JPH06267868A - Formation of silicon oxide semiconductor film - Google Patents

Formation of silicon oxide semiconductor film

Info

Publication number
JPH06267868A
JPH06267868A JP5054433A JP5443393A JPH06267868A JP H06267868 A JPH06267868 A JP H06267868A JP 5054433 A JP5054433 A JP 5054433A JP 5443393 A JP5443393 A JP 5443393A JP H06267868 A JPH06267868 A JP H06267868A
Authority
JP
Japan
Prior art keywords
semiconductor film
type
silicon oxide
oxide semiconductor
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5054433A
Other languages
Japanese (ja)
Other versions
JP3047666B2 (en
Inventor
Shitsuchiyanuritsutsu Poopon
シッチャヌリッツ ポーポン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5054433A priority Critical patent/JP3047666B2/en
Priority to DE4408791A priority patent/DE4408791B4/en
Priority to US08/213,717 priority patent/US5507881A/en
Publication of JPH06267868A publication Critical patent/JPH06267868A/en
Application granted granted Critical
Publication of JP3047666B2 publication Critical patent/JP3047666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To industrially form a silicon oxide semiconductor film having a low light absorption coefficient and high photoconductivity by resolving a gaseous raw material which contains at least SiH4, CO2, and H2 in a state where CO2/(SiH4+CO2) becomes a specific value. CONSTITUTION:In the method which is used for forming an SiO semiconductor film composed of a-SiO2 containing a microcrystalline layer of Si, the SiO semiconductor film is formed by resolving a gaseous raw material which contains at least SiH4, CO2, and H2 in a state where CO2/(SiH4+CO2) becomes <=0.6. At the time of decomposing the mixed gas, it is effective to generate glow discharge in the gas at a high-frequency power density of >=40mW/cm<2>. The formed SiO semiconductor film has a absorption coefficient <=10<6>cm<-1> against light having a wavelength of >=340nm and photoconductivity of >=10<-6>S/cm. In addition, it is effective, to use a p-type a-SiO layer 3 or n-type a-Si layer 6 obtained by mixing a doping gas with the gaseous raw material as the window layer of a solar battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非晶質シリコン (以下
a−Siと記す) 系太陽電池の窓層として適しているシリ
コンオキサイド半導体膜の成膜方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a silicon oxide semiconductor film suitable as a window layer for an amorphous silicon (hereinafter referred to as a-Si) solar cell.

【0002】[0002]

【従来の技術】原料ガスのグロー放電分解や光CVD法
により形成されるa−Siを主材料とした太陽電池は薄
膜、大面積化が容易という特長をもち、低コスト太陽電
池として期待されている。この種の太陽電池の構造とし
てはpin接合を有するpin型a−Si太陽電池が一般
的である。図2はこのような太陽電池の構造を示し、ガ
ラス基板1の上に、透明電極2、p形a−Si層3、p/
i界面層4、i質a−Si層5、n形a−Si層6、金属電
極7を順次積層することにより作製される。この太陽電
池は、ガラス基板1を通して入射する光により発電が起
こる。
2. Description of the Related Art A solar cell mainly composed of a-Si formed by glow discharge decomposition of a raw material gas or an optical CVD method has a feature that it can be easily formed into a thin film and has a large area, and is expected as a low cost solar cell. There is. As a structure of this type of solar cell, a pin-type a-Si solar cell having a pin junction is generally used. FIG. 2 shows the structure of such a solar cell, in which a transparent electrode 2, a p-type a-Si layer 3, p /
The i-interface layer 4, the i-type a-Si layer 5, the n-type a-Si layer 6, and the metal electrode 7 are sequentially laminated. In this solar cell, power is generated by light incident through the glass substrate 1.

【0003】ここで、発電に寄与するフォトキャリアは
主にi層で発生し、pおよびn層はデッドレイヤーにな
っている。従って、図2のようにp層3から光が入射す
る太陽電池では、窓層にあたるp層の光吸収係数を低く
し、できるだけ多くの光がi層5まで到達できるように
することが出力を増加させる上で重要である。そのため
には、p層の光学ギャップEg を増加させて光学吸収ロ
スを減少させることが有効である。このような目的から
p形a−Si層に、例えば特開昭56−64476 号公報などで
公知のように炭素原子を添加したり、特開昭57−181176
号公報で公知のように窒素原子を添加したり、特開昭56
−142680号公報で公知のように酸素原子を添加したり、
または特開昭58−196064号公報あるいは特開昭61−2420
85号公報で公知のように酸素原子と炭素原子を添加した
りすることが試みられている。
Here, photocarriers that contribute to power generation are mainly generated in the i layer, and the p and n layers are dead layers. Therefore, in a solar cell in which light is incident from the p-layer 3 as shown in FIG. 2, it is necessary to reduce the light absorption coefficient of the p-layer, which is the window layer, so that as much light as possible can reach the i-layer 5. It is important to increase. For that purpose, it is effective to increase the optical gap Eg of the p layer to reduce the optical absorption loss. For this purpose, carbon atoms are added to the p-type a-Si layer, as known from JP-A-56-64476, or JP-A-57-181176.
Nitrogen atoms are added as is known in Japanese Patent Publication No.
Addition of oxygen atom as known in Japanese Patent Publication No. 142680,
Alternatively, JP-A-58-196064 or JP-A-61-2420
It is attempted to add an oxygen atom and a carbon atom, as is known in Japanese Patent Publication No. 85.

【0004】また、最近では、特開昭64−51618 号公報
に示すようにECR−CVD法により、あるいはTechni
cal Digest of the International PVSEC-3 (1987)p.49
に記載されているようにプラズマCVD法により、炭素
原子を添加した非晶質シリコンカーバイド (以下a−Si
Cと記す) 膜に微結晶相を含ませることに成功してい
る。このような膜は、a−SiC相にSiの微結晶相を含む
ことにより、光導電率が高くなり、電気的特性が良好で
ある。
Recently, as shown in Japanese Patent Laid-Open No. 64-51618, the ECR-CVD method is used, or
cal Digest of the International PVSEC-3 (1987) p.49
The amorphous silicon carbide (hereinafter referred to as a-Si) added with carbon atoms by the plasma CVD method as described in
It has succeeded in including a microcrystalline phase in the film. Such a film has a high photoconductivity and good electrical characteristics due to the inclusion of a Si microcrystalline phase in the a-SiC phase.

【0005】[0005]

【発明が解決しようとする課題】上記のようにa−Si系
膜にSiの微結晶相を含ませることは、ワイドギャップ化
のために他元素原子を添加した場合に低下する光導電率
を高めるので、太陽電池窓層としての特性を向上させる
のに有望であるが、公知のa−SiC膜の微結晶化する方
法は、微結晶化のための成膜条件の範囲が狭く、付着率
を高めるのが困難であるなど工業化には難点がある。
The inclusion of the Si microcrystalline phase in the a-Si-based film as described above reduces the photoconductivity that decreases when other element atoms are added for widening the gap. Since it is increased, it is promising for improving the characteristics as a solar cell window layer, but the known method for microcrystallizing an a-SiC film has a narrow range of film-forming conditions for microcrystallization, and the deposition rate is small. There is a problem in industrialization because it is difficult to increase

【0006】本発明は、a−Si系膜のうち、酸素を含む
非晶質シリコンオキサイド (以下a−SiOと記す) 膜を
微結晶化した、低光吸収係数で高光導電率のシリコンオ
キサイド (以下SiOと記す) 半導体膜の工業化に適した
成膜方法を提供することにある。
According to the present invention, an amorphous silicon oxide film containing oxygen (hereinafter referred to as a-SiO) film among a-Si films is microcrystallized, which is a silicon oxide film having a low photoabsorption coefficient and a high photoconductivity. It is to provide a film forming method suitable for industrialization of a semiconductor film.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明のSiの微結晶層を含むa−SiOよりなるSi
O半導体膜の成膜方法は、少なくともSiH4 、CO2
よびH2 を含み、CO 2 / (SiH4 +CO2 ) の値が0.
6以下である原料ガスの分解によるものとする。その場
合、混合ガスの分解のために40mW/cm2 以上の高周波
パワー密度でグロー放電を原料ガス中に発生させること
が有効である。また、得られたSiO半導体膜の340nm 以
上の波長の光の吸収係数が106 cm-1以下であり、光導電
率が10-6S/cm以上である。また、原料ガスにドーピン
グガスを混合して得られたp形あるいはn形の膜を太陽
電池の窓層として用いることが有効である。
[Means for Solving the Problems]
In order to achieve the above, Si made of a-SiO containing the Si microcrystalline layer of the present invention is used.
The method for forming the O semiconductor film is at least SiH.Four, CO2Oh
And H2Including CO 2/ (SiHFour+ CO2) Has a value of 0.
It is assumed that the raw material gas of 6 or less is decomposed. On the spot
40mW / cm for decomposition of mixed gas2Higher frequency
Generation of glow discharge in raw material gas with power density
Is effective. Also, the thickness of the obtained SiO semiconductor film of 340 nm or less
The absorption coefficient of light of the upper wavelength is 106cm-1Below, photoconductive
Rate 10-6S / cm or more. In addition, doping the source gas
The p-type or n-type film obtained by mixing the gas with the sun
It is effective to use it as a window layer of a battery.

【0008】[0008]

【作用】SiH4 、CO2 、H2 を含む原料ガスを用いて
太陽電池の窓層を形成することは、前掲の特開昭61−24
2085号公報で公知であるが、その場合のガス流量比CO
2 / (SiH4 +CO2 ) の値は0.83であり、得られたa
−Si膜は、酸素原子および炭素原子を含む。これに対
し、CO2 / (SiH4 +CO2 ) を0.6以下とした場
合、特に高周波パワー密度40mW/cm2 以上でのグロー
放電分解により得られる膜では、炭素量は検出限界以下
であり、微結晶化したSi層とa−SiO相とが混在してい
るSiO膜となって、10-6S/cm以上の高い光導電率で高
い光吸収係数を示す。
[Function] SiHFour, CO2, H2Using source gas containing
The formation of the window layer of the solar cell is disclosed in the above-mentioned JP-A-61-24.
As disclosed in Japanese Patent No. 2085, the gas flow rate ratio CO in that case is
2/ (SiHFour+ CO2) Is 0.83 and the obtained a
The -Si film contains oxygen atoms and carbon atoms. Against this
And CO2/ (SiHFour+ CO2) Is less than 0.6
Especially high frequency power density 40mW / cm2Glow over
In the film obtained by discharge decomposition, the carbon content is below the detection limit.
And the microcrystallized Si layer and the a-SiO phase are mixed.
10-6High photoconductivity above S / cm
It shows the optical absorption coefficient.

【0009】[0009]

【実施例】SiH4 、CO2 、H2 を混合し、ドーピング
ガスとしてB2 6 あるいはPH 3 を添加し、各ガスの
流量比を変化させて、次の成膜条件でp形およびn形の
SiO膜を形成した。 CO2 / (SiH4 +CO2 ) 0〜0.6 H2 /SiH4 160〜320 B2 6 /SiH4 またはPH3 /SiH4 0.08 基板温度 150 ℃ 圧 力 0.5Torr 高周波パワー密度 50 mW/cm2 図3は、ドーピングガスとしてB2 6 を添加して成膜
したp形の膜における340nm 〜500nm の波長の光に対す
る吸収係数のガス流量比CO2 / (SiH4 +CO2 ) 依
存性を表している。吸収係数は、短い波長の光に対して
も106 cm-3以下であり、波長が長くなると減少し、また
CO2 流量比が多くなるにつれて減少してくることがわ
かった。図4は、ドーピングガスとしてPH3 を添加し
て成膜したn形の膜における吸収係数のガス流量比依存
性を表しており、p形膜と同様の傾向を示す。形成され
たP形およびn形膜をESCAで分析したところ、混合
するCO2 の流量比の増加に伴って酸素量が増えてくる
ことが確認された。そして、酸素量は25〜40原子%であ
るのに対し、炭素量は1%以下の検出限界外になってい
た。
[Example] SiHFour, CO2, H2Mixing and doping
B as gas2H6Or PH 3Of each gas
By changing the flow rate ratio, p-type and n-type
A SiO film was formed. CO2/ (SiHFour+ CO2) 0-0.6 H2/ SiHFour 160 ~ 320 B2H6/ SiHFourOr PH3/ SiHFour 0.08 Substrate temperature 150 ℃ Pressure 0.5 Torr High frequency power density 50 mW / cm2 FIG. 3 shows that B is used as a doping gas.2H6Film formation by adding
The light of the wavelength of 340nm-500nm in the formed p-type film
Absorption coefficient gas flow ratio CO2/ (SiHFour+ CO2)
It represents the existence. Absorption coefficient is for short wavelength light
Also 106cm-3And decreases with increasing wavelength, and
CO2It can be seen that it decreases as the flow rate ratio increases.
won. FIG. 4 shows that PH is used as a doping gas.3Added
Gas flow rate ratio dependence of absorption coefficient in n-type film
And shows the same tendency as the p-type film. Formed
When the P-type and n-type films were analyzed by ESCA,
CO2Oxygen amount increases with increasing flow rate ratio
It was confirmed. And the amount of oxygen is 25-40 atom%.
However, the carbon content is below the detection limit of 1% or less.
It was

【0010】図5は、光導電率のガス流量比依存性を示
し、CO2 流量の増加と共に光導電率σphが低くなり、
線51で示すn形の方が線52で示すp形より光導電率が高
いということがわかった。そして、光導電率を10-6S/
cm以上に抑えるには流量比CO2 / (SiH4 +CO2 )
を0.6以下とすることが必要である。このようにして得
られたSiO膜についてラマン散乱を測定したところ、ラ
マンスペクトルにSi結晶の存在を示す530 cm-1付近のピ
ークが存在し、微結晶化したSi相とa−SiO相が混在し
ていることが確認された。また、CO2 流量比の増加と
共に、530 cm-1付近のピークの強度が減少してくること
が確認された。
FIG. 5 shows the dependence of the photoconductivity on the gas flow rate ratio, in which the photoconductivity σ ph decreases as the CO 2 flow rate increases.
It has been found that the n-type shown by line 51 has a higher photoconductivity than the p-type shown by line 52. And, the photoconductivity is 10 −6 S /
Flow rate ratio CO 2 / (SiH 4 + CO 2 )
Should be 0.6 or less. Raman scattering of the thus-obtained SiO film was measured. As a result, a Raman spectrum showed a peak near 530 cm −1 indicating the presence of Si crystals, and the microcrystallized Si phase and a-SiO phase were mixed. It was confirmed that It was also confirmed that the intensity of the peak around 530 cm -1 decreased as the CO 2 flow rate ratio increased.

【0011】図1は、光導電率σphが太陽電池の窓層と
して用いることのできる最低限である10-6S/cm付近に
ある本発明の実施例によるSiO膜の吸収係数を従来のp
形a−SiO膜と比較したもので、線11に示す微結晶相を
含むa−SiO膜の吸収係数は、広い波長域にわたって線
12に示す微結晶相を含まないa−SiO膜の吸収係数の1
/3になっており、同様な特性をもつn形膜と共に太陽
電池の窓層の材料として有望であることがわかった。
FIG. 1 shows the absorption coefficient of a conventional SiO film having a photoconductivity σ ph in the vicinity of 10 -6 S / cm, which is the minimum value that can be used as a window layer of a solar cell. p
Compared with the a-SiO film, the absorption coefficient of the a-SiO film containing the microcrystalline phase shown by line 11 shows that the absorption coefficient is linear over a wide wavelength range.
1 of the absorption coefficient of the a-SiO film not containing the microcrystalline phase shown in 12
It is / 3, and it has been found that it is promising as a material for a window layer of a solar cell together with an n-type film having similar characteristics.

【0012】また、CO2 の代わりにC2 2 を用い、
原料ガス以外は上記の実施例と同一の条件で成膜したと
ころ、得られた膜の炭素の量は20原子%と少ないにもか
かわらず、ラマンスペクトルはSi結晶相の存在を示す53
0 cm-1付近のピークが見られず、微結晶化していないこ
とが確認された。このことから、酸素原子と比較して炭
素原子の方がシリコンの微結晶化を妨げると考えられ、
ワイドギャップ化で吸収係数の減少が見られても導電率
の低下により、太陽電池の窓層の材料として不適当であ
ることがわかった。
Also, C 2 H 2 is used instead of CO 2 ,
When a film was formed under the same conditions as in the above example except for the raw material gas, the Raman spectrum showed the presence of the Si crystal phase although the amount of carbon in the obtained film was as small as 20 atomic%.
No peak near 0 cm -1 was observed, confirming that no microcrystallization was observed. From this, it is considered that carbon atoms hinder microcrystallization of silicon as compared with oxygen atoms,
It was found that the material is not suitable as the material for the window layer of the solar cell due to the decrease in conductivity even though the absorption coefficient is decreased due to the widening of the gap.

【0013】[0013]

【発明の効果】本発明によれば、混合比を低くしたCO
2 を酸素源として用い、SiH4 、H2との混合ガスによ
りa−SiOを成膜することにより、炭素を含まず、Si微
結晶相を含んだa−SiO相からなるSiO膜を成膜するこ
とができた。この結果、酸素原子によりワイドギャップ
化されて低吸収係数であり、かつ微結晶相の存在により
導電率の高いa−Si系膜を得ることができ、p形あるい
はn形の窓層としてa−Si系太陽電池に極めて有効に用
いることができる。
According to the present invention, CO having a low mixing ratio is used.
2 is used as an oxygen source, and a-SiO film is formed by a mixed gas of SiH 4 and H 2 to form a SiO film composed of a-SiO phase containing no carbon and containing Si microcrystalline phase. We were able to. As a result, it is possible to obtain an a-Si-based film which has a wide absorption band due to oxygen atoms and has a low absorption coefficient and which has a high conductivity due to the presence of a microcrystalline phase. It can be used very effectively for Si-based solar cells.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例により成膜されたp形SiO膜
と従来のp形a−SiO膜との吸収係数と光エネルギーと
の関係線図
FIG. 1 is a diagram showing the relationship between the absorption coefficient and light energy of a p-type SiO film formed according to an embodiment of the present invention and a conventional p-type a-SiO film.

【図2】本発明により成膜されるp形SiO膜を用いるこ
とのできる太陽電池の断面図
FIG. 2 is a sectional view of a solar cell in which a p-type SiO 2 film formed according to the present invention can be used.

【図3】本発明の一実施例により成膜されたp形SiO膜
の成膜時のCO2 ガス流量比をパラメータとした吸収係
数と光エネルギーとの関係線図
FIG. 3 is a diagram showing the relationship between the absorption coefficient and the light energy with the CO 2 gas flow rate ratio as a parameter when forming a p-type SiO 2 film formed according to an embodiment of the present invention.

【図4】本発明の別の実施例により成膜されたn形SiO
膜の成膜時のCO2 ガス流量比をパラメータとした吸収
係数と光エネルギーとの関係線図
FIG. 4 is an n-type SiO film deposited according to another embodiment of the present invention.
Diagram of relationship between absorption coefficient and light energy with CO 2 gas flow rate ratio as parameter during film formation

【図5】本発明の実施例により成膜されたp形およびn
形SiO膜の光導電率とCO2 ガス流量比との関係線図
FIG. 5: p-type and n deposited according to an embodiment of the invention
Diagram of the relationship between the photoconductivity and the flow rate ratio of CO 2 gas in the SiO 2 film

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 透明電極 3 p形a−Si層 4 p/i界面層 5 i質a−Si層 6 n形a−Si層 7 金属電極 1 glass substrate 2 transparent electrode 3 p-type a-Si layer 4 p / i interface layer 5 i-type a-Si layer 6 n-type a-Si layer 7 metal electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】少なくともSiH4 、CO2 およびH2 を含
み、CO2 / (SiH 4 +CO2 ) の値が0.6以下である
原料ガスの分解によることを特徴とするシリコンの微結
晶相を含む非晶質シリコンオキサイドよりなるシリコン
オキサイド半導体膜の成膜方法。
1. At least SiHFour, CO2And H2Including
Mi, CO2/ (SiH Four+ CO2) Is less than or equal to 0.6
Fine silicon formation characterized by decomposition of raw material gas
Silicon made of amorphous silicon oxide containing crystal phase
Method for forming oxide semiconductor film.
【請求項2】混合ガスの分解のために40mW/cm以上の
高周波パワー密度で原料ガス中にグロー放電を発生させ
る請求項1記載のシリコンオキサイド半導体膜の成膜方
法。
2. The method for forming a silicon oxide semiconductor film according to claim 1, wherein glow discharge is generated in the raw material gas at a high frequency power density of 40 mW / cm or more for decomposing the mixed gas.
【請求項3】得られた膜の340nm 以上の波長の光に対す
る吸収係数が106 cm -1以下である請求項1あるいは2記
載のシリコンオキサイド半導体膜の成膜方法。
3. The obtained film is applied to light having a wavelength of 340 nm or more.
Absorption coefficient is 106cm -1The following are claims 1 and 2
A method for forming a silicon oxide semiconductor film according to claim 1.
【請求項4】得られた膜の光導電率が10-6S/cm以上で
ある請求項1、2あるいは3記載のシリコンオキサイド
半導体膜の成膜方法。
4. The method for forming a silicon oxide semiconductor film according to claim 1, wherein the photoconductivity of the obtained film is 10 −6 S / cm or more.
【請求項5】原料ガスにドーピングガスを混合して得ら
れたp形あるいはn形の膜を太陽電池の窓層として用い
る請求項1、2、3あるいは4記載のシリコンオキサイ
ド半導体膜の成膜方法。
5. A silicon oxide semiconductor film according to claim 1, wherein a p-type or n-type film obtained by mixing a source gas with a doping gas is used as a window layer of a solar cell. Method.
JP5054433A 1991-09-30 1993-03-16 Method for forming silicon oxide semiconductor film Expired - Fee Related JP3047666B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5054433A JP3047666B2 (en) 1993-03-16 1993-03-16 Method for forming silicon oxide semiconductor film
DE4408791A DE4408791B4 (en) 1993-03-16 1994-03-15 Process for producing a silicon oxide semiconductor film
US08/213,717 US5507881A (en) 1991-09-30 1994-03-16 Thin-film solar cell and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5054433A JP3047666B2 (en) 1993-03-16 1993-03-16 Method for forming silicon oxide semiconductor film

Publications (2)

Publication Number Publication Date
JPH06267868A true JPH06267868A (en) 1994-09-22
JP3047666B2 JP3047666B2 (en) 2000-05-29

Family

ID=12970584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5054433A Expired - Fee Related JP3047666B2 (en) 1991-09-30 1993-03-16 Method for forming silicon oxide semiconductor film

Country Status (2)

Country Link
JP (1) JP3047666B2 (en)
DE (1) DE4408791B4 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011002A1 (en) * 2003-07-24 2005-02-03 Kaneka Corporation Silicon based thin film solar cell
JP2005135987A (en) * 2003-10-28 2005-05-26 Kaneka Corp Stacked photoelectric conversion device and its manufacturing method
EP1650811A1 (en) * 2003-07-24 2006-04-26 Kaneka Corporation Stacked photoelectric converter
JP2006319068A (en) * 2005-05-11 2006-11-24 Kaneka Corp Multi-junction silicone thin film photoelectric converter and its manufacturing method
JP2007243142A (en) * 2006-03-08 2007-09-20 National Science & Technology Development Agency Thin-film solar battery and method for treatment therefor
WO2009069544A1 (en) * 2007-11-30 2009-06-04 Kaneka Corporation Silicon thin film photoelectric conversion device
WO2009100023A2 (en) * 2008-02-01 2009-08-13 President & Fellows Of Harvard College A multijunction photovoltaic device
JP2011249469A (en) * 2010-05-25 2011-12-08 Mitsubishi Electric Corp Method for manufacturing thin film photoelectric conversion device
JP2012023317A (en) * 2010-07-16 2012-02-02 Kaneka Corp Laminated type photoelectric conversion device
US8569106B2 (en) 2009-03-05 2013-10-29 Mitsubishi Electric Corporation Method for manufacturing silicon carbide semiconductor device
US9496308B2 (en) 2011-06-09 2016-11-15 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
US9673250B2 (en) 2013-06-29 2017-06-06 Sionyx, Llc Shallow trench textured regions and associated methods
US9673243B2 (en) 2009-09-17 2017-06-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US9741761B2 (en) 2010-04-21 2017-08-22 Sionyx, Llc Photosensitive imaging devices and associated methods
US9761739B2 (en) 2010-06-18 2017-09-12 Sionyx, Llc High speed photosensitive devices and associated methods
US9762830B2 (en) 2013-02-15 2017-09-12 Sionyx, Llc High dynamic range CMOS image sensor having anti-blooming properties and associated methods
US9905599B2 (en) 2012-03-22 2018-02-27 Sionyx, Llc Pixel isolation elements, devices and associated methods
US9911781B2 (en) 2009-09-17 2018-03-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US9939251B2 (en) 2013-03-15 2018-04-10 Sionyx, Llc Three dimensional imaging utilizing stacked imager devices and associated methods
US10244188B2 (en) 2011-07-13 2019-03-26 Sionyx, Llc Biometric imaging devices and associated methods
US10361083B2 (en) 2004-09-24 2019-07-23 President And Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
US10374109B2 (en) 2001-05-25 2019-08-06 President And Fellows Of Harvard College Silicon-based visible and near-infrared optoelectric devices

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100895977B1 (en) * 2008-04-10 2009-05-07 키스코홀딩스주식회사 Amorphous silicon thin-film soar cells and fabrication method for thereof
CN102180620B (en) * 2011-01-28 2012-10-10 牛智勇 Preparation process of vitrified mineral varnish

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3032158A1 (en) * 1979-08-30 1981-04-02 Plessey Overseas Ltd., Ilford, Essex SOLAR CELL
JPS56142680A (en) * 1980-04-07 1981-11-07 Matsushita Electric Ind Co Ltd Photoconductive semiconductor device
JPS57181176A (en) * 1981-04-30 1982-11-08 Kanegafuchi Chem Ind Co Ltd High voltage amorphous semiconductor/amorphous silicon hetero junction photosensor
JPS58196064A (en) * 1982-05-11 1983-11-15 Matsushita Electric Ind Co Ltd Photoelectric conversion device
JPH0597413A (en) * 1982-11-01 1993-04-20 Kanegafuchi Chem Ind Co Ltd Amorphous multicomponent semiconductor and device using the same
JPS61242085A (en) * 1985-04-19 1986-10-28 Ricoh Co Ltd Amorphous silicon photoelectric conversion element
JPS6384075A (en) * 1986-09-26 1988-04-14 Sanyo Electric Co Ltd Photovoltaic device
JP2616929B2 (en) * 1987-08-22 1997-06-04 株式会社日本自動車部品総合研究所 Method for manufacturing microcrystalline silicon carbide semiconductor film
JP2846651B2 (en) * 1989-03-31 1999-01-13 三洋電機株式会社 Photovoltaic device
US5155567A (en) * 1990-01-17 1992-10-13 Ricoh Company, Ltd. Amorphous photoconductive material and photosensor employing the photoconductive material
US5103284A (en) * 1991-02-08 1992-04-07 Energy Conversion Devices, Inc. Semiconductor with ordered clusters
JP3248227B2 (en) * 1991-09-30 2002-01-21 富士電機株式会社 Thin film solar cell and method of manufacturing the same

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10374109B2 (en) 2001-05-25 2019-08-06 President And Fellows Of Harvard College Silicon-based visible and near-infrared optoelectric devices
EP1650811A4 (en) * 2003-07-24 2012-07-11 Kaneka Corp Stacked photoelectric converter
US7550665B2 (en) 2003-07-24 2009-06-23 Kaneka Corporation Stacked photoelectric converter
EP1650811A1 (en) * 2003-07-24 2006-04-26 Kaneka Corporation Stacked photoelectric converter
US7847186B2 (en) 2003-07-24 2010-12-07 Kaneka Corporation Silicon based thin film solar cell
EP1650812B1 (en) * 2003-07-24 2011-06-08 Kaneka Corporation Method for making a silicon based thin film solar cell
WO2005011002A1 (en) * 2003-07-24 2005-02-03 Kaneka Corporation Silicon based thin film solar cell
EP1650812A1 (en) * 2003-07-24 2006-04-26 Kaneka Corporation Silicon based thin film solar cell
JP2005135987A (en) * 2003-10-28 2005-05-26 Kaneka Corp Stacked photoelectric conversion device and its manufacturing method
US10361083B2 (en) 2004-09-24 2019-07-23 President And Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
US10741399B2 (en) 2004-09-24 2020-08-11 President And Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
JP2006319068A (en) * 2005-05-11 2006-11-24 Kaneka Corp Multi-junction silicone thin film photoelectric converter and its manufacturing method
JP2007243142A (en) * 2006-03-08 2007-09-20 National Science & Technology Development Agency Thin-film solar battery and method for treatment therefor
WO2009069544A1 (en) * 2007-11-30 2009-06-04 Kaneka Corporation Silicon thin film photoelectric conversion device
WO2009100023A2 (en) * 2008-02-01 2009-08-13 President & Fellows Of Harvard College A multijunction photovoltaic device
US8895839B2 (en) 2008-02-01 2014-11-25 President And Fellows Of Harvard College Multijunction photovoltaic device
WO2009100023A3 (en) * 2008-02-01 2009-11-12 President & Fellows Of Harvard College A multijunction photovoltaic device
JP5393772B2 (en) * 2009-03-05 2014-01-22 三菱電機株式会社 Method for manufacturing silicon carbide semiconductor device
US8569106B2 (en) 2009-03-05 2013-10-29 Mitsubishi Electric Corporation Method for manufacturing silicon carbide semiconductor device
US10361232B2 (en) 2009-09-17 2019-07-23 Sionyx, Llc Photosensitive imaging devices and associated methods
US9673243B2 (en) 2009-09-17 2017-06-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US9911781B2 (en) 2009-09-17 2018-03-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US9741761B2 (en) 2010-04-21 2017-08-22 Sionyx, Llc Photosensitive imaging devices and associated methods
US10229951B2 (en) 2010-04-21 2019-03-12 Sionyx, Llc Photosensitive imaging devices and associated methods
JP2011249469A (en) * 2010-05-25 2011-12-08 Mitsubishi Electric Corp Method for manufacturing thin film photoelectric conversion device
US9761739B2 (en) 2010-06-18 2017-09-12 Sionyx, Llc High speed photosensitive devices and associated methods
US10505054B2 (en) 2010-06-18 2019-12-10 Sionyx, Llc High speed photosensitive devices and associated methods
JP2012023317A (en) * 2010-07-16 2012-02-02 Kaneka Corp Laminated type photoelectric conversion device
US9496308B2 (en) 2011-06-09 2016-11-15 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
US10269861B2 (en) 2011-06-09 2019-04-23 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
US9666636B2 (en) 2011-06-09 2017-05-30 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
US10244188B2 (en) 2011-07-13 2019-03-26 Sionyx, Llc Biometric imaging devices and associated methods
US10224359B2 (en) 2012-03-22 2019-03-05 Sionyx, Llc Pixel isolation elements, devices and associated methods
US9905599B2 (en) 2012-03-22 2018-02-27 Sionyx, Llc Pixel isolation elements, devices and associated methods
US9762830B2 (en) 2013-02-15 2017-09-12 Sionyx, Llc High dynamic range CMOS image sensor having anti-blooming properties and associated methods
US9939251B2 (en) 2013-03-15 2018-04-10 Sionyx, Llc Three dimensional imaging utilizing stacked imager devices and associated methods
US10347682B2 (en) 2013-06-29 2019-07-09 Sionyx, Llc Shallow trench textured regions and associated methods
US9673250B2 (en) 2013-06-29 2017-06-06 Sionyx, Llc Shallow trench textured regions and associated methods
US11069737B2 (en) 2013-06-29 2021-07-20 Sionyx, Llc Shallow trench textured regions and associated methods

Also Published As

Publication number Publication date
DE4408791A1 (en) 1994-09-22
JP3047666B2 (en) 2000-05-29
DE4408791B4 (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP3047666B2 (en) Method for forming silicon oxide semiconductor film
US5730808A (en) Producing solar cells by surface preparation for accelerated nucleation of microcrystalline silicon on heterogeneous substrates
US4615905A (en) Method of depositing semiconductor films by free radical generation
US4517223A (en) Method of making amorphous semiconductor alloys and devices using microwave energy
US4664937A (en) Method of depositing semiconductor films by free radical generation
US5507881A (en) Thin-film solar cell and method of manufacturing same
US5646050A (en) Increasing stabilized performance of amorphous silicon based devices produced by highly hydrogen diluted lower temperature plasma deposition
US6121541A (en) Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
JP5156379B2 (en) Silicon-based thin film photoelectric conversion device and manufacturing method thereof
Myong et al. Improvement of pin-type amorphous silicon solar cell performance by employing double silicon-carbide p-layer structure
US5061322A (en) Method of producing p-type amorphous silicon carbide and solar cell including same
US5021103A (en) Method of forming microcrystalline silicon-containing silicon carbide film
US8933327B2 (en) Thin-film photoelectric converter and fabrication method therefor
Yang et al. Recent progress in amorphous silicon alloy leading to 13% stable cell efficiency
Sichanugrist et al. Amorphous silicon oxide and its application to metal/nip/ITO type a-Si solar cells
Kondo et al. An approach to device grade amorphous and microcrystalline silicon thin films fabricated at higher deposition rates
JP2692091B2 (en) Silicon carbide semiconductor film and method for manufacturing the same
JP3248227B2 (en) Thin film solar cell and method of manufacturing the same
JP2000269528A (en) Non-monocrystal solar battery
US4845043A (en) Method for fabricating photovoltaic device having improved short wavelength photoresponse
US4680607A (en) Photovoltaic cell
US4701343A (en) Method of depositing thin films using microwave energy
Li Amorphous silicon-carbon alloys for solar cells
JP3245962B2 (en) Manufacturing method of thin film solar cell
US4745000A (en) Method of fabricating electrostatic drums using microwave energy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080324

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees