JP3248227B2 - Thin film solar cell and method of manufacturing the same - Google Patents

Thin film solar cell and method of manufacturing the same

Info

Publication number
JP3248227B2
JP3248227B2 JP09319192A JP9319192A JP3248227B2 JP 3248227 B2 JP3248227 B2 JP 3248227B2 JP 09319192 A JP09319192 A JP 09319192A JP 9319192 A JP9319192 A JP 9319192A JP 3248227 B2 JP3248227 B2 JP 3248227B2
Authority
JP
Japan
Prior art keywords
layer
solar cell
film solar
thin
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09319192A
Other languages
Japanese (ja)
Other versions
JPH05152592A (en
Inventor
伸二 藤掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP09319192A priority Critical patent/JP3248227B2/en
Publication of JPH05152592A publication Critical patent/JPH05152592A/en
Priority to US08/213,717 priority patent/US5507881A/en
Application granted granted Critical
Publication of JP3248227B2 publication Critical patent/JP3248227B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非晶質シリコン (以下
a−Siと略す) を主材料としたpin接合を有する薄膜
太陽電池およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin-film solar cell having a pin junction mainly composed of amorphous silicon (hereinafter abbreviated as a-Si) and a method of manufacturing the same.

【0002】[0002]

【従来の技術】原料ガスのグロー放電分解や光CVD法
により形成されるa−Siを主材料とした太陽電池は薄
膜、大面積化が容易という特長をもち、低コスト太陽電
池として期待されている。この種の太陽電池の構造とし
てはpin接合を有するpin型a−Si太陽電池が一般
的である。図2はこのような太陽電池の構造を示し、ガ
ラス基板1の上に、透明電極2、p型a−Si層31、p/
i界面層4、i質a−Si層5、n型a−Si層6、金属電
極7を順次積層することにより作製される。この太陽電
池は、ガラス基板1を通して入射する光により発電が起
こる。
2. Description of the Related Art A solar cell mainly composed of a-Si formed by glow discharge decomposition of a source gas or a photo-CVD method has features of being thin and capable of being easily enlarged, and is expected to be a low-cost solar cell. I have. As a structure of this type of solar cell, a pin-type a-Si solar cell having a pin junction is generally used. FIG. 2 shows a structure of such a solar cell, in which a transparent electrode 2, a p-type a-Si layer 31, a p /
It is manufactured by sequentially laminating an i interface layer 4, an i-type a-Si layer 5, an n-type a-Si layer 6, and a metal electrode 7. In this solar cell, power is generated by light incident through the glass substrate 1.

【0003】ここで、発電に寄与するフォトキャリアは
主にi層で発生し、pおよびn層はデッドレイヤーにな
っている。従って、p層から光が入射する太陽電池で
は、窓層にあたるp層の光透過率を高くし、できるだけ
多くの光がi層まで到達できるようにすることが出力を
増加させる上で重要である。そのためには、p層の光学
ギャップEgを増加させて光学吸収ロスを減少させること
が有効である。このような目的からp型a−Si層に、例
えば特開昭56−64476 号公報などで公知のように炭素原
子を添加したり、特開昭57−181176号公報で公知のよう
に窒素原子を添加したり、特開昭56−142680号公報で公
知のように酸素原子を添加したり、または特開昭58−19
6064号公報あるいは特開昭61−242085号公報で公知のよ
うに酸素原子と炭素原子を添加したりすることが試みら
れている。
Here, photocarriers contributing to power generation are mainly generated in the i-layer, and the p and n layers are dead layers. Therefore, in a solar cell in which light is incident from the p-layer, it is important to increase the light transmittance of the p-layer corresponding to the window layer so that as much light as possible reaches the i-layer in order to increase the output. . To that end, it is effective to increase the optical gap Eg of the p-layer to reduce the optical absorption loss. For this purpose, a carbon atom may be added to the p-type a-Si layer as known in, for example, JP-A-56-64476, or a nitrogen atom may be added as known in JP-A-57-181176. Or an oxygen atom as known in JP-A-56-142680, or JP-A-58-19.
Attempts have been made to add oxygen atoms and carbon atoms as known in JP-A-6064 or JP-A-61-242085.

【0004】[0004]

【発明が解決しようとする課題】p層成膜時に多量のC
やNを添加して合金化を図ると光学ギャップを増加させ
ることができる。しかし、同時に膜中に多量のダングリ
ングボンドが誘起されるため電気伝導度が低下してしま
う。通常、a−Si太陽電池では、フィルファクタの低下
を抑えるために、p層に使用する膜の25℃における電気
伝導度が10-8S/cm以上になるように制限される。この
条件を満たすためには上記のp型a−SiC:H (B) や
p型a−SiN:H (B) では光学ギャップを2eV以下に
せざるを得なかった。従って、p層中での光吸収ロスが
比較的大きく、短絡電流密度に換算して1〜2mA/cm2
のロスを生じていた。また上記の特開昭61−242085号公
報の記載によれば、ドーピングしないa−Si:O:C:
H膜ではAMI (擬似太陽光) 100 mW/cm2 照射時に光
学ギャップ2.0 eV以上の領域で電気伝導度 (σd ) は10
-12 〜10-13 s/cm程度であり、ドーピングした時にど
の程度の光学ギャップのp層が得られているかは明らか
でない。
A large amount of C is formed during the formation of a p-layer.
The optical gap can be increased by alloying by adding N or N. However, at the same time, a large amount of dangling bonds are induced in the film, so that the electric conductivity is reduced. Usually, in an a-Si solar cell, the electric conductivity at 25 ° C. of a film used for a p-layer is limited to 10 −8 S / cm or more in order to suppress a decrease in the fill factor. In order to satisfy this condition, the optical gap has to be set to 2 eV or less in the above-mentioned p-type a-SiC: H (B) and p-type a-SiN: H (B). Therefore, the light absorption loss in the p-layer is relatively large, and is 1 to 2 mA / cm 2 in terms of short-circuit current density.
Loss. Also, according to the description of JP-A-61-242085, undoped a-Si: O: C:
In the H film, the electric conductivity (σ d ) is 10 when the optical gap is 2.0 eV or more when AMI (simulated sunlight) is irradiated at 100 mW / cm 2.
It is about -12 to 10 -13 s / cm, and it is not clear how much the optical layer has a p-layer when doped.

