JP2822358B2 - Manufacturing method of thin film solar cell - Google Patents

Manufacturing method of thin film solar cell

Info

Publication number
JP2822358B2
JP2822358B2 JP3007329A JP732991A JP2822358B2 JP 2822358 B2 JP2822358 B2 JP 2822358B2 JP 3007329 A JP3007329 A JP 3007329A JP 732991 A JP732991 A JP 732991A JP 2822358 B2 JP2822358 B2 JP 2822358B2
Authority
JP
Japan
Prior art keywords
layer
film
thickness
solar cell
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3007329A
Other languages
Japanese (ja)
Other versions
JPH04212474A (en
Inventor
伸二 藤掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of JPH04212474A publication Critical patent/JPH04212474A/en
Application granted granted Critical
Publication of JP2822358B2 publication Critical patent/JP2822358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非晶質シリコン (以下
a−Siと略す) を主材料としたpin接合を有し、透光
性絶縁基板および透明電極を通じてのp層側からの光の
入射により起電力を生ずる薄膜太陽電池の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a pin junction mainly made of amorphous silicon (hereinafter abbreviated as a-Si), and is provided with a light from a p-layer through a transparent insulating substrate and a transparent electrode. The present invention relates to a method for manufacturing a thin-film solar cell which generates an electromotive force by incidence of light.

【0002】[0002]

【従来の技術】モノシランガスなどのグロー放電分解や
光分解により形成されるa−Si薄膜は、気相成長法によ
って得られるため大面積化が容易であり、低コスト太陽
電池の光電変換層に用いられる。
2. Description of the Related Art An a-Si thin film formed by glow discharge decomposition or photolysis of monosilane gas or the like can be easily formed into a large area because it is obtained by a vapor phase growth method, and is used for a photoelectric conversion layer of a low-cost solar cell. Can be

【0003】通常、a−Si太陽電池は図2にシングルセ
ルについて示すように、ガラス等の透光絶縁性基板1の
上に透明電極のための透明導電膜としてSnO2 膜2を形
成し、その上にSiH4 , CH4 を主ガスとし、B2 6
をドーピングガス, H2 を希釈ガスとして、プラズマC
VD法により非晶質シリコンカーバイド (以下a−SiC
と略す) のp層3を80〜150 Åの厚さに形成する。つづ
いてSiH4 を主ガス,H2 を希釈ガスとしてi層5を形
成し、さらにSiH4 を主ガス, H2 を希釈ガス, PH3
をドーピングガスとしてn層6を 100〜2000Åの厚さに
形成し、裏面電極7を形成することにより作製される。
図示の場合はp層3とi層5の間に、ノンドープあるい
は微量のほう素をドーピングしたa−SiCのインタフェ
ース層4が形成されており、これにより主に開放電圧V
OCの向上がはかられる。
Normally, an a-Si solar cell has a SnO 2 film 2 formed as a transparent conductive film for a transparent electrode on a light-transmitting insulating substrate 1 such as glass as shown in FIG. On top of that, SiH 4 and CH 4 are used as main gases, and B 2 H 6
Plasma as a doping gas and H 2 as a dilution gas
Amorphous silicon carbide (hereinafter a-SiC)
) Is formed to a thickness of 80 to 150 mm. The SiH 4 Then main gas to form the i layer 5 and H 2 as diluent gas, further SiH 4 main gas, diluent gas and H 2, PH 3
Is formed as a doping gas to form an n-layer 6 with a thickness of 100 to 2000 ° and a back electrode 7.
In the case shown in the figure, an a-SiC interface layer 4 doped with a non-doped or a small amount of boron is formed between the p layer 3 and the i layer 5, whereby the open voltage V
OC can be improved.

【0004】[0004]

【発明が解決しようとする課題】図3において、i層の
厚さ4000Åのシングルセルのp層膜厚とセル特性の関係
を破線31で示す。図からわかるように、p層を薄くする
ほどp層中での光学吸収損失が小さくなるため短絡電流
密度JSCが向上する。その半面、p層の厚さを 100Å以
下にするとVOCが大きく低下するという問題があった。
そのため、従来の太陽電池では、p層膜厚を 100Å以上
にする必要があり、JSCが低かった。
In FIG. 3, a broken line 31 shows the relationship between the p-layer thickness and the cell characteristics of a single cell having a thickness of 4000 ° of the i-layer. As can be seen from the figure, the thinner the p layer, the smaller the optical absorption loss in the p layer, and thus the higher the short-circuit current density J SC . On the other hand, when the thickness of the p-layer is set to 100 ° or less, there is a problem that V OC is greatly reduced.
Therefore, in the conventional solar cell, the p-layer thickness needs to be 100 ° or more, and J SC is low.

【0005】本発明の目的は、上記の問題を解決し、p
層を薄くしてもVOCが低下することがなく、高い変換効
率が得られる薄膜太陽電池の製造方法を提供することに
ある。
[0005] An object of the present invention is to solve the above-mentioned problems,
It is an object of the present invention to provide a method of manufacturing a thin-film solar cell in which a high conversion efficiency can be obtained without reducing V OC even when the layer is thinned.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の薄膜太陽電池の製造方法は、透光絶縁性
基板上にSnO2 膜およびZnO膜を順に積層して透明電極
を形成したのち、シランガスを含む水素ふん囲気中でZn
O膜の表面に、プラズマCVD法で微結晶シリコンを成
膜する際の条件で放電処理を行い、つづいてa−Siを主
材料とするp層, i層およびn層をp層側から積層し、
n層の表面に接触する裏面電極を形成するものとする。
そして、ZnO膜の厚さを 150〜400 Åとすることが有効
である。また、p層がa−SiCよりなり、その厚さを30
〜80Åとすることが有効である。さらに、放電ふん囲気
中のシランガスがSiH4 であること、またそのふん囲気
中にB2 6 を添加することあるいは放電処理と同一条
件のプラズマCVD法の際の微結晶シリコン層の成長速
度と放電処理時間との積が10〜100 Åであることも有効
である。
In order to achieve the above object, a method for manufacturing a thin-film solar cell according to the present invention comprises forming a transparent electrode by sequentially laminating a SnO 2 film and a ZnO film on a transparent insulating substrate. After formation, Zn in a hydrogen atmosphere containing silane gas
Discharge treatment is performed on the surface of the O film under conditions for forming microcrystalline silicon by plasma CVD, and then a p-layer, an i-layer, and an n-layer mainly composed of a-Si are stacked from the p-layer side And
It is assumed that a back electrode that contacts the surface of the n-layer is formed.
It is effective to set the thickness of the ZnO film to 150 to 400 mm. Further, the p-layer is made of a-SiC, and its thickness is 30
It is effective to set it to ~ 80Å. Further, the silane gas in the discharge atmosphere is SiH 4 , and the growth rate of the microcrystalline silicon layer in the plasma CVD method under the same conditions as the B 2 H 6 added to the discharge atmosphere or the discharge treatment. It is also effective that the product of the discharge processing time and the discharge processing time is 10 to 100 mm.

【0007】[0007]

【作用】表面にSnO2 膜を被着した基板上にp層を形成
すると、SnO2 からSnおよびOがp層に拡散し、初期の
数十Åの厚さのp膜は良好なp層にならないことがわか
った。この拡散を、SnO2 膜の上をZnO膜により被覆す
ることにより防止すればp層の形成初期から良好な膜が
形成される。しかし、透明電極の表面にZnO膜を形成す
ると、ZnOとa−SiCあるいはa−Siのp層との間に大
きなポテンシャルバリアを生じ、VOCが低くなる。これ
に対し、p層形成前にプラズマCVD法による微結晶シ
リコン (以下μc-Siと略す) 成膜の際と同様にシランガ
スを含むH 2 ふん囲気中で放電処理を施すと、上述のポ
テンシャルバリアが小さくなってV OCが向上する。
[Function] SnO on the surfaceTwoForm p-layer on substrate with film deposited
Then, SnOTwoFrom the diffusion of Sn and O into the p layer,
It turns out that a p-film with a thickness of several tens of mm is not a good p-layer.
Was. This diffusion, SnOTwoCoating the film with ZnO film
A good film from the initial stage of p-layer formation.
It is formed. However, a ZnO film is formed on the surface of the transparent electrode.
Then, there is a large gap between ZnO and the p-layer of a-SiC or a-Si.
Potential barrier, and VOCBecomes lower. this
In contrast, before forming the p-layer,
Recon (hereinafter abbreviated as μc-Si)
H including TwoWhen discharge treatment is performed in an atmosphere,
As the tension barrier becomes smaller, V OCIs improved.

【0008】[0008]

【実施例】図1は、本発明の一実施例のa−Si太陽電池
のシングルセルを示し、図2と共通の部分には同一の符
号が付されている。図2の断面構造と異なる点は、透明
電極を構成するSnO2 膜2とa−SiCのp層3の間にZn
O膜8が挿入されていることである。
FIG. 1 shows a single cell of an a-Si solar cell according to one embodiment of the present invention, and portions common to those in FIG. 2 are denoted by the same reference numerals. The difference from the cross-sectional structure of FIG. 2 is that the ZnO layer 2 between the SnO 2 film 2 and the p-layer 3 of a-SiC constitutes a transparent electrode.
That is, the O film 8 is inserted.

【0009】この太陽電池は以下のようにして作製し
た。まず、ガラス基板1の上にふっ素ドープSnO2 膜2
を3000〜10000 Åの厚さに形成する。その上に 150〜40
0 Åの厚さのZnO膜8を積層し、SnO2 /ZnO透明導電
膜とする。ZnO膜8は、Al1%ドープのターゲツトを用
いてスパッタリング法により形成した。この基板をプラ
ズマCVD装置に装着し、まずH2 で 100倍に希釈した
SiH4 およびドーピングガスB2 6 を導入し、通常の
a−Si膜形成時の約10倍の電力で2〜5分間放電を行っ
た。この成膜条件は、定常的にはμc-Siが成長する条件
であるが、2〜5分間の処理時間では基板の透過率が変
化しない。X線光電子分光法 (XPS) による分析結果
から2〜5分の放電処理後では、ZnOからの酸素の拡散
により透明なSiO2 が成長するため透過率が変化しない
ことが分かった。
This solar cell was manufactured as follows. First, a fluorine-doped SnO 2 film 2 was placed on a glass substrate 1.
Is formed to a thickness of 3000-10000 mm. On top of it, 150-40
A ZnO film 8 having a thickness of 0 ° is laminated to form a SnO 2 / ZnO transparent conductive film. The ZnO film 8 was formed by a sputtering method using a target doped with 1% of Al. This substrate was mounted on a plasma CVD apparatus, and was first diluted 100 times with H 2 .
SiH 4 and a doping gas B 2 H 6 were introduced, and discharging was performed for about 2 to 5 minutes at a power about 10 times that of forming a normal a-Si film. This film formation condition is a condition under which μc-Si grows constantly, but the transmittance of the substrate does not change in a processing time of 2 to 5 minutes. Analysis results by X-ray photoelectron spectroscopy (XPS) showed that after discharge treatment for 2 to 5 minutes, the transmittance did not change because transparent SiO 2 grew due to diffusion of oxygen from ZnO.

【0010】次に、SiH4 およびCH4 を主ガス、H2
を希釈ガス、B2 6 をドーピングガスとしてa−SiC
のp層3を30〜80Åの厚さに形成した。つづいて、ほう
素を添加せずにa−SiCのインタフェース層4を60〜12
0 Åの厚さに形成し、さらにa−Siのi層5を3000〜60
00Å, n層6を 150Åの厚さに順次形成し、最後に裏面
電極7としてAlを蒸着した。
Next, SiH 4 and CH 4 are used as main gases, and H 2
A as a diluent gas and B 2 H 6 as a doping gas.
Was formed to a thickness of 30 to 80 °. Subsequently, the interface layer 4 of a-SiC was added to the layer 60 to 12 without adding boron.
0Å thick, and an i-layer 5 of a-Si
00 °, n layer 6 was sequentially formed to a thickness of 150 °, and finally Al was deposited as back electrode 7.

