JP2958491B2 - Method for manufacturing photoelectric conversion device - Google Patents

Method for manufacturing photoelectric conversion device

Info

Publication number
JP2958491B2
JP2958491B2 JP2082583A JP8258390A JP2958491B2 JP 2958491 B2 JP2958491 B2 JP 2958491B2 JP 2082583 A JP2082583 A JP 2082583A JP 8258390 A JP8258390 A JP 8258390A JP 2958491 B2 JP2958491 B2 JP 2958491B2
Authority
JP
Japan
Prior art keywords
layer
temperature
semiconductor layer
photoelectric conversion
impurity semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2082583A
Other languages
Japanese (ja)
Other versions
JPH03280476A (en
Inventor
仁 西尾
英雄 山岸
圭三 浅岡
善久 太和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13778506&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2958491(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP2082583A priority Critical patent/JP2958491B2/en
Publication of JPH03280476A publication Critical patent/JPH03280476A/en
Application granted granted Critical
Publication of JP2958491B2 publication Critical patent/JP2958491B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、太陽電池等の光電変換装置の製造方法に関
し、特に導電型の異なる2つの不純物半導体層(p層、
n層)の間に真性半導体層(i層)を設けた非単結晶半
導体からなる光電変換装置の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a photoelectric conversion device such as a solar cell, and particularly relates to two impurity semiconductor layers (p-layer,
The present invention relates to a method for manufacturing a photoelectric conversion device including a non-single-crystal semiconductor in which an intrinsic semiconductor layer (i-layer) is provided between (n-layers).

[従来の技術] 非単結晶半導体からなる光電変換装置は、安定性が良
くないといわれている。特にアモルファスシリコン太陽
電池の場合には、Staebler−Wronski効果と呼ばれる現
象がある。すなわち、p層、i層及びn層からなる素子
のうち活性層であるi層の電導度が光照射によりしだい
に低下してキャリア輸送能が下がり、素子の変換効率が
低下するのである。
[Prior Art] It is said that a photoelectric conversion device made of a non-single-crystal semiconductor has poor stability. Particularly, in the case of an amorphous silicon solar cell, there is a phenomenon called the Staebler-Wronski effect. In other words, the conductivity of the i-layer, which is the active layer, of the device consisting of the p-layer, the i-layer, and the n-layer gradually decreases due to the irradiation of light, the carrier transport ability decreases, and the conversion efficiency of the device decreases.

そこで、i層を薄膜化してこの層の電界強度を高める
試みがなされている。キャリア輸送能を予め上げておく
ことによって素子の劣化を抑制しようとするのである。
Therefore, attempts have been made to reduce the thickness of the i-layer to increase the electric field strength of this layer. By increasing the carrier transport ability in advance, it is intended to suppress the deterioration of the device.

また、それぞれp層、i層及びn層からなる複数の素
子をタンデム接続し、受光面側素子のi層を薄膜化する
試みもなされている。このようなタンデム構造の採用に
より、受光面側素子はi層薄膜化の効果で劣化が抑制さ
れ、裏面側素子は長波長光のみが照射されるために劣化
が抑制されると考えられている。
In addition, attempts have been made to reduce the thickness of the i-layer of the element on the light-receiving surface side by tandem-connecting a plurality of elements each including a p-layer, an i-layer, and an n-layer. It is considered that the adoption of such a tandem structure suppresses deterioration of the light receiving surface side element due to the effect of thinning the i-layer, and suppresses deterioration of the back side element because only long wavelength light is irradiated. .

[発明が解決しようとする課題] 上記i層薄膜化技術やタンデム構造の採用によっても
太陽電池の劣化の抑制は十分ではなく、1年間屋外使用
したときの光電変換効率の劣化の割合が15%を上回る問
題があった。
[Problems to be Solved by the Invention] Deterioration of the solar cell is not sufficiently suppressed even by adopting the i-layer thinning technology or the tandem structure, and the rate of deterioration of the photoelectric conversion efficiency when used outdoors for one year is 15%. There was a problem that exceeded.

