JPH01201968A - Photoelectric conversion device - Google Patents

Photoelectric conversion device

Info

Publication number
JPH01201968A
JPH01201968A JP63025917A JP2591788A JPH01201968A JP H01201968 A JPH01201968 A JP H01201968A JP 63025917 A JP63025917 A JP 63025917A JP 2591788 A JP2591788 A JP 2591788A JP H01201968 A JPH01201968 A JP H01201968A
Authority
JP
Japan
Prior art keywords
film
carbon
amorphous
semiconductor layer
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63025917A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP63025917A priority Critical patent/JPH01201968A/en
Publication of JPH01201968A publication Critical patent/JPH01201968A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To prevent an impurity from a transparent conductive film layer of the basement of a semiconductor layer from being mixed at the time of manufacture of a semiconductor layer and to prevent an impurity from being diffused when not in use for a long period of time by forming a thin-film having a amorphous or microcrystalline structure containing carbon or carbon as its main ingredient and by laminating an amorphous or microcrystalline semiconductor layer thereon. CONSTITUTION:A blue plate glass is used as a substrate 1. A tin oxide 2 is accumulated on the surface thereof using normal pressure CVD method. Next, a thin film 3 having an amorphous or microcrystalline structure containing carbon or carbon as its main ingredient is accumulated by glow discharge decomposition using a mixed gas of methane, hydrogen, and diborane. On the surface of this film is accumulated a p-type microcrystalline SiC by an ECR plasma CVD method. After this, an intrinsic a-SiH film is laminated in another room by a glow discharge decomposition of a SiH4 gas. Furthermore, when Si glow discharge decomposition is performed, an n-type fine-crystal Si is obtained. Finally, laminating an Al electrode 5 by deposition completes a photoelectric element.

Description

【発明の詳細な説明】 「発明の利用分野」 本発明はカラスその他の透明基板上に透明導電膜を形成
した光電変換装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a photoelectric conversion device in which a transparent conductive film is formed on a glass or other transparent substrate.

「従来の技術」 従来、非晶質或いは微結晶半導体を用いた光電変換素子
においては通常は第1図のようにガラス基板上(1)に
透明導電膜(2)、P型半導体、I型半導体、N型半導
体(4)、金属電極(5)と積層したる構造をとる。こ
れはガラス側から入射した光がPIN半導体部で電気に
変換され、それを透明導電膜及び金属電極にて外部負荷
に供給する働きをもつ装置である。
"Prior Art" Conventionally, in photoelectric conversion elements using amorphous or microcrystalline semiconductors, as shown in Figure 1, a transparent conductive film (2), a P-type semiconductor, an I-type semiconductor, and a transparent conductive film (1) are deposited on a glass substrate (1). It has a structure in which a semiconductor, an N-type semiconductor (4), and a metal electrode (5) are stacked. This device has the function of converting light incident from the glass side into electricity at the PIN semiconductor section, and supplying it to an external load through a transparent conductive film and metal electrode.

ところでこのような光電変換装置では次のような問題が
発生する。
However, the following problem occurs in such a photoelectric conversion device.

(a)酸化スズまたは酸化亜鉛のごとき透明導電膜(2
)上に非晶質または微結晶半導体膜を成膜する際、プラ
ズマCVDまたはECRプラズマCVDのごときプロセ
スを用いるが、その課程においてプラズマ中のイオンが
透明導電膜に衝突し、透明導電膜表面の5n−0結合或
いはZn−0結合を破壊する事がある。この結果、Sn
原子或いはZn原子或いは○原子が不純物として半導体
層の中に混入された構造となる。
(a) Transparent conductive film such as tin oxide or zinc oxide (2
), a process such as plasma CVD or ECR plasma CVD is used to form an amorphous or microcrystalline semiconductor film on the surface of the transparent conductive film. 5n-0 bond or Zn-0 bond may be destroyed. As a result, Sn
The structure is such that atoms, Zn atoms, or O atoms are mixed into the semiconductor layer as impurities.

このような電子は半導体層中で電子または正孔のトラッ
プ準位として働く事になり光電変換特性は低下する。
Such electrons act as trap levels for electrons or holes in the semiconductor layer, resulting in a decrease in photoelectric conversion characteristics.

(b)半導体薄膜形成時またはこの光電変換装置を使用
動作時において基板温度が高くなる(50〜350°C
)ことかある。このとき透明導電膜中の比較的結合の弱
いSn或いはZn或いはO原子は透明導電膜層から半導
体層に熱拡散される事から考えられる。特にZn原子は
Sn原子や0原子に比べてSi中で最も拡散係数が高く
半導体層に広く拡散され得る。このとき前述の(a)と
同様光電変換特性は低下する。
(b) When forming a semiconductor thin film or using this photoelectric conversion device, the substrate temperature becomes high (50 to 350°C).
) There is a thing. At this time, it is thought that Sn, Zn, or O atoms, which have relatively weak bonds in the transparent conductive film, are thermally diffused from the transparent conductive film layer to the semiconductor layer. In particular, Zn atoms have the highest diffusion coefficient in Si compared to Sn atoms and zero atoms, and can be widely diffused into the semiconductor layer. At this time, the photoelectric conversion characteristics deteriorate as in (a) above.

このため従来にあっては、半導体形成時の基板温度を低
くする方法や、基板バイアス法またはCVD法などによ
って透明導電膜のイオン衝撃を極力小さくする方法がと
られている。しかしこれらの方法も大量生産に対する困
難さや光電変換特性及びその劣下に多少問題が残ってい
る。
For this reason, conventional methods have been used to reduce the substrate temperature during semiconductor formation, or to minimize the ion bombardment of the transparent conductive film by using a substrate bias method or a CVD method. However, these methods still have some problems in terms of difficulty in mass production, photoelectric conversion characteristics, and their deterioration.

〔発明の構成〕 本発明の目的は上述したような問題点を解決することに
ある。
[Structure of the Invention] An object of the present invention is to solve the above-mentioned problems.

第2図のような構造にした場合、すなわち透明導電膜(
2)上に成膜した炭素薄膜(3)は化学的にも熱的にも
強固であるため、半導体膜形成時には透明導電膜のプラ
ズマイオンに対する保護膜として働き、且つ、透明導電
膜層からの原子の拡散を防止する役目を果たすことにあ
る。
When the structure is as shown in Figure 2, that is, the transparent conductive film (
2) Since the carbon thin film (3) formed on top is strong both chemically and thermally, it acts as a protective film against plasma ions of the transparent conductive film when forming a semiconductor film, and also acts as a protective film against plasma ions from the transparent conductive film layer. Its purpose is to prevent the diffusion of atoms.

炭素または炭素を主成分とする非晶質または微結晶構造
を有する薄膜は様々な方法で成膜できる。
A thin film having an amorphous or microcrystalline structure containing carbon or carbon as a main component can be formed by various methods.

例えば、グロー放電法、スパッタ法、光CVD法、マイ
クロ波CVD法、ECRプラズマCVD法などである。
Examples include glow discharge method, sputtering method, optical CVD method, microwave CVD method, and ECR plasma CVD method.

このとき、スパッタ法以外ではメタンガス或いはエチレ
ンのような炭化水素ガスに必要に応じて適量の水素ガス
を添加して作成することができる。さらに、ジボランや
フォスフインなどの不純物ガスを導入し、P型或いはN
型の炭素膜を作る事も可能である。また、炭素または炭
素を主成分とする非晶質または微結晶構造を有する薄膜
のエネルギーギャップは1.0〜2.OeV程度でダイ
ヤモンドで5.4eV程度であるから、プロセス条件に
よって1.0〜5.4eVの範囲で制御をすることも可
能である。よって、B、Pの濃度やエネルギーギャップ
を制御することによって透明導電膜及びシリコン層また
はシリコンカーバイト層との界面で、電気的に良好なオ
ーミンク特性を得る事が可能である。
At this time, other than the sputtering method, it can be created by adding an appropriate amount of hydrogen gas to a hydrocarbon gas such as methane gas or ethylene, if necessary. Furthermore, impurity gases such as diborane and phosphine are introduced to create P-type or N-type
It is also possible to make a molded carbon film. Further, the energy gap of a thin film having carbon or an amorphous or microcrystalline structure mainly composed of carbon is 1.0 to 2. Since it is about OeV and about 5.4 eV for diamond, it is also possible to control it in the range of 1.0 to 5.4 eV depending on the process conditions. Therefore, by controlling the concentration and energy gap of B and P, it is possible to obtain electrically good ohmink characteristics at the interface between the transparent conductive film and the silicon layer or silicon carbide layer.

このようにして得られた第2図の構成の光電変換装置は
透明導電膜中の原子か半導体層(4)に混入することが
な(光電変換効率が高く、且つ熱劣化特性の良好な素子
が作製できる。
The thus obtained photoelectric conversion device with the configuration shown in FIG. can be made.

(実施例〕 基板としては青板ガラス(1,1mm厚)を用い、その
表面にTMT (テトラメチルチン)及びCF、、Br
(Example) A blue plate glass (1.1 mm thick) was used as the substrate, and the surface was coated with TMT (tetramethyltin) and CF, