nm to 700 nm is not sufficiently reflected to the front photoelectric conversion unit side, which is sufficient for the wavelength region of light absorbed by the front photoelectric conversion unit. It cannot be an intermediate layer with selectivity.

このような実施例1の多接合型薄膜シリコン太陽電池に入射光としてAM1.5の光を100mW/cm2の光照度で照射したときの短絡電流密度は、比較例1では約12〜13mA/cm2であったのに対し、実施例1では約13〜14mA/cm2と10%程度の短絡電流密度の向上が見られ、変換効率も短絡電流密度の向上と同じく10%程度向上する事が確認された。   The short-circuit current density when the light of AM1.5 is irradiated to the multi-junction thin-film silicon solar cell of Example 1 as incident light at a light illuminance of 100 mW / cm 2 is about 12 to 13 mA / cm 2 in Comparative Example 1. In contrast, in Example 1, the short-circuit current density was improved by about 13 to 14 mA / cm 2 and about 10%, and it was confirmed that the conversion efficiency was improved by about 10% as well as the improvement of the short-circuit current density. .

なお、本実施例では導電性SiOX層およびn型μc−Si層の厚さはそれぞれ70nmおよび30nmとして2回繰り返し構造としたが、本繰り返し回数を3回、4回と増加させても、本発明による光反射の選択性を満たす構造であれば同様の効果を有する。また、本発明による導電性SiOX層およびn型μc−Si層の膜厚比は一例であり、前方光電変換ユニットの構成材料の変化や表面形状による反射率の変化に合わせて膜厚比を適切に調整することにより、同様の効果を有する中間層4が形成できる。 In this example, the thickness of the conductive SiO x layer and the n-type μc-Si layer was set to 70 nm and 30 nm, respectively, and the structure was repeated twice. However, even if the number of repetitions is increased to 3 times and 4 times, A structure satisfying the light reflection selectivity according to the present invention has the same effect. In addition, the film thickness ratio of the conductive SiO x layer and the n-type μc-Si layer according to the present invention is an example, and the film thickness ratio is set in accordance with the change of the constituent material of the front photoelectric conversion unit and the change of the reflectance due to the surface shape. By appropriately adjusting, the intermediate layer 4 having the same effect can be formed.

(実施例2および比較例2)
図2を参照して説明された第二の実施の形態に対応して、実施例2としての多接合シリコン太陽電池が作製された。透明基板1にはガラスを用い、透明電極層2にはSnO2を用いた。この際の透明電極層2の膜厚は800nm、シート抵抗は10オーム/□、ヘイズ率は15〜20%とした。この上に、ボロンドープのp型シリコンカーバイド(SiC)層を10nm、ノンドープの非晶質シリコン光電変換層を80nm、リンドープのn型μc−Si層を20nmの膜厚で、それぞれプラズマCVD法により製膜した。これにより、前方光電変換ユニットであるpin接合の非晶質シリコン光電変換ユニット3を形成した。
(Example 2 and Comparative Example 2)
Corresponding to the second embodiment described with reference to FIG. 2, a multi-junction silicon solar cell as Example 2 was fabricated. Glass was used for the transparent substrate 1 and SnO 2 was used for the transparent electrode layer 2. The film thickness of the transparent electrode layer 2 at this time was 800 nm, the sheet resistance was 10 ohm / □, and the haze ratio was 15 to 20%. On top of this, a boron-doped p-type silicon carbide (SiC) layer has a thickness of 10 nm, a non-doped amorphous silicon photoelectric conversion layer has a thickness of 80 nm, and a phosphorus-doped n-type μc-Si layer has a thickness of 20 nm. Filmed. Thereby, the amorphous silicon photoelectric conversion unit 3 of the pin junction which is a front photoelectric conversion unit was formed.

さらに前記前方光電変換ユニット3の上にボロンドープのp型のシリコンカーバイド層を20nm、ノンドープの非晶質シリコン光電変換層を300nm、リンドープのn型微結晶シリコン層を20nmの膜厚で、それぞれプラズマCVD法により製膜した。これにより、中間光電変換ユニットであるpin接合の非晶質シリコン光電変換ユニット7を形成した。   Further, a boron-doped p-type silicon carbide layer having a thickness of 20 nm, a non-doped amorphous silicon photoelectric conversion layer having a thickness of 300 nm, and a phosphorus-doped n-type microcrystalline silicon layer having a thickness of 20 nm are formed on the front photoelectric conversion unit 3. A film was formed by a CVD method. As a result, a pin junction amorphous silicon photoelectric conversion unit 7 as an intermediate photoelectric conversion unit was formed.

さらに非晶質シリコン光電変換ユニット7の上に中間層として導電性SiOX層41を80nm、n型μc−Si層42を35nm、さらにその上に導電性SiOX層43を80nmの膜厚でそれぞれプラズマCVD法により、前記前方光電変換ユニットを構成するn型μc−Si層を製膜したチャンバーと同一のチャンバー内で連続的に製膜することにより中間層4を形成した。 Further, a conductive SiO x layer 41 is formed as an intermediate layer on the amorphous silicon photoelectric conversion unit 7 with a thickness of 80 nm, an n-type μc-Si layer 42 is formed with a thickness of 35 nm, and a conductive SiO x layer 43 is formed thereon with a thickness of 80 nm. The intermediate layer 4 was formed by continuously depositing each of the n-type μc-Si layers constituting the front photoelectric conversion unit in the same chamber as that formed by the plasma CVD method.

導電性SiOX層41および43は、平行平板型高周波プラズマCVD法で堆積した。そのときの製膜条件については、プラズマの励起周波数を13.56MHz、下地温度を160℃、反応室内圧力を6Torrとして形成した。プラズマCVD反応室内に導入される原料ガスとしてSiH4、PH3、B26、CO2、およびH2を用いた。 Conductive SiO X layer 41 and 43, were deposited in a parallel plate type RF plasma CVD method. Regarding the film forming conditions at that time, the plasma excitation frequency was 13.56 MHz, the substrate temperature was 160 ° C., and the pressure in the reaction chamber was 6 Torr. SiH 4 , PH 3 , B 2 H 6 , CO 2 , and H 2 were used as source gases introduced into the plasma CVD reaction chamber.

さらに前記中間層4の上に、ボロンドープのp型微結晶シリコン層を15nm、ノンドープの結晶質シリコン光電変換層を1.4μm、リンドープのn型微結晶シリコン層を20nmの膜厚で、それぞれプラズマCVD法により製膜した。これにより、後方光電変換ユニットであるpin接合の結晶質シリコン光電変換ユニット5を形成した。最後に後方光電変換ユニット5の上に、裏面電極層6としてZnO膜を80nm、Ag膜を300nmの膜厚で、それぞれスパッタ法により形成して、3接合型シリコン系太陽電池を形成した。   Further, on the intermediate layer 4, a boron-doped p-type microcrystalline silicon layer is formed with a thickness of 15 nm, a non-doped crystalline silicon photoelectric conversion layer is formed with a thickness of 1.4 μm, and a phosphorus-doped n-type microcrystalline silicon layer is formed with a thickness of 20 nm. A film was formed by a CVD method. Thereby, the crystalline silicon photoelectric conversion unit 5 of the pin junction which is a back photoelectric conversion unit was formed. Finally, a ZnO film having a thickness of 80 nm and an Ag film having a thickness of 300 nm were formed as the back electrode layer 6 on the rear photoelectric conversion unit 5 by sputtering, thereby forming a three-junction silicon solar cell.

本実施例では3接合型構造となるため、前方光電変換ユニットが吸収する光の波長範囲のみではなく、中間光電変換ユニットが吸収する光の波長範囲の光についても効率的に中間層により反射をする必要があるため、中間層の反射特性としては800nm付近の長波長の領域までの光も効率的に反射する必要がある。本実施例における中間層の反射特性では反射のピークが600nmの波長の光の領域と比較的長い波長の光を反射するように設計されている。このため、実施例中の中間層では700nmの波長の光でも50%以上の光反射特性を有し、光反射の領域は800nm領域まで広がっている。一方で800nm以上の長波長領域の光に対する反射率は低くなるように設計されており、900nm以上の長い波長領域の光に対しては90%以上の高い光透過率を示し、3段タンデム型の多接合太陽電池においても入射光を選択的に反射させて光を有効に活用することが出来、各光電変換ユニットにより生成される短絡電流密度のバランスを保つことが可能である。   In this embodiment, since it has a three-junction structure, not only the wavelength range of light absorbed by the front photoelectric conversion unit but also light in the wavelength range of light absorbed by the intermediate photoelectric conversion unit is efficiently reflected by the intermediate layer. Therefore, it is necessary to efficiently reflect light up to a long wavelength region near 800 nm as the reflection characteristic of the intermediate layer. In the reflection characteristics of the intermediate layer in this embodiment, the reflection peak is designed to reflect light having a wavelength of 600 nm and light having a relatively long wavelength. For this reason, the intermediate layer in the example has a light reflection characteristic of 50% or more even with light having a wavelength of 700 nm, and the light reflection region extends to the 800 nm region. On the other hand, the reflectance for light in the long wavelength region of 800 nm or more is designed to be low, and high light transmittance of 90% or more is shown for light in the long wavelength region of 900 nm or more. Also in the multi-junction solar cell, incident light can be selectively reflected to effectively use the light, and the short-circuit current density generated by each photoelectric conversion unit can be balanced.

同じく図2に示す構成の非晶質シリコン太陽電池を比較例1として作製した。本比較例2では中間層4がn型SiOX層のみで構成されており、前記n型SiOX層の厚さを150nmとして、それ以外の製膜条件は実施例1と同一とした。本比較例では前記のn型SiOX層1層による中間層を用い、且つ前記n型SiOX層の膜厚が厚いため、前方光電変換ユニットが吸収する光の波長領域に対しては反射率が最大でも50%以下となり、かつ後方光電変換ユニットが吸収する光の波長領域に対しても低い光透過率を示すため、入射光の選択的な反射が充分に出来ていない。 Similarly, an amorphous silicon solar cell having the configuration shown in FIG. Intermediate layer 4 in Comparative Example 2 is configured with only n-type SiO X layer, as 150nm and the thickness of the n-type SiO X layer, other film forming conditions were the same as in Example 1. In this comparative example, an intermediate layer composed of one n-type SiO x layer is used, and the thickness of the n-type SiO x layer is thick. Is 50% or less at the maximum, and shows a low light transmittance with respect to the wavelength region of light absorbed by the rear photoelectric conversion unit, so that the selective reflection of incident light is not sufficiently performed.

このような実施例2の3接合型シリコン系太陽電池に入射光としてAM1.5の光を100mW/cm2の光照度で照射したときの短絡電流密度は、比較例1では約6.5mA/cm2であったのに対し、実施例1では約7.1mA/cm2と10%程度の短絡電流密度の向上が見られ、変換効率も短絡電流密度の向上と同じく10%程度向上し、比較例2では9.5%程度であった変換効率が実施例2では10.8%程度と大きく向上する事が確認された。   The short-circuit current density when the AM 1.5 light as the incident light is irradiated with the light illuminance of 100 mW / cm 2 to the three-junction silicon solar cell of Example 2 is about 6.5 mA / cm 2 in Comparative Example 1. On the other hand, in Example 1, the short circuit current density was improved by about 7.1 mA / cm 2 and about 10%, and the conversion efficiency was improved by about 10% as well as the short circuit current density. It was confirmed that the conversion efficiency of about 9.5% was greatly improved to about 10.8% in Example 2.

本発明の1つの実施形態に係る多接合型シリコン系光電変換装置の構造断面図。1 is a structural cross-sectional view of a multi-junction silicon-based photoelectric conversion device according to one embodiment of the present invention. 本発明の別な実施形態に係る3接合型シリコン系光電変換装置の構造断面図。The structure sectional view of the 3 junction type silicon system photoelectric conversion device concerning another embodiment of the present invention.

符号の説明Explanation of symbols

1 透明基板
2 透明電極層
3 前方光電変換ユニット
4 中間層
41 導電性SiOX
42 n型μc−Si層
43 導電性SiOX
5 後方光電変換ユニット
6 裏面電極層
7 中間光電変換ユニット
Front photoelectric conversion unit 1 transparent substrate 2 transparent electrode layer 3 4 intermediate layer 41 conductive SiO X layer 42 n-type [mu] c-Si layer 43 conductive SiO X layer 5 back photoelectric conversion unit 6 back electrode layer 7 intermediate photovoltaic unit

Claims (5)

中間層を介して直列接続されたシリコン系薄膜光電変換ユニットを備えた多接合型シリコン系薄膜光電変換装置であって、該中間層はプラズマCVD法で製膜された1以上のn型μc−Si層と2以上の導電性SiOX層とからなり、該n型μc−Si層の両方の面が該導電性SiOX層と接するように配置された多層膜であることを特徴とする多接合型シリコン系薄膜光電変換装置。 A multi-junction silicon-based thin film photoelectric conversion device including silicon-based thin film photoelectric conversion units connected in series via an intermediate layer, wherein the intermediate layer is formed of one or more n-type μc− films formed by a plasma CVD method. A multi-layer film comprising a Si layer and two or more conductive SiO x layers, wherein both surfaces of the n-type μc-Si layer are disposed in contact with the conductive SiO x layer. Junction silicon thin film photoelectric conversion device. 前記シリコン系薄膜光電変換ユニットがp型層、i型層、及びn型層の順に積層されてなり、さらに、前記中間層が続けてn型μc−Si層から積層されてなることを特徴とする請求項1に記載の多接合型シリコン系薄膜光電変換装置。   The silicon-based thin film photoelectric conversion unit is laminated in the order of a p-type layer, an i-type layer, and an n-type layer, and the intermediate layer is successively laminated from an n-type μc-Si layer. The multi-junction silicon-based thin film photoelectric conversion device according to claim 1. 前記中間層における導電性SiOX層が結晶構造を有するSiを含むことを特徴とする請求項1および2のいずれかに記載の多接合型シリコン系薄膜光電変換装置。 The multi-junction silicon-based thin film photoelectric conversion device according to claim 1, wherein the conductive SiO x layer in the intermediate layer contains Si having a crystal structure. 前記中間層を同一チャンバー内で連続して製膜することを特徴とする請求項1、2及び3のいずれかに記載の多接合型シリコン系薄膜光電変換装置の製造方法。   4. The method of manufacturing a multi-junction silicon-based thin film photoelectric conversion device according to claim 1, wherein the intermediate layer is continuously formed in the same chamber. 前記中間層における導電性SiOX層の製膜はシラン等の反応ガスにCO2ガスを導入することにより形成する多接合型シリコン系薄膜光電変換装置の製造方法であって、CO2ガスのチャンバー内への導入量を連続的に変えることによって前記中間層を形成することを特徴とする請求項1から4のいずれかに記載の多接合型シリコン系薄膜光電変換装置の製造方法。 The formation of the conductive SiO x layer in the intermediate layer is a method for manufacturing a multi-junction silicon-based thin film photoelectric conversion device formed by introducing CO 2 gas into a reaction gas such as silane, and a CO 2 gas chamber The method for producing a multi-junction silicon-based thin film photoelectric conversion device according to claim 1, wherein the intermediate layer is formed by continuously changing the amount introduced into the inside.
JP2005138990A 2005-05-11 2005-05-11 Multi-junction silicone thin film photoelectric converter and its manufacturing method Pending JP2006319068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005138990A JP2006319068A (en) 2005-05-11 2005-05-11 Multi-junction silicone thin film photoelectric converter and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005138990A JP2006319068A (en) 2005-05-11 2005-05-11 Multi-junction silicone thin film photoelectric converter and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006319068A true JP2006319068A (en) 2006-11-24

Family

ID=37539479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005138990A Pending JP2006319068A (en) 2005-05-11 2005-05-11 Multi-junction silicone thin film photoelectric converter and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006319068A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270562A (en) * 2007-04-20 2008-11-06 Sanyo Electric Co Ltd Multi-junction type solar cell
JP2009170727A (en) * 2008-01-17 2009-07-30 Kaneka Corp Multi-junction silicon thin-film photoelectric conversion device
JP2009231505A (en) * 2008-03-21 2009-10-08 Sanyo Electric Co Ltd Solar battery
US7648892B2 (en) 2006-06-23 2010-01-19 Applied Materials, Inc. Methods and apparatus for depositing a microcrystalline silicon film for photovoltaic device
CN101677113A (en) * 2008-09-11 2010-03-24 应用材料股份有限公司 Microcrystalline silicon alloys for thin film and wafer based solar applications
JP2010087205A (en) * 2008-09-30 2010-04-15 Kaneka Corp Multi-junction thin-film photoelectric converter
JP2010123944A (en) * 2008-11-21 2010-06-03 Ind Technol Res Inst Solar cell having reflective structure
US7741144B2 (en) 2007-11-02 2010-06-22 Applied Materials, Inc. Plasma treatment between deposition processes
US7875486B2 (en) 2007-07-10 2011-01-25 Applied Materials, Inc. Solar cells and methods and apparatuses for forming the same including I-layer and N-layer chamber cleaning
WO2011033885A1 (en) * 2009-09-17 2011-03-24 三菱重工業株式会社 Photoelectric conversion device
JP2011071278A (en) * 2009-09-25 2011-04-07 Mitsubishi Electric Corp Photoelectric converting device and method for manufacturing the same
CN102024874A (en) * 2009-09-11 2011-04-20 韩国铁钢株式会社 Photovoltaic device and method for manufacturing the same
CN102024873A (en) * 2009-09-11 2011-04-20 韩国铁钢株式会社 Photovoltaic device and method for manufacturing the same
JP2011096963A (en) * 2009-11-02 2011-05-12 Kaneka Corp Method of manufacturing multi-junction solar cell
DE112009002056T5 (en) 2008-08-27 2011-07-14 Mitsubishi Materials Corporation Transparent electrically conductive film for solar cells, composition for transparent electrically conductive films and multiple solar cells
WO2011105170A1 (en) * 2010-02-26 2011-09-01 三洋電機株式会社 Solar cell
JP2011176164A (en) * 2010-02-25 2011-09-08 Kaneka Corp Stacked thin-film photoelectric conversion device
JP2011216586A (en) * 2010-03-31 2011-10-27 Sharp Corp Laminated photoelectric conversion device and method of manufacturing the same
WO2011148724A1 (en) 2010-05-26 2011-12-01 シャープ株式会社 Intermediate layer for laminate-type photoelectric conversion device, laminate-type photoelectric conversion device, and process for production of laminate-type photoelectric conversion device
JP2012134440A (en) * 2010-12-21 2012-07-12 Lg Electronics Inc Thin film solar cell
WO2013002102A1 (en) * 2011-06-29 2013-01-03 三洋電機株式会社 Photoelectric conversion device
WO2013029921A1 (en) * 2011-08-26 2013-03-07 Robert Bosch Gmbh Thin-film solar cell
JP5518045B2 (en) * 2009-03-18 2014-06-11 三菱電機株式会社 Photoelectric conversion device and manufacturing method thereof
US8895842B2 (en) 2008-08-29 2014-11-25 Applied Materials, Inc. High quality TCO-silicon interface contact structure for high efficiency thin film silicon solar cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120476A (en) * 1986-11-10 1988-05-24 Sanyo Electric Co Ltd Photovolatic device
JPH06267868A (en) * 1993-03-16 1994-09-22 Fuji Electric Co Ltd Formation of silicon oxide semiconductor film
JP2001308354A (en) * 2000-04-24 2001-11-02 Sharp Corp Stacked solar cell
JP2003258279A (en) * 2002-03-04 2003-09-12 Fuji Electric Co Ltd Multi-junction thin film solar cell and manufacturing thereof
JP2005045129A (en) * 2003-07-24 2005-02-17 Kaneka Corp Stacked photoelectric converter device and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120476A (en) * 1986-11-10 1988-05-24 Sanyo Electric Co Ltd Photovolatic device
JPH06267868A (en) * 1993-03-16 1994-09-22 Fuji Electric Co Ltd Formation of silicon oxide semiconductor film
JP2001308354A (en) * 2000-04-24 2001-11-02 Sharp Corp Stacked solar cell
JP2003258279A (en) * 2002-03-04 2003-09-12 Fuji Electric Co Ltd Multi-junction thin film solar cell and manufacturing thereof
JP2005045129A (en) * 2003-07-24 2005-02-17 Kaneka Corp Stacked photoelectric converter device and its manufacturing method

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7648892B2 (en) 2006-06-23 2010-01-19 Applied Materials, Inc. Methods and apparatus for depositing a microcrystalline silicon film for photovoltaic device
US7655542B2 (en) 2006-06-23 2010-02-02 Applied Materials, Inc. Methods and apparatus for depositing a microcrystalline silicon film for photovoltaic device
US7923354B2 (en) 2006-06-23 2011-04-12 Applied Materials, Inc. Methods for depositing a microcrystalline silicon film for a photovoltaic device
JP2008270562A (en) * 2007-04-20 2008-11-06 Sanyo Electric Co Ltd Multi-junction type solar cell
US7875486B2 (en) 2007-07-10 2011-01-25 Applied Materials, Inc. Solar cells and methods and apparatuses for forming the same including I-layer and N-layer chamber cleaning
US7741144B2 (en) 2007-11-02 2010-06-22 Applied Materials, Inc. Plasma treatment between deposition processes
JP2009170727A (en) * 2008-01-17 2009-07-30 Kaneka Corp Multi-junction silicon thin-film photoelectric conversion device
JP2009231505A (en) * 2008-03-21 2009-10-08 Sanyo Electric Co Ltd Solar battery
DE112009002056T5 (en) 2008-08-27 2011-07-14 Mitsubishi Materials Corporation Transparent electrically conductive film for solar cells, composition for transparent electrically conductive films and multiple solar cells
US8895842B2 (en) 2008-08-29 2014-11-25 Applied Materials, Inc. High quality TCO-silicon interface contact structure for high efficiency thin film silicon solar cells
CN101677113A (en) * 2008-09-11 2010-03-24 应用材料股份有限公司 Microcrystalline silicon alloys for thin film and wafer based solar applications
JP2010067973A (en) * 2008-09-11 2010-03-25 Applied Materials Inc Microcrystalline silicon alloys for thin film, and wafer based solar applications
JP2010087205A (en) * 2008-09-30 2010-04-15 Kaneka Corp Multi-junction thin-film photoelectric converter
JP2010123944A (en) * 2008-11-21 2010-06-03 Ind Technol Res Inst Solar cell having reflective structure
US8766085B2 (en) 2009-03-18 2014-07-01 Mitsubishi Electric Corporation Photoelectric conversion device and method of manufacturing the same
JP5518045B2 (en) * 2009-03-18 2014-06-11 三菱電機株式会社 Photoelectric conversion device and manufacturing method thereof
CN102024874A (en) * 2009-09-11 2011-04-20 韩国铁钢株式会社 Photovoltaic device and method for manufacturing the same
CN102024873A (en) * 2009-09-11 2011-04-20 韩国铁钢株式会社 Photovoltaic device and method for manufacturing the same
EP2296193A3 (en) * 2009-09-11 2012-10-24 Kisco Photovoltaic device and method for manufacturing the same
EP2296194A3 (en) * 2009-09-11 2014-09-24 Intellectual Discovery Co., Ltd. Photovoltaic Device and Method for Manufacturing the Same
WO2011033885A1 (en) * 2009-09-17 2011-03-24 三菱重工業株式会社 Photoelectric conversion device
JP2011071278A (en) * 2009-09-25 2011-04-07 Mitsubishi Electric Corp Photoelectric converting device and method for manufacturing the same
JP2011096963A (en) * 2009-11-02 2011-05-12 Kaneka Corp Method of manufacturing multi-junction solar cell
JP2011176164A (en) * 2010-02-25 2011-09-08 Kaneka Corp Stacked thin-film photoelectric conversion device
CN102763224A (en) * 2010-02-26 2012-10-31 三洋电机株式会社 Solar cell
JP2011199235A (en) * 2010-02-26 2011-10-06 Sanyo Electric Co Ltd Solar cell
WO2011105170A1 (en) * 2010-02-26 2011-09-01 三洋電機株式会社 Solar cell
JP2011216586A (en) * 2010-03-31 2011-10-27 Sharp Corp Laminated photoelectric conversion device and method of manufacturing the same
JP2011249497A (en) * 2010-05-26 2011-12-08 Sharp Corp Intermediate layer for laminated type photoelectric conversion device, laminated type photoelectric conversion device, and method of manufacturing laminated type photoelectric conversion device
WO2011148724A1 (en) 2010-05-26 2011-12-01 シャープ株式会社 Intermediate layer for laminate-type photoelectric conversion device, laminate-type photoelectric conversion device, and process for production of laminate-type photoelectric conversion device
JP2012134440A (en) * 2010-12-21 2012-07-12 Lg Electronics Inc Thin film solar cell
WO2013002102A1 (en) * 2011-06-29 2013-01-03 三洋電機株式会社 Photoelectric conversion device
WO2013029921A1 (en) * 2011-08-26 2013-03-07 Robert Bosch Gmbh Thin-film solar cell

Similar Documents

Publication Publication Date Title
JP2006319068A (en) Multi-junction silicone thin film photoelectric converter and its manufacturing method
KR101024288B1 (en) Silicon based thin film solar cell
JP4222500B2 (en) Silicon-based thin film photoelectric conversion device
US8410355B2 (en) Thin film photoelectric conversion device having a stacked transparent oxide and carbon intermediate layer
JP5069791B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
EP2469609A1 (en) Thin film solar cell
WO2006057160A1 (en) Thin film photoelectric converter
JP2008270562A (en) Multi-junction type solar cell
JP2010087205A (en) Multi-junction thin-film photoelectric converter
JP5400322B2 (en) Silicon-based thin film solar cell and method for manufacturing the same
JP5291633B2 (en) Silicon-based thin film photoelectric conversion device and manufacturing method thereof
JP2002118273A (en) Integrated hybrid thin film photoelectric conversion device
JP2007305826A (en) Silicon-based thin film solar cell
JP4025744B2 (en) Manufacturing method of stacked photoelectric conversion device
JP5180574B2 (en) Multi-junction silicon-based thin film photoelectric conversion device
JP5197845B2 (en) Thin film solar cell and manufacturing method thereof
JP2009141059A (en) Thin-film photoelectric converter
JP5180640B2 (en) Multi-junction silicon-based thin film photoelectric conversion device
JP5905824B2 (en) Parallel photoelectric conversion laminated device and series integrated photoelectric conversion device
JP2010272651A (en) Thin-film solar cell and method of manufacturing the same
JP5542025B2 (en) Photoelectric conversion device
JP5371284B2 (en) Thin film photoelectric converter
JP4283849B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
JP5409675B2 (en) Thin film solar cell and manufacturing method thereof
JP2010080672A (en) Photoelectric conversion device and method for manufacturing photoelectric conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110609

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120918