さて、p層とn層との間のi層を高温で成膜すること
は劣化抑制に効果があるものと考えられる。しかしなが
ら、本発明者らは、太陽電池の製造工程において単にi
層を高温で成膜するだけでは初期変換効率が著しく低下
することを見いだした。p層上にi層を高温成膜する際
にp層中の不純物がi層内に拡散してp/i界面に不活性
層が生成し、これにより初期変換効率が低下するものと
考えられる。
It is considered that forming the i-layer between the p-layer and the n-layer at a high temperature is effective in suppressing deterioration. However, the present inventors have found that in the manufacturing process of the solar cell, only i
It has been found that the initial conversion efficiency is significantly reduced only by forming the layer at a high temperature. It is considered that when the i-layer is formed on the p-layer at a high temperature, impurities in the p-layer diffuse into the i-layer and an inactive layer is generated at the p / i interface, thereby lowering the initial conversion efficiency. .

本発明は、導電型の異なる2つの不純物半導体層の間
に真性半導体層を設けた非単結晶半導体からなる光電変
換装置に関し、初期変換効率の低下を防止しながら劣化
の抑制を実現する製造方法を提供することを目的とす
る。
The present invention relates to a photoelectric conversion device made of a non-single-crystal semiconductor in which an intrinsic semiconductor layer is provided between two impurity semiconductor layers having different conductivity types, and relates to a manufacturing method for preventing deterioration of initial conversion efficiency and preventing deterioration. The purpose is to provide.

[課題を解決するための手段] 本発明は、導電型の異なる2つのp層、n層よりなる
不純物半導体層の間にi層の真性半導体層を設けた非単
結晶半導体からなる光電変換装置の製造方法であって、
p層、または、n層の第1の不純物半導体層を成膜し、
この層の成膜温度と同等又はこれより高い温度でこの層
に熱処理を施し、この第1の不純物半導体層の成膜温度
と同等又はこれより高い温度で真性半導体層を成膜した
うえで、n層、または、p層の第2の不純物半導体層を
成膜するものであり、第1の不純物半導体層の熱処理温
度を、100℃以上400℃以下とし、また、真性半導体層の
成膜温度を、100℃以上400℃以下とするものである。
[Means for Solving the Problems] The present invention provides a photoelectric conversion device including a non-single-crystal semiconductor in which an i-type intrinsic semiconductor layer is provided between two p-type and n-type impurity semiconductor layers having different conductivity types. The method of manufacturing
forming a p-layer or n-layer first impurity semiconductor layer;
After performing a heat treatment on this layer at a temperature equal to or higher than the film formation temperature of this layer, and forming an intrinsic semiconductor layer at a temperature equal to or higher than the film formation temperature of the first impurity semiconductor layer, forming a second impurity semiconductor layer of an n-layer or a p-layer; setting a heat treatment temperature of the first impurity semiconductor layer to 100 ° C. or more and 400 ° C. or less; Is set to 100 ° C. or more and 400 ° C. or less.

[作 用] 本発明に係る方法によれば、成膜した第1の不純物半
導体層に熱処理を施すことによってこの層の耐熱性及び
耐プラズマ性を向上させたうえで高温i層の成膜を行な
うから、高温i層の成膜中に第1の不純物半導体層が高
温i層中に不純物が拡散することはない。したがって、
初期変換効率の低下が防止できる。
[Operation] According to the method of the present invention, the heat treatment and the plasma resistance of the first impurity semiconductor layer are improved by subjecting the formed first impurity semiconductor layer to heat treatment. Accordingly, the impurity does not diffuse into the first impurity semiconductor layer during the formation of the high-temperature i-layer. Therefore,
A decrease in the initial conversion efficiency can be prevented.

また、高温i層は光照射を受けてもキャリア輸送能が
安定しており、劣化が抑制される。
In addition, the high-temperature i-layer has a stable carrier transport ability even when irradiated with light, and the deterioration is suppressed.

[実施例] 第1図は、本発明の実施例に係る方法で製造した有効
面積1.0cm2(1.0cm×1.0cm)の太陽電池の断面図であ
る。ただし、各半導体層の成膜には平行平板容量結合型
グロー放電装置を使用するのが適当である。
Example FIG. 1 is a sectional view of a solar cell having an effective area of 1.0 cm 2 (1.0 cm × 1.0 cm) manufactured by a method according to an example of the present invention. However, it is appropriate to use a parallel plate capacitively coupled glow discharge device for forming each semiconductor layer.

ガラス基板(1)上の例えばSnO2からなる透明電極
(2)の上に、まずa−SiC:Hからなるp層(3)を250
Å成膜する。グロー放電装置に供給するガス流量は、Si
H4が5sccm、CH4が15sccm、B2H6(1000ppmH2希釈品)が1
5sccm、H2が50sccmである。他の条件は、反応圧力1.0To
rr、基板温度200℃、RFパワー50mW/cm2である。
First, on a transparent electrode (2) made of, for example, SnO 2 on a glass substrate (1), ap layer (3) made of a-SiC: H
Å Film formation. The gas flow rate supplied to the glow discharge device is Si
H 4 is 5 sccm, CH 4 is 15sccm, B 2 H 6 (1000ppmH 2 dilution product) is 1
5sccm, H 2 is 50sccm. Other conditions are reaction pressure 1.0 To
rr, substrate temperature 200 ° C., RF power 50 mW / cm 2 .

次に、真空中でp層(3)に300℃、1時間の熱処理
を施す。
Next, heat treatment is performed on the p layer (3) in vacuum at 300 ° C. for 1 hour.

熱処理が完了したp層(3)の上に基板温度320℃の
高温でa−Si:Hからなるi層(4)を5000Å成膜する。
他の成膜条件は、SiH4のガス流量10sccm、反応圧力0.3T
orr、RFパワー50mW/cm2である。
An i-layer (4) made of a-Si: H is formed at a temperature of 320 [deg.] C. on the p-layer (3) on which the heat treatment has been completed at 5000 [deg.] C. FIG.
Other film forming conditions are as follows: SiH 4 gas flow rate 10 sccm, reaction pressure 0.3 T
orr, RF power 50 mW / cm 2 .

続いてi層(4)の上に、微結晶化したa−Si:Hから
なるn層(5)を300Å成膜する。ガス流量は、SiH4が5
sccm、PH3(1000ppmH2希釈品)が100sccm、H2が200sccm
である。他の条件は、反応圧力1.0Torr,基板温度200
℃、RFパワー500mW/cm2である。
Subsequently, an n-layer (5) made of microcrystallized a-Si: H is formed on the i-layer (4) by 300 [deg.]. The gas flow rate is 5 for SiH 4
sccm, PH 3 (1000ppmH 2 dilution product) is 100 sccm, H 2 is 200sccm
It is. Other conditions are: reaction pressure 1.0 Torr, substrate temperature 200
° C, RF power 500mW / cm 2 .

最後に金属からなる裏面電極(6)をn層(5)上に
成膜する。
Finally, a back electrode (6) made of metal is formed on the n-layer (5).

第2図は、以上に説明した方法で製造した太陽電池の
初期外部特性(電流電圧特性)を示すグラフである。測
定には、AM−1、100mW/cm2のソーラーシミュレート光
を用いた。特性値は、開放電圧0.821volts、短絡電流1
6.58mA/cm2、FF(フィルファクタ)61.11%、光電変換
効率8.328%である。1年間屋外使用したときの光電変
換効率の劣化の割合は10%未満であって、従来に比べて
大幅に劣化が抑制されている。
FIG. 2 is a graph showing initial external characteristics (current-voltage characteristics) of the solar cell manufactured by the method described above. For the measurement, AM-1, 100 mW / cm 2 solar simulated light was used. Characteristic values are open circuit voltage 0.821volts, short circuit current 1
6.58 mA / cm 2 , FF (fill factor) 61.11%, photoelectric conversion efficiency 8.328%. The rate of deterioration of the photoelectric conversion efficiency when used outdoors for one year is less than 10%, and the deterioration is greatly suppressed as compared with the related art.

第3図は、比較例の初期外部特性を示すグラフであ
る。この比較例に係る太陽電池は、p層(3)に熱処理
を施さない点以外は上記実施例と全く同じに作成したも
のである。つまり、p層(3)に熱処理を施さないで32
0℃の高温でi層(4)を成膜したものである。実施例
の場合と同じ条件で測定した比較例の特性値は、開放電
圧0.806volts、短絡電流15.58mA/cm2、FF47.82%、光電
変換効率6.014%である。
FIG. 3 is a graph showing initial external characteristics of a comparative example. The solar cell according to this comparative example was produced in exactly the same manner as in the above example except that the heat treatment was not performed on the p-layer (3). That is, the heat treatment is not performed on the p-layer (3).
The i-layer (4) was formed at a high temperature of 0 ° C. The characteristic values of the comparative example measured under the same conditions as those of the example are 0.806 volts open circuit voltage, 15.58 mA / cm 2 short circuit current, 47.82% FF, and 6.014% photoelectric conversion efficiency.

両特性の比較から、i層(4)の高温成膜前にp層
(3)に熱処理を施すことによって、FF等の初期外部特
性が改善されることがわかる。特に初期変換効率の大幅
な改善が認められる。
From the comparison between the two characteristics, it is understood that the initial external characteristics such as FF are improved by performing the heat treatment on the p layer (3) before forming the i layer (4) at a high temperature. In particular, a significant improvement in the initial conversion efficiency is observed.

p層(3)の成膜温度は、50℃以上、400℃以下が望
ましい。
The deposition temperature of the p-layer (3) is desirably 50 ° C. or more and 400 ° C. or less.

p層(3)の熱処理温度は、この層(3)の成膜温度
と同等又はこれより高いことが必要であって、100℃以
上、400℃以下であることが必要である。p層成膜温度
より100℃程度高い温度が最適である。処理時間は10分
以上、2時間以下が望ましい。なお、本実施例では真空
中で熱処理を行っているが、水素雰囲気でも良く、窒素
等の不活性ガスの雰囲気でも良い。
The heat treatment temperature of the p-layer (3) needs to be equal to or higher than the film formation temperature of the p-layer (3), and needs to be 100 ° C. or more and 400 ° C. or less. The optimum temperature is about 100 ° C. higher than the p-layer forming temperature. The processing time is preferably 10 minutes or more and 2 hours or less. Although the heat treatment is performed in a vacuum in this embodiment, the heat treatment may be performed in a hydrogen atmosphere or an inert gas atmosphere such as nitrogen.

i層(4)の成膜温度も、p層(3)の成膜温度と同
等又はこれより高いことが必要であって、100℃以上、4
00℃以下であることが必要である。このうち200℃以
上、400℃以下の範囲が望ましい。
The film formation temperature of the i-layer (4) also needs to be equal to or higher than the film formation temperature of the p-layer (3).
It is necessary that the temperature is not higher than 00 ° C. Among these, the range of 200 ° C. or more and 400 ° C. or less is desirable.

半導体層のうち最後に成膜するn層(5)の成膜温度
は、p層(3)の成膜温度と同等又はi層(4)の成膜
温度と同等が適当である。なお、以上のp、i、n各層
(3,4,5)の膜厚は、前記の値に限定されない。
The film formation temperature of the n-layer (5) formed last in the semiconductor layer is suitably equal to the film formation temperature of the p-layer (3) or the same as the film formation temperature of the i-layer (4). The thicknesses of the p, i, and n layers (3, 4, 5) are not limited to the above values.

前記SnO2以外の透明電極(2)の構成材料としては、
ITOやZnO等の他の透明な金属酸化物をあげることができ
る。これらの材料を複合使用しても良い。光電変換装置
を構成する非単結晶半導体としてはSi、SiC、SiN、SiG
e、SiSn等の水素化合金(例えば実施例でp層(3)に
使用したa−SiC:Hやi層(4)に使用したa−Si:H)
やフッ素化合金等の一般に光起電力素子に使用されるア
モルファスシリコン系半導体をあげることができる。上
記実施例においてn層(5)に使用したような微結晶を
含むアモルファス半導体でも良いし、多結晶半導体でも
良い。受光面側には、上記実施例のようにa−SiC:Hに
周期律表III b族の元素をドープしたp層(3)を配す
るのが最も好適である。ただし、受光面側にn層を配置
しても良く、この場合のn層には周期律表V b族の元素
をドープしたa−SiC:Hを使用するのが最適である。
The constituent materials of the transparent electrode (2) other than the SnO 2 include:
Other transparent metal oxides such as ITO and ZnO can be mentioned. These materials may be used in combination. Non-single-crystal semiconductors that make up the photoelectric conversion device include Si, SiC, SiN, and SiG
e, hydrogenated alloys such as SiSn (eg, a-SiC: H used for the p-layer (3) and a-Si: H used for the i-layer (4) in the examples)
And amorphous silicon-based semiconductors generally used for photovoltaic elements, such as fluorinated alloys. An amorphous semiconductor containing microcrystals as used for the n-layer (5) in the above embodiment may be used, or a polycrystalline semiconductor may be used. It is most preferable to arrange a p-layer (3) in which a-SiC: H is doped with an element of Group IIIb of the periodic table on the light-receiving surface side as in the above embodiment. However, an n-layer may be disposed on the light-receiving surface side, and in this case, it is optimal to use a-SiC: H doped with an element of the periodic table group Vb for the n-layer.

p層(3)とi層(4)との間又はn層(5)とi層
(4)との間にi層(4)に向かって光学的禁制帯幅及
び不純物濃度が段階的に減少する層を設けても良い。こ
の不純物半導体層の膜厚は、30Å以上、500Å以下が適
当であり、より好ましくは50Å以上、200Å以下であ
る。
The optical bandgap and impurity concentration gradually increase between the p-layer (3) and the i-layer (4) or between the n-layer (5) and the i-layer (4) toward the i-layer (4). A decreasing layer may be provided. The thickness of the impurity semiconductor layer is suitably 30 ° or more and 500 ° or less, and more preferably 50 ° or more and 200 ° or less.

受光面側の不純物半導体層(p層(3)又はn層)と
透明電極(2)との間に、両者間の接触抵抗を下げる目
的で、受光面側不純物半導体層と同じ導電型の高濃度ド
ーピング層を設けても良い。この高濃度ドーピング層の
膜厚は、5Å以上、100Å以下が適当であり、より好ま
しくは10Å以上、50Å以下である。不純物濃度は、受光
面側不純物半導体層の5倍以上、50倍以下が適当であ
る。
In order to reduce the contact resistance between the impurity semiconductor layer (p layer (3) or n layer) on the light receiving surface side and the transparent electrode (2), the same conductivity type high impurity layer as the light receiving surface side impurity semiconductor layer is used. A concentration doping layer may be provided. The thickness of the high-concentration doping layer is suitably from 5 ° to 100 °, more preferably from 10 ° to 50 °. The impurity concentration is suitably 5 times or more and 50 times or less of the impurity semiconductor layer on the light receiving surface side.

それぞれp層、i層及びn層からなる2素子をタンデ
ム接続した2段タンデム構造を採用する場合には、受光
面より遠い側の素子について本発明を適用するのが効果
的である。
In the case of adopting a two-stage tandem structure in which two elements each including a p-layer, an i-layer and an n-layer are connected in tandem, it is effective to apply the present invention to elements farther from the light receiving surface.

[発明の効果] 以上に説明したように、本発明に係る製造方法は、導
電型の異なる2つの不純物半導体層の間に真性半導体層
を設けた非単結晶半導体からなる光電変換装置の製造方
法であって、第1の不純物半導体層を成膜し、この層の
成膜温度と同等又はこれより高い温度でこの層に熱処理
を施し、この第1の不純物半導体層の成膜温度と同等又
はこれより高い温度で真性半導体層を成膜したうえで、
第2の不純物半導体層を成膜するものであるから、光電
変換装置の初期変換効率の低下を防止しながらその劣化
を抑制することができる。したがって、本発明によれば
高効率かつ高信頼性の光電変換装置を製造することがで
きる。
[Effects of the Invention] As described above, the manufacturing method according to the present invention is a method for manufacturing a photoelectric conversion device including a non-single-crystal semiconductor in which an intrinsic semiconductor layer is provided between two impurity semiconductor layers having different conductivity types. Forming a first impurity semiconductor layer, performing a heat treatment on the layer at a temperature equal to or higher than the film formation temperature of the first impurity semiconductor layer, and forming a first impurity semiconductor layer at a temperature equal to or higher than the film formation temperature of the first impurity semiconductor layer. After forming the intrinsic semiconductor layer at a higher temperature,
Since the second impurity semiconductor layer is formed, deterioration of the initial conversion efficiency of the photoelectric conversion device can be suppressed while preventing the deterioration. Therefore, according to the present invention, a highly efficient and highly reliable photoelectric conversion device can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例に係る方法で製造した太陽電池
の断面図、 第2図は前図の太陽電池の初期外部特性を示すグラフ、 第3図は比較例の初期外部特性を示すグラフである。 符号の説明 1……ガラス基板、2……透明電極、3……p層、4…
…i層、5……n層、6……裏面電極。
FIG. 1 is a cross-sectional view of a solar cell manufactured by a method according to an embodiment of the present invention, FIG. 2 is a graph showing initial external characteristics of the solar cell of the preceding figure, and FIG. 3 is a diagram showing initial external characteristics of a comparative example. It is a graph. DESCRIPTION OF SYMBOLS 1 ... Glass substrate, 2 ... Transparent electrode, 3 ... P layer, 4 ...
... i layer, 5 ... n layer, 6 ... back electrode.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−33919(JP,A) 特開 昭57−1272(JP,A) 特開 平2−82655(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 31/04 H01L 31/10 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-33919 (JP, A) JP-A-57-1272 (JP, A) JP-A-2-82655 (JP, A) (58) Field (Int.Cl. 6 , DB name) H01L 31/04 H01L 31/10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電型の異なる2つのp層、n層よりなる
不純物半導体層の間にi層の真性半導体層を設けた非単
結晶半導体からなる光電変換装置の製造方法であって、 p層、または、n層の第1の不純物半導体層を成膜し、
この層の成膜温度と同等又はこれより高い温度でこの層
に熱処理を施し、この第1の不純物半導体層の成膜温度
と同等又はこれより高い温度で真性半導体層を成膜した
うえで、n層、または、p層の第2の不純物半導体層を
成膜するものであり、 第1の不純物半導体層の熱処理温度を、100℃以上400℃
以下とし、また、真性半導体層の成膜温度を、100℃以
上400℃以下とする ことを特徴とする光電変換装置の製造方法。
1. A method for manufacturing a photoelectric conversion device comprising a non-single-crystal semiconductor in which an i-type intrinsic semiconductor layer is provided between two p-type and n-type impurity semiconductor layers having different conductivity types. Forming a layer or an n-layer first impurity semiconductor layer;
After performing a heat treatment on this layer at a temperature equal to or higher than the film formation temperature of this layer, and forming an intrinsic semiconductor layer at a temperature equal to or higher than the film formation temperature of the first impurity semiconductor layer, forming a second impurity semiconductor layer of an n-layer or a p-layer, wherein the heat treatment temperature of the first impurity semiconductor layer is 100 ° C. or more and 400 ° C.
A method for manufacturing a photoelectric conversion device, wherein the deposition temperature of an intrinsic semiconductor layer is 100 ° C. or more and 400 ° C. or less.
JP2082583A 1990-03-28 1990-03-28 Method for manufacturing photoelectric conversion device Expired - Lifetime JP2958491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2082583A JP2958491B2 (en) 1990-03-28 1990-03-28 Method for manufacturing photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2082583A JP2958491B2 (en) 1990-03-28 1990-03-28 Method for manufacturing photoelectric conversion device

Publications (2)

Publication Number Publication Date
JPH03280476A JPH03280476A (en) 1991-12-11
JP2958491B2 true JP2958491B2 (en) 1999-10-06

Family

ID=13778506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2082583A Expired - Lifetime JP2958491B2 (en) 1990-03-28 1990-03-28 Method for manufacturing photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2958491B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005159320A (en) * 2003-10-27 2005-06-16 Mitsubishi Heavy Ind Ltd Solar cell and manufacturing method for the same
JP2006269607A (en) * 2005-03-23 2006-10-05 Canon Inc Method of manufacturing photovoltaic power element

Also Published As

Publication number Publication date
JPH03280476A (en) 1991-12-11

Similar Documents

Publication Publication Date Title
US8872020B2 (en) Heterojunction solar cell based on epitaxial crystalline-silicon thin film on metallurgical silicon substrate design
JP3490964B2 (en) Photovoltaic device
US6368892B1 (en) Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
US5213628A (en) Photovoltaic device
US6878921B2 (en) Photovoltaic device and manufacturing method thereof
JP2846651B2 (en) Photovoltaic device
US20050092357A1 (en) Hybrid window layer for photovoltaic cells
JPH05243596A (en) Manufacture of laminated type solar cell
US4398054A (en) Compensated amorphous silicon solar cell incorporating an insulating layer
US20130157404A1 (en) Double-sided heterojunction solar cell based on thin epitaxial silicon
EP0099720B1 (en) Photovoltaic device
JPH0795603B2 (en) Photovoltaic device
JP2001267598A (en) Laminated solar cell
KR101886818B1 (en) Method for manufacturing of heterojunction silicon solar cell
JPS62234379A (en) Semiconductor device
JP2001028452A (en) Photoelectric conversion device
JP4158267B2 (en) Non-single crystal solar cell
US4857115A (en) Photovoltaic device
JP2958491B2 (en) Method for manufacturing photoelectric conversion device
US4672148A (en) Thin-film solar cells
JP2002016271A (en) Thin-film photoelectric conversion element
JP2634812B2 (en) Semiconductor device
JPS62209871A (en) Manufacture of photovoltaic device
JPH09181343A (en) Photoelectric conversion device
JPH0282655A (en) Manufacture of photovolatic device

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11