【0005】本発明の目的は、上述の情勢に立脚し、電
気伝導度が0.5〜1×10-6S/cmで光学ギャップがより
大きなa−Si系膜を窓層に用いたより高効率な薄膜太陽
電池およびその製造方法を提供することにある。
An object of the present invention is based on the above-mentioned situation, and is based on the above-mentioned situation, and achieves higher efficiency by using an a-Si based film having an electric conductivity of 0.5 to 1 × 10 −6 S / cm and a larger optical gap as a window layer. An object of the present invention is to provide a thin-film solar cell and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明によれば、非晶質シリコンを主材料とした
p−i−n接合構造を有する薄膜太陽電池において、i
層の光入射側にあるp層あるいはn層が、一般式a−S
(1-X)Xで表され、0.10<X<0.40である非
晶質シリコンオキサイドからなり、かつその光学ギャッ
プが2.0eVないし2.2eV、25℃における光導
電率と暗導電率の比が5以下であり、非晶質シリコンオ
キサイドの酸素源が二酸化炭素であるものとする。ここ
で、i層の光入射側にある層がp層であり、p層とi層
の間にIIIの不純物添加量がp層より低い非晶質シリ
コンカーバイド層が介在することが有効である。また、
本発明によれば、非晶質シリコンを主材料としたp−i
−n接合構造を有する薄膜太陽電池において、i層の光
入射側にあるp層あるいはn層が、一般式a−Si
(1-X) X で表され、0.10<X<0.40である非晶
質シリコンオキサイドからなり、かつその光学ギャップ
が2.0eVないし2.2eV、25℃における光導電
率と暗導電率の比が5以下である薄膜太陽電池であっ
て、i層の光入射側にある層がp層であり、p層とi層
の間にIIIの不純物添加量がp層より低い非晶質シリ
コンオキサイド層が介在するものとする。さらに本発明
によれば、非晶質シリコンを主材料としたp−i−n接
合構造を有す薄膜太陽電池の製造方法において、i層の
光入射側にあるp層あるいはn層を、モノシランおよび
二酸化炭素がモノシランの10ないし50倍の水素で希
釈された混合ガスにドーピング用の不純物を含むガスを
添加し、基板温度150〜200℃で分解することによ
り基板上に生じる非晶質シリコンオキサイドによって形
成するものとする。ここで、混合ガスの分解をグロー放
電によることが有効である。
According to the present invention, there is provided a thin-film solar cell having a pin junction structure containing amorphous silicon as a main material.
The p-layer or the n-layer on the light incident side of the layer has the general formula aS
i is represented by (1-X) O X, 0.10 <X < consists amorphous silicon oxide which is 0.40, and the to the optical gap is not 2.0 eV 2.2 eV, the light conductivity at 25 ° C. der ratio of dark conductivity of 5 or less as is, amorphous Shirikon'o
Kisaido source of oxygen is carbon dioxide der shall. Here, the layer on the light incident side of the i-layer is the p-layer, and it is effective that an amorphous silicon carbide layer having a lower addition amount of III impurity than the p-layer is interposed between the p-layer and the i-layer. . Also,
According to the present invention, p-i containing amorphous silicon as a main material
In the thin-film solar cell having the n-junction structure, the light of the i-layer
The p-layer or the n-layer on the incident side has the general formula a-Si
It is represented by (1-X) O X, 0.10 <X <0.40 and is amorphous
Made of porous silicon oxide and its optical gap
Is 2.0 eV to 2.2 eV, photoconductive at 25 ° C.
Thin-film solar cell with a ratio of conductivity to dark conductivity of 5 or less.
The layer on the light incident side of the i-layer is a p-layer, and an amorphous silicon oxide layer having a lower addition amount of III is lower than the p-layer between the p-layer and the i-layer. Further, according to the present invention, in a method for manufacturing a thin-film solar cell having a pin junction structure mainly composed of amorphous silicon, the p-layer or the n-layer on the light incident side of the i-layer may be monosilane. Amorphous silicon oxide generated on a substrate by adding a gas containing impurities for doping to a mixed gas in which carbon dioxide is diluted with hydrogen of 10 to 50 times that of monosilane and decomposing at a substrate temperature of 150 to 200 ° C. Shall be formed by Here, it is effective to decompose the mixed gas by glow discharge.

【0007】[0007]

【作用】SiH4 、CO2 、H2 の混合ガスのグロー放電
分解により形成される膜には、0.5 %以上の炭素は取り
込まれず、a−Si(1-x) x で表わされ、0.10<x<0.
40であるa−SiOとなる。一般に、SiH4 、O2 等によ
り形成される膜は気相中でSiH4 とO2 が激しく反応し
てSiO2 が生成されるため、これが膜中に取り込まれて
欠陥の多い膜となってしまう。これに対し、上記の方法
ではSiH4 とCO 2 が気中で反応しないため、SiO2
生成されることがなく、欠陥の少ない良好な膜になる。
さらに、光学ギャップを2.0 〜2.3 eVの範囲に、また光
導電率σphと暗導電率σd の比σph/σd を5以下とす
ることにより、2.0 eV以上の光学ギャップで電気伝導度
10-8S/cm以上のp層またはn層を窓層とするp−i−
n接合薄膜太陽電池が得られる。そして、そのような膜
特性をもつa−SiOは、成膜時の基板温度および水素希
釈度の調整により形成できる。
[Function] SiHFour, COTwo, HTwoGlow discharge of mixed gas
The film formed by decomposition should not capture more than 0.5% of carbon.
A-Si(1-x)Ox0.10 <x <0.
A-SiO which is 40 is obtained. Generally, SiHFour, OTwoEtc.
The film formed is SiH in the gas phase.FourAnd OTwoReacts violently
SiTwoIs generated, and this is taken into the membrane and
This results in a film with many defects. In contrast, the above method
Then SiHFourAnd CO TwoDoes not react in the air,TwoBut
A good film with few defects is not generated.
Furthermore, the optical gap is set in the range of 2.0 to 2.3 eV,
Conductivity σphAnd dark conductivity σdRatio σph/ ΣdNot more than 5
Electrical conductivity in the optical gap of 2.0 eV or more
Ten-8P-i- with p or n layer of S / cm or more as window layer
An n-junction thin-film solar cell is obtained. And such a membrane
A-SiO with its characteristics can be obtained at substrate temperature and hydrogen dilution during film formation.
It can be formed by adjusting the degree of inclination.

【0008】[0008]

【実施例】図1は本発明の一実施例のa−Si太陽電池の
断面構造を示し、図2と共通の部分には同一の符号が付
されている。この太陽電池は以下のようにして作製され
る。まず、ガラス基板1の上に透明電極2としてSnO2
等の膜を5000〜10000 Åの厚さに形成する。この基板を
プラズマCVD装置に装着し、SiH4 ( モノシラン)、
CO2 を主ガス、H2 を希釈ガス、B2 6 をドーピン
グガスとしてグロー放電分解法によりp型a−SiO膜3
を100 〜200 Åの厚さに形成する。ここで、B2 6
添加量としてはB2 6 /SiH4 =0.2 〜1%、成膜時
の基板温度は140 〜250 ℃、水素希釈度 (H2 /SiH4)
は10〜50の範囲内とする。続いて、SiH4 、CH4
主ガス、H2 を希釈ガスとしてa−SiCのp/i界面層
4を50〜200 Åの厚さに形成する。このp/i界面層4
にはほう素を添加せず、光学ギャップがp層3とi層の
中間的な値 (1.8 〜2.0 eV) になるように成膜条件を選
定した。さらに、基板温度を200 〜250 ℃に上昇させて
から、SiH4 を主ガス、H2 を希釈ガスとしてi質a−
Si層5を2000〜5000Åの厚さに形成し、その上にSiH4
を主ガス、H2 を希釈ガス、PH3 をドーピングガスと
してn型a−Si層6を150 〜300 Åの厚さに形成する。
最後に、金属電極7としてAgやAlの蒸着あるいはスパッ
タリング法とパターニングにより形成する。
FIG. 1 shows a cross-sectional structure of an a-Si solar cell according to one embodiment of the present invention. The same reference numerals as in FIG. 2 denote the same parts. This solar cell is manufactured as follows. First, SnO 2 was used as a transparent electrode 2 on a glass substrate 1.
Is formed to a thickness of 5000 to 10000 mm. This substrate was mounted on a plasma CVD apparatus, and SiH 4 (monosilane),
A p-type a-SiO film 3 is formed by a glow discharge decomposition method using CO 2 as a main gas, H 2 as a diluent gas, and B 2 H 6 as a doping gas.
Is formed to a thickness of 100 to 200 mm. Here, the addition amount as B 2 H 6 / SiH 4 = 0.2 ~1% are of B 2 H 6, the substrate temperature during film formation 140 to 250 DEG ° C., hydrogen dilution (H 2 / SiH 4)
Is in the range of 10 to 50. Subsequently, a SiH 4, CH 4 and main gas, the a-SiC and H 2 as diluent gas p / i interface layer 4 to a thickness of 50 to 200 Å. This p / i interface layer 4
Was added without boron, and the film forming conditions were selected so that the optical gap was an intermediate value (1.8 to 2.0 eV) between the p layer 3 and the i layer. Further, after the substrate temperature was raised to 200 to 250 ° C., SiH 4 was used as a main gas and H 2 was used as a diluent gas to obtain i-type
A Si layer 5 is formed to a thickness of 2000 to 5000 mm, and SiH 4
Is used as a main gas, H 2 as a diluent gas, and PH 3 as a doping gas to form an n-type a-Si layer 6 having a thickness of 150 to 300 °.
Finally, the metal electrode 7 is formed by vapor deposition of Ag or Al or by sputtering and patterning.

【0009】SiH4 、CO2 を主ガス、H2 を希釈ガス
として成膜した膜は、膜中炭素濃度が0.5 %以下のa−
SiO膜になる。これは、作製された膜をX線光電子分光
法 (XPS) により組成分析することにより確認した。
図3にガス流量比 (CO2 /SiH4 ) とXPSにより求
めたSi、O、Cの組成比を示す。いずれの膜についても
炭素は検出限界 (0.5%) 以下になっている。
[0009] SiH 4, the CO 2 main gas, a film formed of H 2 as diluent gas, the carbon concentration in the film less 0.5% a-
It becomes an SiO film. This was confirmed by analyzing the composition of the formed film by X-ray photoelectron spectroscopy (XPS).
FIG. 3 shows the gas flow ratio (CO 2 / SiH 4 ) and the composition ratio of Si, O, and C determined by XPS. Carbon is below the detection limit (0.5%) in all films.

【0010】つぎに、a−SiO膜の成膜条件が膜特性、
すなわち電気伝導度と光学ギャップとの関係に与える影
響を調べた。まず、水素希釈度の与える影響を調べるた
めに次の実験を行った。結果を図4に示す。 使用ガス・・・・SiH4 、CO2 、H2 、B2 6 ガス流量比・・・H2 /SiH4 =10、15、20、30、50 B2 6 /SiH4 =0.006 CO2 /SiH4 =0.5 〜8 基板温度・・・・200℃ 圧 力・・・・・0. 5Torr 図4に示す結果からa−SiO膜特性が水素希釈度に大き
く依存することがわかる。a−Si太陽電池に使用して高
い変換効率が得られるのは前述したように電気伝導度が
10-8S/cm以上の膜である。そこで、電気伝導度が1×
10-6S/cmになる光学ギャップを求めた。水素希釈度1
0、15、20、30、50の膜についてみると、それぞれ、2.0
4 eV 、2.11 eV 、2.12eV 、2.09 eV 、2.03 eV になっ
ている。すなわち、いずれも2.0 eV以上の光学ギャップ
が得られるが、特に望ましいのは水素希釈度20であり、
15〜30の範囲にあれば非常に良好な特性が得られること
がわかった。
Next, the conditions for forming the a-SiO film are as follows:
That is, the influence on the relationship between the electric conductivity and the optical gap was examined. First, the following experiment was performed to investigate the effect of the hydrogen dilution degree. FIG. 4 shows the results. Gas used: SiH 4 , CO 2 , H 2 , B 2 H 6 gas flow ratio: H 2 / SiH 4 = 10, 15, 20, 30, 50 B 2 H 6 / SiH 4 = 0.006 CO 2 / SiH 4 = 0.5 to 8 Substrate temperature... 200 ° C. Pressure... 0.5 Torr From the results shown in FIG. High conversion efficiency can be obtained by using a-Si solar cells because electric conductivity is high as mentioned above.
It is a film of 10 -8 S / cm or more. Therefore, the electric conductivity is 1 ×
An optical gap of 10 −6 S / cm was obtained. Hydrogen dilution 1
Looking at the films 0, 15, 20, 30, and 50, 2.0
They are 4 eV, 2.11 eV, 2.12 eV, 2.09 eV, and 2.03 eV. In other words, an optical gap of 2.0 eV or more can be obtained in any case, but particularly desirable is a hydrogen dilution degree of 20,
It has been found that very good characteristics can be obtained if the range is 15 to 30.

【0011】さらに基板温度の与える影響を調べるため
次の実験を行った。結果を図5に示す。 使用ガス・・・・SiH4 、CO2 、H2 、B2 6 ガス流量比・・・H2 /SiH4 =20 B2 6 /SiH4 =0.006 CO2 /SiH4 =0.5 〜8 基板温度・・・・140 、170 、200 、250 ℃ 圧 力・・・・・0. 5Torr 図5に示す結果からa−SiO膜特性は基板温度にも大き
く依存することがわかる。電気伝導度が1×10-6S/cm
になる光学ギャップは、基板温度140 ℃、170 ℃、200
℃、250 ℃の膜について、それぞれ、2.08 eV 、2.13 e
V 、2.12 eV 、2.05 eV となっている。すなわち、いず
れも2.0 eV以上の水素ギャップが得られるが、特に望ま
しい基板温度は170 ℃であり、150 〜200 ℃の範囲にあ
れば良好な膜特性が得られることがわかった。なお、図
4、5から10-8S/cm以上の電気伝導度は光学ギャップ
2.2 eV以下のときに得られることがわかった。
The following experiment was conducted to examine the effect of the substrate temperature. FIG. 5 shows the results. Gas used: SiH 4 , CO 2 , H 2 , B 2 H 6 Gas flow ratio: H 2 / SiH 4 = 20 B 2 H 6 / SiH 4 = 0.006 CO 2 / SiH 4 = 0.5 to 8 Substrate temperature: 140, 170, 200, 250 ° C. Pressure: 0.5 Torr From the results shown in FIG. 5, it can be seen that the characteristics of the a-SiO film greatly depend on the substrate temperature. Electric conductivity is 1 × 10 -6 S / cm
The optical gap becomes substrate temperature 140 ° C, 170 ° C, 200 ° C.
2.08 eV and 2.13 e
V, 2.12 eV, and 2.05 eV. That is, although a hydrogen gap of 2.0 eV or more can be obtained in each case, a particularly desirable substrate temperature is 170 ° C., and it is found that good film characteristics can be obtained in the range of 150 to 200 ° C. It should be noted that the electrical conductivity of 10 -8 S / cm or more is shown in FIGS.
It was found that it was obtained at 2.2 eV or less.

【0012】以上、水素希釈度と基板温度についていえ
ば、水素希釈度20かつ基板温度170℃が最適な条件であ
り、このとき、電気伝導度が1×10-8S/cmになる光学
ギャップは2.13 eV となる。この光学ギャップは、従来
のa−SiC膜やa−SiN膜に比べて0.1 eV以上高くなっ
ており、極めてすぐれた特性が得られることがわかる。
また、水素希釈度15〜30かつ基板温度150 ℃〜200 ℃の
範囲にあれば、電気伝導度が1×10-6S/cmで光学ギャ
ップが約2.1 eVとなるような良好な特性が得られること
がわかる。
As described above, in terms of the hydrogen dilution degree and the substrate temperature, the optimum conditions are a hydrogen dilution degree of 20 and a substrate temperature of 170 ° C. At this time, the optical gap at which the electric conductivity is 1 × 10 −8 S / cm is obtained. Is 2.13 eV. This optical gap is higher than the conventional a-SiC film and a-SiN film by 0.1 eV or more, and it can be seen that extremely excellent characteristics can be obtained.
Further, if the hydrogen dilution degree is 15 to 30 and the substrate temperature is in the range of 150 to 200 ° C., good characteristics such as an electric conductivity of 1 × 10 −6 S / cm and an optical gap of about 2.1 eV can be obtained. It is understood that it is possible.

【0013】上記の最適な成膜条件、水素希釈度20、基
板温度170 ℃で形成したp型a−SiO膜の25℃における
光導電率、暗導電率を表1に示す。
Table 1 shows the photoconductivity and dark conductivity at 25 ° C. of the p-type a-SiO film formed under the above-mentioned optimum film forming conditions, hydrogen dilution degree of 20 and substrate temperature of 170 ° C.

【0014】[0014]

【表1】 [Table 1]

【0015】表1より10-8S/cm以上の電気伝導度を得
るには、σph/σd が5以下であることが必要であるこ
とがわかった。つぎに、p型a−SiC膜およびp型a−
SiO膜を適用して作製した図1と同様の構造およびその
p/i界面層4を省略した構造のシングルセルの特性比
較を行った。ここで、シングルセルのp層、i層、n層
の膜厚はそれぞれ100 Å、4000Å、200 Åとした。セル
に適用したp型a−SiO膜の成膜条件は次の通りであ
る。
From Table 1, it was found that σ ph / σ d must be 5 or less in order to obtain an electric conductivity of 10 −8 S / cm or more. Next, a p-type a-SiC film and a p-type a-
The characteristics of a single cell having the same structure as that shown in FIG. 1 manufactured by applying the SiO film and having a structure in which the p / i interface layer 4 was omitted were compared. Here, the p-layer, i-layer, and n-layer of the single cell had a thickness of 100 °, 4000 °, and 200 °, respectively. The conditions for forming the p-type a-SiO film applied to the cell are as follows.

【0016】 使用ガス・・・・SiH4 、CO2 、H2 、B2 6 ガス流量比・・・H2 /SiH4 =20 B2 6 /SiH4 =0.006 CO2 /SiH4 =2.5 基板温度・・・・170℃ 圧 力・・・・・0. 5Torr そして得られたp型a−SiO膜の特性は次の通りであっ
た。
Gas used: SiH 4 , CO 2 , H 2 , B 2 H 6 gas flow ratio: H 2 / SiH 4 = 20 B 2 H 6 / SiH 4 = 0.006 CO 2 / SiH 4 = 2.5 Substrate temperature: 170 ° C. Pressure: 0.5 Torr The characteristics of the obtained p-type a-SiO film were as follows.

【0017】 光学ギャップ・・・2.16 eV 光導電率・・・・・1.1 ×10-6S/cm 電気伝導度・・・・0.5 ×10-6S/cm 作製したセルの変換効率をAM1.5 、100 mW/cm2の光照
射下で測定した結果を表2に示す。
Optical gap: 2.16 eV Photoconductivity: 1.1 × 10 −6 S / cm Electrical conductivity: 0.5 × 10 −6 S / cm Table 2 shows the results measured under irradiation with light of 100 mW / cm 2 .

【0018】[0018]

【表2】 [Table 2]

【0019】この表から、a−SiO膜をp層に適用した
方がa−SiC膜を適用したときよりも大きなJSCが得ら
れ、p/i界面層あり、なしのそれぞれの場合でより高
い効率が得られることがわかる。また、a−SiCのp/
i界面層挿入効果は、p層がa−SiCよりなるときとa
−SiOよりなるときとでほぼ同等であることがわかっ
た。ところで、p/i界面層の役割は、これまで異種の
材料 (例えばa−SiCとa−Si) で生じる格子不整合を
緩和することであるとされてきた。そこで、これまで用
いられてきたp/i界面層は必ずp層もしくはi層と同
じ材料であり、かつp層とi層の中間的な組成のもので
あった。従って、今回実施したa−SiOのp層とa−Si
のi層の間にa−SiCのp/i界面層を挿入するような
試みはこれまでになく、従来の理論では新たな格子不整
合を発生させるだけであるとされてきた。しかし、現実
にはp/i界面層の挿入で変換効率が向上しており、従
来の理論では説明できない極めて驚くべき事実である。
この事実を我々は以下のモデルで説明している。すなわ
ち、p/i界面で生じる欠陥は格子不整合によるもので
なく、p層中のほう素がi層にオードドープされたこと
により生じたものである。したがって、p/i界面に、
ほう素を含まず光学ギャップの大きな界面層を挿入すれ
ば、ほう素のi層へのオートドープが抑制され、界面欠
陥を減少させることができる。
From this table, it can be seen that when the a-SiO film is applied to the p-layer, a larger J SC is obtained than when the a-SiC film is applied, and the JSC is larger in each case with and without the p / i interface layer. It can be seen that high efficiency can be obtained. Moreover, p / of a-SiC
The effect of the i-interface layer insertion is as follows when the p-layer is made of a-SiC and when the
It turned out that it is almost the same as when it consists of -SiO. By the way, it has been considered that the role of the p / i interface layer is to alleviate lattice mismatch caused by different materials (for example, a-SiC and a-Si). Therefore, the p / i interface layer used so far is always of the same material as the p-layer or the i-layer, and has a composition intermediate between the p-layer and the i-layer. Therefore, the a-Si p-layer and the a-Si
No attempt has been made to insert an a / SiC p / i interface layer between the i-layers of the above, and it has been said that the conventional theory only generates a new lattice mismatch. However, in reality, the conversion efficiency is improved by inserting the p / i interface layer, which is a surprising fact that cannot be explained by the conventional theory.
We explain this fact in the following model. That is, the defects generated at the p / i interface are not caused by lattice mismatch, but are caused by boron in the p layer being doped in the i layer by autodoping. Therefore, at the p / i interface,
If an interface layer having a large optical gap without boron is inserted, autodoping of boron into the i-layer is suppressed, and interface defects can be reduced.

【0020】図6にそれぞれa−SiCのp/i界面層を
挿入した2種類のセルの分光感度特性を示す。この図か
ら実線61に示すp型a−SiO膜を適用したセルの方が点
線62に示すp型a−SiC膜を用いたセルよりも短波長光
感度が向上していることがわかる。これらの結果から、
p型a−SiO膜をセルに適用するとp型a−SiC膜を用
いた場合よりも光吸収ロスを低減でき、このため短絡電
流が向上した高い変換効率が得られることがわかる。
FIG. 6 shows the spectral sensitivity characteristics of two types of cells each having an a / SiC p / i interface layer inserted therein. From this figure, it can be seen that the short-wavelength light sensitivity of the cell using the p-type a-SiO film shown by the solid line 61 is higher than that of the cell using the p-type a-SiC film shown by the dotted line 62. From these results,
It can be seen that when the p-type a-SiO film is applied to the cell, the light absorption loss can be reduced as compared with the case where the p-type a-SiC film is used, so that high conversion efficiency with improved short-circuit current can be obtained.

【0021】もちろん、p/i界面層4にa−SiOを用
いることもできる。そのようなセルに挿入されたa−Si
Oのp/i界面層の成膜条件は下記の通りである。 使用ガス・・・・SiH4 、CO2 、H2 ガス流量比・・・H2 /SiH4 =20 CO2 /SiH4 =0.25 基板温度・・・・170℃ 圧 力・・・・・0. 5Torr 得られた膜の特性は次の通りである。
Of course, a-SiO can also be used for the p / i interface layer 4. A-Si inserted into such a cell
The conditions for forming the p / i interface layer of O are as follows. Gas used: SiH 4 , CO 2 , H 2 gas flow ratio: H 2 / SiH 4 = 20 CO 2 / SiH 4 = 0.25 Substrate temperature: 170 ° C. Pressure: 0 The characteristics of the film obtained at 5 Torr are as follows.

【0022】 光学ギャップ・・・2.00 eV 光導電率・・・・・1.7 ×10-6S/cm 電気伝導度・・・・1.2 ×10-11 S/cm 図7はこのようなa−SiOのp/i界面層4を有するセ
ルの特性と界面層膜厚との関係を示す。図から分かるよ
うに、p/i界面層の挿入により開放電圧が増加し、変
換効率が向上する。p/i界面層4の膜厚が90Åのと
き、VOC=0.899 V、JSC=18.81mA /cm2 、FF=0.
740 で12.5%の最高変換効率が得られている。そして、
p/i界面層の膜厚は60〜120 Åが望ましいが、30〜18
0 Åの範囲であれば効果があることもわかる。
Optical gap: 2.00 eV Photoconductivity: 1.7 × 10 -6 S / cm Electrical conductivity: 1.2 × 10 -11 S / cm FIG. Shows the relationship between the characteristics of the cell having the p / i interface layer 4 and the thickness of the interface layer. As can be seen from the figure, the insertion voltage increases due to the insertion of the p / i interface layer, and the conversion efficiency improves. When the thickness of the p / i interface layer 4 is 90 °, V OC = 0.899 V, J SC = 18.81 mA / cm 2 , and FF = 0.
The highest conversion efficiency of 12.5% was obtained with the 740. And
The thickness of the p / i interface layer is desirably 60 to 120 mm, but is preferably 30 to 18 mm.
It can also be seen that the effect is within the range of 0 °.

【0023】以上、a−SiO膜をp層に適用することに
ついてのみ述べてきたが、本発明のa−SiO膜はn層に
適用しても有効である。下記の成膜条件でn層を作製し
た結果、図8に示すように電気伝導度1×10-6S/cmに
なる光学ギャップが2.1eV で良好な膜特性が得られてい
る。 使用ガス・・・・SiH4 、CO2 、H2 、PH3 ガス流量比・・・H2 /SiH4 =20 PH3 /SiH4 =0.01 CO2 /SiH4 =0.5 〜8 基板温度・・・・170℃ 圧 力・・・・・0. 5Torr
Although only the application of the a-SiO film to the p-layer has been described above, the application of the a-SiO film of the present invention to the n-layer is also effective. As a result of forming an n-layer under the following film forming conditions, as shown in FIG. 8, good optical properties were obtained with an optical gap of 2.1 eV at which the electrical conductivity was 1 × 10 −6 S / cm. Gas used: SiH 4 , CO 2 , H 2 , PH 3 gas flow ratio: H 2 / SiH 4 = 20 PH 3 / SiH 4 = 0.01 CO 2 / SiH 4 = 0.5 to 8 Substrate temperature・ ・ 170 ℃ Pressure ・ ・ ・ ・ ・ 0.5Torr

【0024】[0024]

【発明の効果】本発明によれば、p層をSiH4 、C
2 、H2 の混合ガスの分解により形成し、かつ成膜時
の基板温度、水素希釈度を適当な値に制御して、光学ギ
ャップ2.0〜2.2 eV、σph/σd >5以上にすることに
より、電気伝導度が10-8S/cm以上で光学ギャップが2.
1 eV以上となる膜を形成することができる。これによ
り、従来の光学ギャップ2.0 eV以下のp層を用いた時に
比べて光吸収ロスを低減でき、短絡電流密度を向上させ
ることができる。さらに、p/i界面にほう素を添加せ
ずに成膜したa−SiCあるいはa−SiOの界面層を挿入
することと合わせて、従来のp層を用いたときよりも変
換効率の高い太陽電池を得ることができる。
According to the present invention, the p layer is made of SiH 4 , C
An optical gap of 2.0 to 2.2 eV, σ ph / σ d > 5 or more is formed by decomposing a mixed gas of O 2 and H 2 and controlling the substrate temperature and the hydrogen dilution degree during film formation to appropriate values. By doing so, the electrical conductivity is 10 -8 S / cm or more and the optical gap is 2.
A film having a voltage of 1 eV or more can be formed. This makes it possible to reduce the light absorption loss and improve the short-circuit current density as compared with the case where a conventional p layer having an optical gap of 2.0 eV or less is used. Further, in addition to inserting an interface layer of a-SiC or a-SiO formed without adding boron at the p / i interface, a solar cell having a higher conversion efficiency than the conventional p-layer is used. You can get a battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のa−Si太陽電池のシングル
セルの断面図
FIG. 1 is a cross-sectional view of a single cell of an a-Si solar cell according to one embodiment of the present invention.

【図2】従来のa−Si太陽電池のシングルセルの断面図FIG. 2 is a cross-sectional view of a single cell of a conventional a-Si solar cell.

【図3】a−SiO膜のガス流量比と組成比との関係線図FIG. 3 is a relationship diagram between a gas flow ratio and a composition ratio of an a-SiO film.

【図4】p型a−SiO膜特性と水素希釈度との関係線図FIG. 4 is a diagram showing the relationship between p-type a-SiO film characteristics and hydrogen dilution.

【図5】p型a−SiO膜特性と基板温度との関係線図FIG. 5 is a diagram showing the relationship between p-type a-SiO film characteristics and substrate temperature.

【図6】p層にa−SiO膜を用いたセルとa−SiC膜を
用いたセルの分光感度特性線図
FIG. 6 is a spectral sensitivity characteristic diagram of a cell using an a-SiO film as a p-layer and a cell using an a-SiC film.

【図7】a−SiOのp/i界面層を挿入した太陽電池セ
ルの特性と界面層厚膜との関係線図
FIG. 7 is a diagram showing the relationship between the characteristics of a solar cell in which ap / i interface layer of a-SiO is inserted and the interface layer thick film.

【図8】n型a−SiO膜の電気伝導度と光学ギャップと
の関係線図
FIG. 8 is a diagram showing the relationship between the electrical conductivity of the n-type a-SiO film and the optical gap.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 透明電極 3 p型a−SiO層 4 p/i界面層 5 i質a−Si層 6 n型a−Si層 7 金属電極 Reference Signs List 1 glass substrate 2 transparent electrode 3 p-type a-SiO layer 4 p / i interface layer 5 i-type a-Si layer 6 n-type a-Si layer 7 metal electrode

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】非晶質シリコンを主材料としたp−i−n
接合構造を有する薄膜太陽電池において、i層の光入射
側にあるp層あるいはn層が、一般式a−Si(1-X)X
で表され、0.10<X<0.40である非晶質シリコ
ンオキサイドからなり、かつその光学ギャップが2.0
eVないし2.2eV、25℃における光導電率と暗導
電率の比が5以下であり、非晶質シリコンオキサイドの
酸素源が二酸化炭素であることを特徴とする薄膜太陽電
池。
1. A pin comprising amorphous silicon as a main material.
In a thin-film solar cell having a junction structure, the p-layer or the n-layer on the light incident side of the i-layer has a general formula a-Si (1-X) O x
And 0.10 <X <0.40, and has an optical gap of 2.0.
It is no eV 2.2 eV, Ri der ratio of photoconductivity and dark conductivity is 5 or less at 25 ° C., the amorphous silicon oxide
Thin film solar cell source of oxygen and wherein the carbon dioxide der Rukoto.
【請求項2】i層の光入射側にある層がp層であり、p
層とi層の間にIII族の不純物添加量がp層より低い
非晶質シリコンカーバイド層が介在する請求項1記載の
薄膜太陽電池。
2. A layer on the light incident side of the i-layer is a p-layer,
2. The thin-film solar cell according to claim 1, wherein an amorphous silicon carbide layer in which the amount of Group III impurities added is lower than that of the p layer is interposed between the layer and the i layer.
【請求項3】非晶質シリコンを主材料としたp−i−n
接合構造を有する薄膜太陽電池において、i層の光入射
側にあるp層あるいはn層が、一般式a−Si (1-X) X
で表され、0.10<X<0.40である非晶質シリコ
ンオキサイドからなり、かつその光学ギャップが2.0
eVないし2.2eV、25℃における光導電率と暗導
電率の比が5以下である薄膜太陽電池であって、i層の
光入射側にある層がp層であり、p層とi層の間にII
Iの不純物添加量がp層より低い非晶質シリコンオキサ
イド層が介在することを特徴とする薄膜太陽電池。
3. A pin using amorphous silicon as a main material.
Light incident on the i-layer in a thin-film solar cell having a junction structure
The p-layer or the n-layer on the side has the general formula a-Si (1-X) O x
Amorphous silicon satisfying 0.10 <X <0.40
And an optical gap of 2.0
eV to 2.2eV, photoconductivity and dark conductivity at 25 ° C
A thin-film solar cell having a power ratio of 5 or less, wherein a layer on the light incident side of the i-layer is a p-layer, and II is provided between the p-layer and the i-layer.
A thin-film solar cell comprising an amorphous silicon oxide layer in which the amount of I added is lower than that of a p-layer.
【請求項4】非晶質シリコンを主材料としたp−i−n
接合構造を有する薄膜太陽電池の製造方法において、i
層の光入射側にあるp層あるいはn層を、モノシランお
よび二酸化炭素がモノシランの10ないし50倍の水素
で希釈された混合ガスにドーピング用の不純物を含むガ
スを添加し、基板温度150〜200℃で分解すること
により基板上に生ずる非晶質シリコンオキサイドによっ
て形成することを特徴とする薄膜太陽電池の製造方法。
4. A pin using amorphous silicon as a main material.
In a method for manufacturing a thin film solar cell having a junction structure,
The p-layer or the n-layer on the light incident side of the layer is added to a mixed gas obtained by diluting monosilane and carbon dioxide with hydrogen 10 to 50 times that of monosilane and containing a gas containing doping impurities, and the substrate temperature is 150 to 200. A method for manufacturing a thin-film solar cell, wherein the thin-film solar cell is formed by amorphous silicon oxide generated on a substrate by decomposition at a temperature of ° C.
【請求項5】混合ガスの分解をグロー放電分解による請
求項記載の薄膜太陽電池の製造方法。
5. The method according to claim 4, wherein the decomposition of the mixed gas is performed by glow discharge decomposition.
JP09319192A 1991-09-30 1992-04-14 Thin film solar cell and method of manufacturing the same Expired - Lifetime JP3248227B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP09319192A JP3248227B2 (en) 1991-09-30 1992-04-14 Thin film solar cell and method of manufacturing the same
US08/213,717 US5507881A (en) 1991-09-30 1994-03-16 Thin-film solar cell and method of manufacturing same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-249936 1991-09-30
JP24993691 1991-09-30
JP09319192A JP3248227B2 (en) 1991-09-30 1992-04-14 Thin film solar cell and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05152592A JPH05152592A (en) 1993-06-18
JP3248227B2 true JP3248227B2 (en) 2002-01-21

Family

ID=26434624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09319192A Expired - Lifetime JP3248227B2 (en) 1991-09-30 1992-04-14 Thin film solar cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3248227B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3047666B2 (en) * 1993-03-16 2000-05-29 富士電機株式会社 Method for forming silicon oxide semiconductor film
JP2001203374A (en) * 2000-01-21 2001-07-27 Fuji Electric Corp Res & Dev Ltd Amorphous thin film solar cell and its manufacturing method
JP4068043B2 (en) * 2003-10-28 2008-03-26 株式会社カネカ Stacked photoelectric conversion device
AU2004259485B2 (en) 2003-07-24 2009-04-23 Kaneka Corporation Stacked photoelectric converter
EP2216826A4 (en) * 2007-11-30 2016-10-12 Kaneka Corp Silicon thin film photoelectric conversion device
JP5409675B2 (en) * 2011-03-08 2014-02-05 三菱電機株式会社 Thin film solar cell and manufacturing method thereof
KR20130112148A (en) * 2012-04-03 2013-10-14 엘지전자 주식회사 Thin film solar cell
WO2017130654A1 (en) * 2016-01-25 2017-08-03 長州産業株式会社 Photovoltaic element

Also Published As

Publication number Publication date
JPH05152592A (en) 1993-06-18

Similar Documents

Publication Publication Date Title
US5942049A (en) Increasing stabilized performance of amorphous silicon based devices produced by highly hydrogen diluted lower temperature plasma deposition
US5507881A (en) Thin-film solar cell and method of manufacturing same
US4388482A (en) High-voltage photovoltaic cell having a heterojunction of amorphous semiconductor and amorphous silicon
US7879644B2 (en) Hybrid window layer for photovoltaic cells
US4450316A (en) Amorphous silicon photovoltaic device having two-layer transparent electrode
AU2005200023B2 (en) Photovoltaic device
JP3047666B2 (en) Method for forming silicon oxide semiconductor film
JPS6249672A (en) Amorphous photovoltaic element
Myong et al. Improvement of pin-type amorphous silicon solar cell performance by employing double silicon-carbide p-layer structure
US5419783A (en) Photovoltaic device and manufacturing method therefor
AU2011219223B8 (en) Thin-film photoelectric conversion device and method for production thereof
JP2692091B2 (en) Silicon carbide semiconductor film and method for manufacturing the same
JP3248227B2 (en) Thin film solar cell and method of manufacturing the same
JPWO2005109526A1 (en) Thin film photoelectric converter
JPH0595126A (en) Thin film solar battery and manufacturing method thereof
JP2008283075A (en) Manufacturing method of photoelectric conversion device
JP3245962B2 (en) Manufacturing method of thin film solar cell
US4680607A (en) Photovoltaic cell
JPH11274527A (en) Photovoltaic device
JP4110718B2 (en) Manufacturing method of multi-junction thin film solar cell
JP2000150935A (en) Photovoltaic element
JP2822358B2 (en) Manufacturing method of thin film solar cell
Platz et al. VHF-deposited a-SiC: H alloys for high-bandgap solar cells: combining high Voc and reasonable stability
JPS62165374A (en) Amorphous photovoltaic element
JPH04299576A (en) Photovoltaic element and its manufacture

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091109

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091109

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 11