【0011】図3の実線32は、図1の構造を有し、ZnO
膜8の厚さが 150Å、i層5の厚さが4000Åのシングル
セルのp層3の膜厚とセル特性の関係を示す。図2の従
来構造では、p層3の厚さを 100Å以下にするとVOC
大きく低下したのに対し、本発明を実施することにより
p層の厚さを40ÅとしてもVOCは同じ値を維持した。こ
のように、本発明によりp層3の膜厚を薄くすることが
可能となり、VOCを低下させずにJSCを向上させること
ができるようになった。その結果変換効率ηの最高値
が、従来構造ではp層3の膜厚 100Åでの11.8%であっ
たのに対し、本発明の実施例ではp層3の膜厚40Åでの
12.4%と向上した。図からわかるように、本発明が効果
を発揮し、高い効率が得られるようなp層膜厚の範囲は
30〜80Åである。なお、曲線因子FFは、従来構造でも本
発明の実施例でもp層膜厚に依存しない。
The solid line 32 in FIG. 3 has the structure of FIG.
The relationship between the thickness of the p-layer 3 of the single cell in which the thickness of the film 8 is 150 ° and the thickness of the i-layer 5 is 4000 ° and the cell characteristics are shown. In the conventional structure of FIG. 2, when the thickness of the p-layer 3 is reduced to 100 ° or less, V OC is greatly reduced. On the other hand, by implementing the present invention, the same value of V OC is obtained even when the thickness of the p-layer 3 is set to 40 °. Maintained. As described above, according to the present invention, the thickness of the p layer 3 can be reduced, and J SC can be improved without lowering V OC . As a result, the maximum value of the conversion efficiency η was 11.8% at the film thickness of the p layer 3 of 100 ° in the conventional structure, whereas the maximum value of the conversion efficiency η was 40% at the film thickness of the p layer 3 in the embodiment of the present invention.
It improved to 12.4%. As can be seen from the figure, the range of the p-layer thickness at which the present invention is effective and high efficiency is obtained is as follows.
30-80Å. Note that the fill factor FF does not depend on the p-layer thickness in both the conventional structure and the embodiment of the present invention.

【0012】図4は、SnO2 膜2の上に被覆したZnO膜
8の膜厚とセル特性の関係を示す。図から、ZnO膜8の
膜厚を 100Å以下にすると、VOCおよびJSCが低下する
ことがわかる。これは、ZnO膜厚 100Å以下では、SnO
2 からp層中へのSn, Oの拡散を完全に防止できないた
めである。一方、ZnO膜8の膜厚を 200Å以上にする
と、次第にJSCが低下する。これはZnOの光学吸収損失
によるものである。以上のことから、ZnO膜8が高効率
化に効果を発揮する膜厚は 150〜400 Åである。
FIG. 4 shows the relationship between the thickness of the ZnO film 8 coated on the SnO 2 film 2 and the cell characteristics. From the figure, it is understood that when the thickness of the ZnO film 8 is set to 100 ° or less, V OC and J SC decrease. This is because when the ZnO film thickness is 100 °
This is because the diffusion of Sn and O from 2 into the p layer cannot be completely prevented. On the other hand, when the thickness of the ZnO film 8 is set to 200 ° or more, J SC gradually decreases. This is due to the optical absorption loss of ZnO. From the above, the thickness at which the ZnO film 8 exhibits the effect of increasing the efficiency is 150 to 400 mm.

【0013】次に、a−SiCのp層成膜の前に行う放電
処理について検討した。放電処理なし, Bドープμc-Si
およびノンドープμc-Siの成膜条件での放電処理および
SiH 4 ガスを混合しないH2 プラズマ処理について検討
した。その結果を表1に示す。
Next, a discharge performed before the formation of the p-layer of a-SiC.
The treatment was discussed. No discharge treatment, B-doped μc-Si
And non-doped μc-Si under discharge conditions
SiH FourH without mixing gasTwoStudy on plasma treatment
did. Table 1 shows the results.

【0014】[0014]

【表1】 [Table 1]

【0015】ここで、成膜p層3の厚さは40Åであり、
μc-Si処理およびH2 プラズマ処理の放電パワーはすべ
て一定で、通常のa−SiC成膜時の約10倍である。処理
時間はすべて5分間とした。表から、処理を行わない場
合、VOCが低いことがわかる。これは前述のように、処
理を行わない場合にZnO膜8とa−SiCのp層3の間に
大きなポテンシャルバリアを生じるため、p層40Åでは
十分な拡散電位が得られないためと考えられる。これに
対し、μc-Si処理を行うことにより、Bドープのあり,
なしにかかわらずVOCが向上し、高い変換効率ηが得ら
れることがわかった。これは、上述のポテンシャルバリ
アが小さくなったため、あるいは極薄いコンタクト層が
形成されたためと考えられる。一方、SiH4 を導入せず
2 のみで行ったプラズマ処理ではFFが大きく低下し、
変換効率は未処理の場合よりも小さくなった。以上のこ
とから、ZnO膜形成後にμc-Siの成膜条件で放電処理す
ることが有効である。
Here, the thickness of the deposited p-layer 3 is 40 °,
The discharge powers of the μc-Si processing and the H 2 plasma processing are all constant, and are about 10 times that of ordinary a-SiC film formation. All treatment times were 5 minutes. From the table, it can be seen that when no processing is performed, V OC is low. It is considered that this is because, as described above, a large potential barrier occurs between the ZnO film 8 and the a-SiC p layer 3 when no treatment is performed, so that a sufficient diffusion potential cannot be obtained with the p layer 40 #. . On the other hand, by performing the μc-Si treatment,
It was found that V OC was improved irrespective of the presence or absence, and high conversion efficiency η was obtained. This is probably because the potential barrier described above was reduced or an extremely thin contact layer was formed. On the other hand, in the plasma processing performed only with H 2 without introducing SiH 4 , the FF is greatly reduced,
The conversion efficiency was smaller than the untreated case. From the above, it is effective to perform discharge treatment under μc-Si film formation conditions after the formation of the ZnO film.

【0016】次にμc-Si条件での放電処理により形成さ
れる膜の厚さについて検討した。しかし、実際に形成さ
れた膜の厚さを測るのは難しいので、その条件でプラズ
マCVD法を実施してある程度厚いμc-Si膜を形成した
場合の成長速度(D) を求めておき、その速度と放電処理
時間(T) との積 (D×T) を膜厚を考えた。図5はD×
Tとセル特性の関係を示し、例えばD×T=50Åはμc-
Siならば12.5Å/minの成長速度が得られる条件で4分
間の放電処理を行った場合である。図からD×T≧30Å
にすることにより十分なVOCが得られることがわかる。
また、D×T≦60Åの範囲では成長する膜がSiO2 とな
るため光学吸収ロスにはならない。このためJSCが低下
せず一定値を保っている。以上のことからD×Tの値は
20〜60Åが望ましいが10〜100 Åであれば実用できる特
性が得られる。
Next, the thickness of the film formed by the discharge treatment under the μc-Si condition was examined. However, since it is difficult to measure the thickness of the actually formed film, the growth rate (D) in the case where a somewhat thick μc-Si film is formed by performing a plasma CVD method under the conditions is obtained. The product (D × T) of the speed and the discharge processing time (T) was considered as the film thickness. FIG. 5 shows D ×
The relationship between T and cell characteristics is shown. For example, D × T = 50 ° is μc−
In the case of Si, this is a case where the discharge treatment was performed for 4 minutes under the condition that a growth rate of 12.5 ° / min was obtained. From the figure, D × T ≧ 30Å
It can be seen that sufficient V OC can be obtained by setting
Also, film grown in the range of D × T ≦ 60 Å is not a optical absorption loss for the SiO 2. Therefore J SC has remained constant value does not decrease. From the above, the value of D × T is
20 to 60 mm is desirable, but if it is 10 to 100 mm, practical characteristics can be obtained.

【0017】[0017]

【発明の効果】本発明によれば、SnO2 膜の上にp層を
積層した場合にSnO2 からSn, Oが拡散するためにp層
の膜質が低下するのを、その間にZnO膜を介在させるこ
とで防ぎ、そしてZnO膜とp層の間に生ずるポテンシャ
ルバリアを、ZnO膜表面をシランガスを含むH2 分中で
μc-Si成膜と同条件で放電処理することにより低下させ
ることによって、p層の厚さを薄くしてもVOCを低下さ
せることがなくなり、薄膜太陽電池のJSCを向上させる
ことが可能になった。この場合、放電処理する際のふん
囲気中のシランガスがSiH4 ガスであることが有効であ
り、さらに、そのふん囲気にB2 6 を添加してもよ
い。そして、ZnO膜厚を150Å以上にするとSn, Oの拡
散を防止できるが、 400Å以下にすれば著しく光学吸収
損失が増大することがない。また、p層にa−Siより光
学吸収係数の小さいa−SiCを用いるときには、その厚
さを30〜80Åにすることにより高い変換効率が得られ
る。さらに放電処理をその放電処理によりμc-Siが成膜
された場合の膜の成長速度と放電時間の積が10〜100 Å
になるように制御することが高いJSCを得るのに有効で
ある。
According to the present invention, when the p-layer is laminated on the SnO 2 film, the quality of the p-layer is degraded due to the diffusion of Sn and O from SnO 2. By interposing it, the potential barrier generated between the ZnO film and the p layer is reduced by discharging the surface of the ZnO film in H 2 containing silane gas under the same conditions as the μc-Si film. Even when the thickness of the p-layer was reduced, V OC did not decrease, and the J SC of the thin-film solar cell could be improved. In this case, it is effective that the silane gas in the atmosphere during the discharge treatment is SiH 4 gas, and B 2 H 6 may be added to the atmosphere. When the ZnO film thickness is set to 150 ° or more, diffusion of Sn and O can be prevented. However, when the ZnO film thickness is set to 400 ° or less, the optical absorption loss does not increase remarkably. When a-SiC having an optical absorption coefficient smaller than that of a-Si is used for the p-layer, high conversion efficiency can be obtained by setting the thickness to 30 to 80 °. Further, the product of the film growth rate and the discharge time when μc-Si is formed by the discharge process is 10 to 100 Å.
Is effective to obtain a high J SC .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のa−Si太陽電池の断面構造
FIG. 1 is a sectional structural view of an a-Si solar cell according to one embodiment of the present invention.

【図2】従来法によるa−Si太陽電池の断面構造図FIG. 2 is a cross-sectional structural view of an a-Si solar cell according to a conventional method.

【図3】従来法および本発明によるa−Si太陽電池のセ
ル特性とp層膜厚との関係線図
FIG. 3 is a diagram showing the relationship between cell characteristics and p-layer thickness of a-Si solar cells according to the conventional method and the present invention.

【図4】本発明によるa−Si太陽電池のセル特性とZnO
膜厚の関係線図
FIG. 4 shows cell characteristics and ZnO of an a-Si solar cell according to the present invention.
Relationship diagram of film thickness

【図5】本発明によるa−Si太陽電池のセル特性と放電
処理により生ずべきμc-Si膜厚と放電処理時間との積と
の関係線図
FIG. 5 is a diagram showing the relationship between the cell characteristics of the a-Si solar cell according to the present invention and the product of the μc-Si film thickness to be generated by the discharge treatment and the discharge treatment time.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 SnO膜 3 p・a−SiC層 4 インタフェース層 5 i・a−Si層 6 n・a−Si層 7 裏面電極 8 ZnO膜 DESCRIPTION OF SYMBOLS 1 Glass substrate 2 SnO film 3 p-a-SiC layer 4 Interface layer 5 ia-Si layer 6 na-Si layer 7 Back electrode 8 ZnO film

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】透光絶縁性基板上に酸化第二すず膜および
酸化亜鉛膜を順に積層して透明電極を形成したのち、シ
ランガスを含む水素ふん囲気中で酸化亜鉛膜の表面に、
プラズマCVD法で微結晶シリコンを成膜する際の条件
で放電処理を行い、つづいて非晶質シリコンを主材料と
するp層, i層およびn層をp層側から積層し、n層の
表面に接触する裏面電極を形成することを特徴とする薄
膜太陽電池の製造方法。
A transparent electrode is formed by sequentially laminating a tin oxide film and a zinc oxide film on a light-transmitting insulating substrate, and then forming a transparent electrode on the surface of the zinc oxide film in a hydrogen atmosphere containing silane gas.
A discharge treatment is performed under the conditions for forming microcrystalline silicon by a plasma CVD method. Subsequently, a p-layer, an i-layer, and an n-layer mainly composed of amorphous silicon are stacked from the p-layer side, and an n-layer is formed. A method for manufacturing a thin-film solar cell, comprising forming a back electrode in contact with a front surface.
【請求項2】請求項1記載の方法において、酸化亜鉛膜
の厚さを 150〜400Åとする薄膜太陽電池の製造方法。
2. The method according to claim 1, wherein the zinc oxide film has a thickness of 150 to 400 °.
【請求項3】請求項1あるいは2記載の方法において、
p層が非晶質シリコンカーバイドよりなり、その厚さを
30〜80Åとする薄膜太陽電池の製造方法。
3. The method according to claim 1, wherein
The p layer is made of amorphous silicon carbide, and its thickness is
A method for manufacturing a thin-film solar cell having a thickness of 30 to 80 mm.
【請求項4】請求項1, 2あるいは3記載の方法におい
て、シランガスがモノシランガスである薄膜太陽電池の
製造方法。
4. The method according to claim 1, wherein the silane gas is a monosilane gas.
【請求項5】請求項1ないし4のいずれかに記載の方法
において、放電処理ふん囲気中にB2 6 を添加する薄
膜太陽電池の製造方法。
5. The method according to claim 1, wherein B 2 H 6 is added to the discharge treatment atmosphere.
【請求項6】請求項1ないし5のいずれかに記載の方法
において、放電処理と同一条件のプラズマCVD法の際
の微結晶シリコン層の成長速度と放電処理時間の積が10
〜100 Åである薄膜太陽電池の製造方法。
6. The method according to claim 1, wherein the product of the growth rate of the microcrystalline silicon layer and the discharge processing time during plasma CVD under the same conditions as the discharge processing is 10%.
A method for manufacturing a thin-film solar cell of about 100 mm2.
JP3007329A 1990-09-17 1991-01-25 Manufacturing method of thin film solar cell Expired - Fee Related JP2822358B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-246566 1990-09-17
JP24656690 1990-09-17

Publications (2)

Publication Number Publication Date
JPH04212474A JPH04212474A (en) 1992-08-04
JP2822358B2 true JP2822358B2 (en) 1998-11-11

Family

ID=17150322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3007329A Expired - Fee Related JP2822358B2 (en) 1990-09-17 1991-01-25 Manufacturing method of thin film solar cell

Country Status (1)

Country Link
JP (1) JP2822358B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5762552B2 (en) * 2011-10-27 2015-08-12 三菱電機株式会社 Photoelectric conversion device and manufacturing method thereof
CN105948105B (en) * 2016-05-06 2017-10-31 西北大学 A kind of SnO2/ ZnO nano composite and preparation method thereof

Also Published As

Publication number Publication date
JPH04212474A (en) 1992-08-04

Similar Documents

Publication Publication Date Title
AU2005200023B2 (en) Photovoltaic device
EP0969523A2 (en) Photovoltaic device and process for producing the same
JPS6249672A (en) Amorphous photovoltaic element
JPH05243596A (en) Manufacture of laminated type solar cell
JP3047666B2 (en) Method for forming silicon oxide semiconductor film
US4396793A (en) Compensated amorphous silicon solar cell
US4415760A (en) Amorphous silicon solar cells incorporating an insulating layer in the body of amorphous silicon and a method of suppressing the back diffusion of holes into an N-type region
WO2005109526A1 (en) Thin film photoelectric converter
WO2008059857A1 (en) Thin-film photoelectric conversion device
JPH0595126A (en) Thin film solar battery and manufacturing method thereof
JP3248227B2 (en) Thin film solar cell and method of manufacturing the same
JP2822358B2 (en) Manufacturing method of thin film solar cell
JP3106810B2 (en) Method for producing amorphous silicon oxide thin film
JPH065765B2 (en) Photoelectric conversion device
JP4110718B2 (en) Manufacturing method of multi-junction thin film solar cell
JPH01201968A (en) Photoelectric conversion device
JP3245962B2 (en) Manufacturing method of thin film solar cell
JPH0719906B2 (en) Method for manufacturing semiconductor device
JP2744680B2 (en) Manufacturing method of thin film solar cell
JP2020505786A (en) Single-type, tandem-type, and heterojunction-type solar cell devices and methods for forming the same
JP2785882B2 (en) Photovoltaic element and method for manufacturing the same
JP4124309B2 (en) Photovoltaic device manufacturing method
JP2000068533A (en) Microscopic crystal silicon thin film solar battery, and manufacture thereof
JPH0685291A (en) Semiconductor device and its manufacture
JPH0612835B2 (en) Manufacturing method of photoelectric conversion element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070904

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090904

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090904

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090904

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090904

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100904

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees