JP3245962B2 - Manufacturing method of thin film solar cell - Google Patents

Manufacturing method of thin film solar cell

Info

Publication number
JP3245962B2
JP3245962B2 JP15709292A JP15709292A JP3245962B2 JP 3245962 B2 JP3245962 B2 JP 3245962B2 JP 15709292 A JP15709292 A JP 15709292A JP 15709292 A JP15709292 A JP 15709292A JP 3245962 B2 JP3245962 B2 JP 3245962B2
Authority
JP
Japan
Prior art keywords
layer
solar cell
film
film solar
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15709292A
Other languages
Japanese (ja)
Other versions
JPH065892A (en
Inventor
洋充 大田
伸二 藤掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP15709292A priority Critical patent/JP3245962B2/en
Publication of JPH065892A publication Critical patent/JPH065892A/en
Priority to US08/213,717 priority patent/US5507881A/en
Application granted granted Critical
Publication of JP3245962B2 publication Critical patent/JP3245962B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非晶質シリコン(以下
a−Siと略す)を主材料としたp−i−n接合を有す
る薄膜太陽電池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin-film solar cell having a pin junction mainly composed of amorphous silicon (hereinafter abbreviated as a-Si).

【0002】[0002]

【従来の技術】原料ガスのグロー放電分解や光CVD法
により形成されるa−Siを主材料とした太陽電池は薄
膜、大面積化が容易という特長をもち、低コスト太陽電
池として期待されている。この種の太陽電池の構造とし
てはpin接合を有するpin型a−Si太陽電池が一般
的である。図2はこのような太陽電池の構造を示し、ガ
ラス基板1の上に、透明電極2、p型a−Si層31、p/
i界面層4、i質a−Si層5、n型a−Si層6、金属電
極7を順次積層することにより作製される。この太陽電
池は、ガラス基板1を通して入射する光により発電が起
こる。
2. Description of the Related Art A solar cell mainly composed of a-Si formed by glow discharge decomposition of a source gas or a photo-CVD method has features of being thin and capable of being easily enlarged, and is expected to be a low-cost solar cell. I have. As a structure of this type of solar cell, a pin-type a-Si solar cell having a pin junction is generally used. FIG. 2 shows a structure of such a solar cell, in which a transparent electrode 2, a p-type a-Si layer 31, a p /
It is manufactured by sequentially laminating an i interface layer 4, an i-type a-Si layer 5, an n-type a-Si layer 6, and a metal electrode 7. In this solar cell, power is generated by light incident through the glass substrate 1.

【0003】ここで、発電に寄与するフォトキャリアは
主にi層で発生し、pおよびn層はデッドレイヤーにな
っている。従って、p層から光が入射する太陽電池で
は、窓層にあたるp層の光透過率を高くし、できるだけ
多くの光がi層まで到達できるようにすることが出力を
増加させる上で重要である。そのためには、p層の光学
ギャップEgを増加させて光学吸収ロスを減少させること
が有効である。このような目的からp型a−Si層に、例
えば特開昭56−64476 号公報などで公知のように炭素原
子を添加したり、特開昭57−181176号公報で公知のよう
に窒素原子を添加したり、特開昭56−142680号公報で公
知のように酸素原子を添加したり、または特開昭58−19
6064号公報あるいは特開昭61−242085号公報で公知のよ
うに酸素原子と炭素原子を添加したりすることが試みら
れている。
Here, photocarriers contributing to power generation are mainly generated in the i-layer, and the p and n layers are dead layers. Therefore, in a solar cell in which light is incident from the p-layer, it is important to increase the light transmittance of the p-layer corresponding to the window layer so that as much light as possible reaches the i-layer in order to increase the output. . To that end, it is effective to increase the optical gap Eg of the p-layer to reduce the optical absorption loss. For this purpose, a carbon atom may be added to the p-type a-Si layer as known in, for example, JP-A-56-64476, or a nitrogen atom may be added as known in JP-A-57-181176. Or an oxygen atom as known in JP-A-56-142680, or JP-A-58-19.
Attempts have been made to add oxygen atoms and carbon atoms as known in JP-A-6064 or JP-A-61-242085.

【0004】[0004]

【発明が解決しようとする課題】p層成膜時に多量のC
やNを添加して合金化を図ると光学ギャップを増加させ
ることができる。しかし、同時に膜中に多量のダングリ
ングボンドが誘起されるため電気伝導度が低下してしま
う。通常、a−Si太陽電池では、フィルファクタの低下
を抑えるために、p層に使用する膜の25℃における電気
伝導度が10-8S/cm以上になるように制限される。この
条件を満たすためには上記のp型a−SiC:H (B) や
p型a−SiN:H (B) では光学ギャップを2eV以下に
せざるを得なかった。従って、p層中での光吸収ロスが
比較的大きく、短絡電流密度に換算して1〜2mA/cm2
のロスを生じていた。また上記の特開昭61−242085号公
報の記載によれば、ドーピングしないa−Si:O:C:
H膜ではAMI (擬似太陽光) 100 mW/cm2 照射時に光
学ギャップ2.0 eV以上の領域で電気伝導度 (σd ) は10
-12 〜10-13 S/cm程度であり、ドーピングした時にど
の程度の光学ギャップのp層が得られているかは明らか
でない。
A large amount of C is formed during the formation of a p-layer.
The optical gap can be increased by alloying by adding N or N. However, at the same time, a large amount of dangling bonds are induced in the film, so that the electric conductivity is reduced. Usually, in an a-Si solar cell, the electric conductivity at 25 ° C. of a film used for a p-layer is limited to 10 −8 S / cm or more in order to suppress a decrease in the fill factor. In order to satisfy this condition, the optical gap has to be set to 2 eV or less in the above-mentioned p-type a-SiC: H (B) and p-type a-SiN: H (B). Therefore, the light absorption loss in the p-layer is relatively large, and is 1 to 2 mA / cm 2 in terms of short-circuit current density.
Loss. Also, according to the description of JP-A-61-242085, undoped a-Si: O: C:
In the H film, the electric conductivity (σ d ) is 10 when the optical gap is 2.0 eV or more when AMI (simulated sunlight) is irradiated at 100 mW / cm 2.
It is about -12 to 10 -13 S / cm, and it is not clear how much a p-layer having an optical gap is obtained when doping is performed.

【0005】本発明の目的は、上述の情勢に立脚し、電
気伝導度が0.5〜1×10-6S/cmで光学ギャップ
がより大きなa−Si系膜を窓層に用いた、より高効率
な薄膜太陽電池の製造方法を提供することにある。
An object of the present invention is based on the above situation, and uses an a-Si film having an electric conductivity of 0.5 to 1 × 10 −6 S / cm and a larger optical gap as a window layer. An object of the present invention is to provide a method for manufacturing a thin film solar cell with higher efficiency.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明によれば、非晶質シリコンを主材料とした
p−i−n接合構造を有する薄膜太陽電池の製造方法に
おいて、i層の光入射側にあるp層およびp層よりも酸
素ドープ量の小さいp/i界面層を、モノシランおよび
亜酸化窒素が水素で希釈された混合ガスにドーピング用
の不純物を含むガスを添加し、分解することにより加熱
した基板上に生じる非晶質シリコンオキシナイトライド
によって形成することとする。また、本発明によれば、
非晶質シリコンを主材料としたp−i−n接合構造を有
する薄膜太陽電池において、i層の光入射側にあるp層
およびp層よりも酸素ドープ量の小さいp/i界面層
が、一般式a−Si(1-X-Y)XYで表され、0.05
<X<0.40、0.03<Y<0.07である非晶質
シリコンオキシナイトライド膜からなり、かつその光学
ギャップが2.0eVないし2.3eV、25℃におけ
る光導電率と暗導電率の比が5以下である薄膜太陽電池
の製造方法であって、このp層およびp層よりも酸素ド
ープ量の小さいp/i界面層を、モノシランおよび亜酸
化窒素が水素で希釈された混合ガスにドーピング用の不
純物を含むガスを添加し、分解することにより形成する
こととする。ここで、混合ガスの分解をグロー放電分解
により行うことが好ましい。
According to the present invention, there is provided a method of manufacturing a thin film solar cell having a pin junction structure comprising amorphous silicon as a main material. The p-layer and the p / i interface layer having a smaller oxygen doping amount than the p-layer on the light incident side of the i-layer are added to a mixed gas in which monosilane and nitrous oxide are diluted with hydrogen and a gas containing impurities for doping is added. Then, it is formed by amorphous silicon oxynitride generated on a substrate heated by decomposition. According to the present invention,
In a thin-film solar cell having a pin junction structure mainly composed of amorphous silicon, a p-layer on the light incident side of the i-layer and a p / i interface layer having a smaller oxygen doping amount than the p-layer are: It is represented by the general formula a-Si (1-XY) O X N Y and 0.05
<X <0.40, 0.03 <Y <0.07, made of an amorphous silicon oxynitride film having an optical gap of 2.0 eV to 2.3 eV at 25 ° C. A method for manufacturing a thin-film solar cell having a conductivity ratio of 5 or less, wherein a monosilane and nitrous oxide are diluted with hydrogen in the p-layer and the p / i interface layer having a smaller oxygen doping amount than the p-layer. It is formed by adding a gas containing impurities for doping to a mixed gas and decomposing the mixed gas. Here, the decomposition of the mixed gas is preferably performed by glow discharge decomposition.

【0007】[0007]

【作用】一般に、SiH4 、O2 等により形成される膜は
気相中でSiH4 とO2 が激しく反応してSiO2 が生成さ
れるため、これが膜中に取り込まれて欠陥の多い膜とな
ってしまう。a−Si:O:N膜はSiH4 、N2 Oおよび
2 の混合ガスのグロー放電分解により形成でき、その
際SiH4 とN2 Oが気中で反応しないため、SiO 2 が生
成されることがなく、欠陥の少ない良好な膜になる。さ
らに、光学ギャップを2.0 〜2.3 eVの範囲に、また光導
電率σphと暗導電率σd の比σph/σd を5以下とする
ことにより、2.0 eV以上の光学ギャップで電気伝導度10
-8S/cm以上のp層またはn層を窓層とするp−i−n
接合薄膜太陽電池が得られる。
[Function] Generally, SiHFour, OTwoThe film formed by
SiH in the gas phaseFourAnd OTwoReacts violently with SiOTwoIs generated
Therefore, this is taken into the film, resulting in a film with many defects.
I will. a-Si: O: N film is SiHFour, NTwoO and
HTwoCan be formed by glow discharge decomposition of a mixed gas of
SiHFourAnd NTwoSince O does not react in the air, SiO TwoIs raw
A good film with few defects is not formed. Sa
In addition, the optical gap is set in the range of 2.0 to 2.3 eV,
Electric power σphAnd dark conductivity σdRatio σph/ ΣdIs 5 or less
With an optical gap of 2.0 eV or more,
-8Pin having a p layer or n layer of S / cm or more as a window layer
A bonded thin-film solar cell is obtained.

【0008】[0008]

【実施例】図1は本発明の一実施例のa−Si太陽電池の
断面構造を示し、図2と共通の部分には同一の符号が付
されている。この太陽電池は以下のようにして作製され
る。まず、ガラス基板1の上に透明電極2としてSnO2
等の膜を5000〜10000 Åの厚さに形成する。この基板を
プラズマCVD装置に装着し、SiH4 ( モノシラン)、
CO2 を主ガス、H2 を希釈ガス、B2 6 をドーピン
グガスとしてグロー放電分解法によりp型a−SiO膜3
を100 〜200 Åの厚さに形成する。ここで、B2 6
添加量としてはB2 6 /SiH4 =0.2 〜1%、成膜時
の基板温度は140 〜250 ℃、水素希釈度 (H2 /Si
4 ) は10〜50の範囲内とする。続いて、SiH4 、CH
4 を主ガス、H2 を希釈ガスとしてa−SiCのp/i界
面層4を50〜200 Åの厚さに形成する。このp/i界面
層4にはほう素を添加せず、光学ギャップがp層3とi
層の中間的な値 (1.8 〜2.0 eV) になるように成膜条件
を選定した。さらに、基板温度を200 〜250 ℃に上昇さ
せてから、SiH4 を主ガス、H2 を希釈ガスとしてi質
a−Si層5を2000〜5000Åの厚さに形成し、その上にSi
4 を主ガス、H2 を希釈ガス、PH3 をドーピングガ
スとしてn型a−Si層6を150 〜300 Åの厚さに形成す
る。最後に、金属電極7としてAgやAlの蒸着あるいはス
パッタリング法とパターニングにより形成する。
FIG. 1 shows a cross-sectional structure of an a-Si solar cell according to one embodiment of the present invention. The same reference numerals as in FIG. 2 denote the same parts. This solar cell is manufactured as follows. First, SnO 2 was used as a transparent electrode 2 on a glass substrate 1.
Is formed to a thickness of 5000 to 10000 mm. This substrate was mounted on a plasma CVD apparatus, and SiH 4 (monosilane),
A p-type a-SiO film 3 is formed by a glow discharge decomposition method using CO 2 as a main gas, H 2 as a diluent gas, and B 2 H 6 as a doping gas.
Is formed to a thickness of 100 to 200 mm. Here, the addition amount as B 2 H 6 / SiH 4 = 0.2 ~1% are of B 2 H 6, the substrate temperature during film formation 140 to 250 DEG ° C., hydrogen dilution (H 2 / Si
H 4 ) is in the range of 10 to 50. Subsequently, SiH 4 , CH
Using 4 as a main gas and H 2 as a diluent gas, ap / i interface layer 4 of a-SiC is formed to a thickness of 50 to 200 °. No boron is added to the p / i interface layer 4 and the optical gap is equal to that of the p layer 3 and i.
The film formation conditions were selected so that the values were intermediate between the layers (1.8 to 2.0 eV). Further, after the substrate temperature was raised to 200 to 250 ° C., an i-type a-Si layer 5 was formed to a thickness of 2000 to 5000 ° using SiH 4 as a main gas and H 2 as a diluent gas, and a Si
An n-type a-Si layer 6 is formed to a thickness of 150 to 300 ° using H 4 as a main gas, H 2 as a diluent gas, and PH 3 as a doping gas. Finally, the metal electrode 7 is formed by vapor deposition of Ag or Al or by sputtering and patterning.

【0009】図3は、a−Si:O:N膜形成時のN2
とSiH4 のガス流量比 (N2 O/SiH4 ) とX線光電子
分光法 (XPS) により求めたSi、O、Nの組成比の関
係を示す。図4には、a−Si:O:N膜の電気伝導度と
光学ギャップとの関係を、下記の条件で成膜したものに
ついて調べた結果を実線41で示す。 使用ガス・・・・SiH4 、N2 O、H2 、B2 6 ガス流量比・・・H2 /SiH4 =20 B2 6 /SiH4 =0.006 N2 O/SiH4 =0.125 〜1 基板温度・・・・170℃ 圧 力・・・・・0. 5Torr 図4に点線42で示したものは、N2 Oの代わりにCO2
を用いた下記の最適条件で成膜したa−SiO膜の電気伝
導度と光学ギャップとの関係である。
FIG. 3 shows N 2 O when an a-Si: O: N film is formed.
Shows a Si was determined by the gas flow rate ratio of SiH 4 (N 2 O / SiH 4) and X-ray photoelectron spectroscopy (XPS), O, the relationship between the composition ratio of N. In FIG. 4, the relationship between the electrical conductivity of the a-Si: O: N film and the optical gap is shown by a solid line 41 when the film was formed under the following conditions. Gas used: SiH 4 , N 2 O, H 2 , B 2 H 6 Gas flow rate ratio: H 2 / SiH 4 = 20 B 2 H 6 / SiH 4 = 0.006 N 2 O / SiH 4 = 0.125 11 Substrate temperature ℃ 170 ° C. Pressure も の 0.5 Torr In FIG. 4, the dotted line 42 indicates that CO 2 is used instead of N 2 O.
Is a relationship between the electrical conductivity and the optical gap of an a-SiO film formed under the following optimum conditions using the above formula.

【0010】 使用ガス・・・・SiH4 、CO2 、H2 、B2 6 ガス流量比・・・H2 /SiH4 =20 B2 6 /SiH4 =0.006 CO2 /SiH4 =2.52 基板温度・・・・170℃ 圧 力・・・・・0. 5Torr 図4に示す結果から、N2 Oを用いた場合の膜特性はC
2 を用いた場合と比べると、ほぼ同様な特性といえ
る。10-6S/cm以上の電気伝導度は光学ギャップ2.08eV
のときに得られ、これは点線42のCO2 を用いたa−Si
O膜の場合と比べると若干劣るが、従来のa−SiC膜や
a−SiN膜に比べるならば約0.1eV 高い値であり、優れ
た特性であることが分かる。
Gas used: SiH 4 , CO 2 , H 2 , B 2 H 6 Gas flow ratio: H 2 / SiH 4 = 20 B 2 H 6 / SiH 4 = 0.006 CO 2 / SiH 4 = 2.52 Substrate temperature: 170 ° C. Pressure: 0.5 Torr From the results shown in FIG. 4, the film characteristic when N 2 O is used is C
It can be said that the characteristics are almost the same as those when O 2 is used. Electrical conductivity of 10 -6 S / cm or more has an optical gap of 2.08 eV
Which is obtained from a-Si using CO 2 indicated by a dotted line 42.
Although slightly inferior to the case of the O film, the value is about 0.1 eV higher than that of the conventional a-SiC film or a-SiN film, which indicates that the characteristics are excellent.

【0011】上記の条件で成膜したa−Si:O:N膜の
25℃における光導電率、暗導電率を表1に示す。
The a-Si: O: N film formed under the above conditions
Table 1 shows the photoconductivity and dark conductivity at 25 ° C.

【0012】[0012]

【表1】 表1よりσph/σdが5以下であれば、10-8S/cm以上
の電気伝導度が得られることがわかった。
[Table 1] From Table 1, it was found that when σph / σd is 5 or less, an electric conductivity of 10 −8 S / cm or more can be obtained.

【0013】次にシングルセルのp層にa−Si:O:N
膜を適用した場合の特性について、CO2 を用いて作製
したa−SiO膜を適用した場合と比較した。ここで、シ
ングルセルのp層3、i層5、n層6の膜厚はそれぞれ
100 Å、4000Å、200 Åとした。セルに使用したp型a
−Si:O:N膜の成膜条件は次の通りである。 使用ガス・・・・SiH4 、N2 O、H2 、B2 6 ガス流量比・・・H2 /SiH4 =20 B2 6 /SiH4 =0.006 N2 O/SiH4 =0.5 基板温度・・・・170℃ 圧 力・・・・・0. 5Torr a−SiO膜の成膜条件は前記と同じである。
Next, a-Si: O: N is applied to the p-layer of the single cell.
The characteristics when the film was applied were compared with those when an a-SiO film manufactured using CO 2 was applied. Here, the thicknesses of the p layer 3, the i layer 5, and the n layer 6 of the single cell are respectively
100 mm, 4000 mm, and 200 mm. P-type a used for cell
The conditions for forming the -Si: O: N film are as follows. Gas used: SiH 4 , N 2 O, H 2 , B 2 H 6 Gas flow rate ratio: H 2 / SiH 4 = 20 B 2 H 6 / SiH 4 = 0.006 N 2 O / SiH 4 = 0 ... 0.5 Substrate temperature... 170 ° C. Pressure... 0.5 Torr a-SiO film formation conditions are the same as above.

【0014】そして得られたp型a−Si:O:N膜およ
びa−SiO膜の特性はそれぞれ次の通りである。 a−Si:O:N膜 光学ギャップ ・・・2.07eV 光導電率・・・・・・2.69×10-6S/cm 電気伝導度・・・・・1.12×10-6S/cm a−SiO膜 光学ギャップ ・・・2.16eV 光導電率・・・・・・1.1 ×10-6S/cm 電気伝導度・・・・・0.5 ×10-6S/cm またこれらの試作セルにおいて、p/i界面層4には、
p層がa−Si:O:N膜、a−SiO膜のそれぞれのセル
について酸素のドープ量がp層のそれに比べて小さいa
−Si:O:N膜、a−SiO膜を用いている。作製したセ
ルの変換効率をAM1.5 、100mW /cm2 の光照射下で測定
した結果を表2に示す。ちなみに表2にはa−SiC膜を
p層、p/i界面層に用いたものも比較のために示し
た。
The characteristics of the obtained p-type a-Si: O: N film and a-SiO film are as follows. a-Si: O: N film Optical gap: 2.07 eV Photoconductivity: 2.69 × 10 -6 S / cm Electrical conductivity: 1.12 × 10 -6 S / cm a- SiO film Optical gap: 2.16 eV Photoconductivity: 1.1 x 10-6 S / cm Electrical conductivity: 0.5 x 10-6 S / cm In these prototype cells, p / I interface layer 4
In each cell of the p-layer having the a-Si: O: N film and the a-SiO film, the oxygen doping amount is smaller than that of the p-layer.
-Si: O: N film and a-SiO film are used. Table 2 shows the results of measuring the conversion efficiency of the fabricated cell under irradiation with light of AM 1.5 and 100 mW / cm 2 . Incidentally, Table 2 also shows, for comparison, those using the a-SiC film for the p layer and the p / i interface layer.

【0015】[0015]

【表2】 この表から、a−Si:O:N膜をp層およびp/i界面
層に用いたものは、a−SiC膜をp層、p/i界面層に
用いたものに比べて大きなJscが得られ、効率も大きく
なっている。a−SiO膜をp層、p/i界面層に用いた
ものに比べると光学ギャップの小さいぶんややJsc、効
率ともに見劣りするものの同様の高いものが得られてい
ることがわかる。
[Table 2] From this table, it can be seen that Jsc using the a-Si: O: N film for the p layer and the p / i interface layer has a larger Jsc than that using the a-SiC film for the p layer and the p / i interface layer. Obtained, and the efficiency is increased. It can be seen that, as compared with those using the a-SiO film for the p layer and the p / i interface layer, the optical gap is small, the Jsc and the efficiency are inferior, but similar high ones are obtained.

【0016】[0016]

【発明の効果】本発明の薄膜太陽電池の製造方法によれ
ば、上記の構成を採用した結果、電気伝導度が10-8
/cm以上で光学ギャップが2.1eV以上となる膜を
形成することができる。これにより、従来の光学ギャッ
プ2.0eV以下のp層を用いた時に比べて光吸収ロス
を低減でき、短絡電流密度を向上させることができる。
さらに、高い光学ギャップを有しながらσphが約10-6
の膜であることから直列抵抗成分が低く抑えられ、フィ
ルファクタが0.7以上のセルが形成でき、変換効率に
して12%以上のセルを形成することができる。
According to the method of manufacturing a thin-film solar cell of the present invention, as a result of adopting the above configuration, the electric conductivity is 10 -8 S.
/ Cm or more, a film having an optical gap of 2.1 eV or more can be formed. Thereby, the light absorption loss can be reduced and the short-circuit current density can be improved as compared with the case where a conventional p layer having an optical gap of 2.0 eV or less is used.
Further, while having a high optical gap, σ ph is about 10 −6.
, The series resistance component can be kept low, cells with a fill factor of 0.7 or more can be formed, and cells with a conversion efficiency of 12% or more can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のa−Si太陽電池のシングル
セルの断面図
FIG. 1 is a cross-sectional view of a single cell of an a-Si solar cell according to one embodiment of the present invention.

【図2】従来のa−Si太陽電池のシングルセルの断面図FIG. 2 is a cross-sectional view of a single cell of a conventional a-Si solar cell.

【図3】a−Si:O:N膜成膜時のガス流量比と膜組成
比との関係線図
FIG. 3 is a graph showing a relationship between a gas flow rate ratio and a film composition ratio when an a-Si: O: N film is formed.

【図4】a−Si:O:N膜の電気伝導度と光学ギャップ
との関係線図
FIG. 4 is a diagram showing the relationship between the electrical conductivity of an a-Si: O: N film and an optical gap.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 透明電極 3 p型a−Si:O:N層 4 p/i界面層 5 i質a−Si層 6 n型a−Si層 7 金属電極 Reference Signs List 1 glass substrate 2 transparent electrode 3 p-type a-Si: O: N layer 4 p / i interface layer 5 i-type a-Si layer 6 n-type a-Si layer 7 metal electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−262470(JP,A) 特開 昭59−108370(JP,A) 特開 昭63−224223(JP,A) 特開 昭58−209171(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 31/04 - 31/078 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-262470 (JP, A) JP-A-59-108370 (JP, A) JP-A-63-224223 (JP, A) JP-A-58-108 209171 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 31/04-31/078

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】非晶質シリコンを主材料としたp−i−n
接合構造を有する薄膜太陽電池の製造方法において、i
層の光入射側にあるp層およびp層よりも酸素ドープ量
の小さいp/i界面層を、モノシランおよび亜酸化窒素
が水素で希釈された混合ガスにドーピング用の不純物を
含むガスを添加し、分解することにより加熱した基板上
に生じる非晶質シリコンオキシナイトライドによって形
成することを特徴とする薄膜太陽電池の製造方法。
1. A pin comprising amorphous silicon as a main material.
In a method for manufacturing a thin film solar cell having a junction structure,
The p-layer and the p / i interface layer having a smaller oxygen doping amount than the p-layer on the light incident side of the layer are formed by adding a gas containing doping impurities to a mixed gas in which monosilane and nitrous oxide are diluted with hydrogen. And a method of manufacturing a thin-film solar cell, comprising amorphous silicon oxynitride generated on a substrate heated by decomposition.
【請求項2】非晶質シリコンを主材料としたp−i−n
接合構造を有する薄膜太陽電池において、i層の光入射
側にあるp層およびp層よりも酸素ドープ量の小さいp
/i界面層が、一般式a−Si(1-X-Y)XYで表さ
れ、0.05<X<0.40、0.03<Y<0.07
である非晶質シリコンオキシナイトライド膜からなり、
かつその光学ギャップが2.0eVないし2.3eV、
25℃における光導電率と暗導電率の比が5以下である
薄膜太陽電池の製造方法であって、このp層およびp層
よりも酸素ドープ量の小さいp/i界面層を、モノシラ
ンおよび亜酸化窒素が水素で希釈された混合ガスにドー
ピング用の不純物を含むガスを添加し、分解することに
より形成することを特徴とする薄膜太陽電池の製造方
法。
2. A pin using amorphous silicon as a main material.
In a thin-film solar cell having a junction structure, a p-layer on the light-incident side of the i-layer and p-p with a smaller oxygen doping amount than the p-layer
/ I interface layer is represented by the general formula a-Si (1-XY) O X N Y , where 0.05 <X <0.40, 0.03 <Y <0.07
Consisting of an amorphous silicon oxynitride film,
And the optical gap is 2.0 eV to 2.3 eV,
A method for producing a thin-film solar cell wherein the ratio of photoconductivity to dark conductivity at 25 ° C. is 5 or less, wherein the p-layer and the p / i interface layer having a smaller oxygen doping amount than the p-layer are made of monosilane and A method for manufacturing a thin-film solar cell, comprising: adding a gas containing impurities for doping to a mixed gas in which nitrogen oxide is diluted with hydrogen; and decomposing the mixed gas.
【請求項3】混合ガスの分解をグロー放電分解により行
う請求項1または2記載の薄膜太陽電池の製造方法。
3. The method according to claim 1, wherein the decomposition of the mixed gas is performed by glow discharge decomposition.
JP15709292A 1991-09-30 1992-06-17 Manufacturing method of thin film solar cell Expired - Fee Related JP3245962B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP15709292A JP3245962B2 (en) 1992-06-17 1992-06-17 Manufacturing method of thin film solar cell
US08/213,717 US5507881A (en) 1991-09-30 1994-03-16 Thin-film solar cell and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15709292A JP3245962B2 (en) 1992-06-17 1992-06-17 Manufacturing method of thin film solar cell

Publications (2)

Publication Number Publication Date
JPH065892A JPH065892A (en) 1994-01-14
JP3245962B2 true JP3245962B2 (en) 2002-01-15

Family

ID=15642076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15709292A Expired - Fee Related JP3245962B2 (en) 1991-09-30 1992-06-17 Manufacturing method of thin film solar cell

Country Status (1)

Country Link
JP (1) JP3245962B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005013537A1 (en) 2004-03-24 2005-10-20 Sharp Kk Photoelectric converter and manufacturing method for such
JP4864077B2 (en) * 2008-12-22 2012-01-25 シャープ株式会社 Photoelectric conversion device and manufacturing method thereof
JP5308226B2 (en) * 2009-05-08 2013-10-09 三菱重工業株式会社 Photoelectric conversion device and manufacturing method thereof
JP5308225B2 (en) * 2009-05-08 2013-10-09 三菱重工業株式会社 Photoelectric conversion device and manufacturing method thereof

Also Published As

Publication number Publication date
JPH065892A (en) 1994-01-14

Similar Documents

Publication Publication Date Title
US5942049A (en) Increasing stabilized performance of amorphous silicon based devices produced by highly hydrogen diluted lower temperature plasma deposition
AU2005200023B2 (en) Photovoltaic device
EP0309000B1 (en) Amorphous semiconductor and amorphous silicon photovoltaic device
US8030120B2 (en) Hybrid window layer for photovoltaic cells
JP3047666B2 (en) Method for forming silicon oxide semiconductor film
JPS6249672A (en) Amorphous photovoltaic element
JP3364180B2 (en) Amorphous silicon solar cell
JPWO2005011002A1 (en) Silicon-based thin film solar cell
JPH05243596A (en) Manufacture of laminated type solar cell
JPS59205770A (en) Photovoltaic device
US5419783A (en) Photovoltaic device and manufacturing method therefor
US8704326B2 (en) Thin-film photoelectric conversion device and method for production thereof
JPWO2005109526A1 (en) Thin film photoelectric converter
JP3248227B2 (en) Thin film solar cell and method of manufacturing the same
JPH0595126A (en) Thin film solar battery and manufacturing method thereof
JP3245962B2 (en) Manufacturing method of thin film solar cell
JPS61222277A (en) Photovoltaic device and manufacture thereof
JPH065765B2 (en) Photoelectric conversion device
JP4187328B2 (en) Photovoltaic element manufacturing method
JP2775460B2 (en) Manufacturing method of amorphous solar cell
JP2958491B2 (en) Method for manufacturing photoelectric conversion device
JP2747110B2 (en) Stacked amorphous silicon solar cell
JPH04299576A (en) Photovoltaic element and its manufacture
JP2951218B2 (en) Amorphous silicon germanium film and photovoltaic device using the same
JPH04212474A (en) Manufacture of thin film solar battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees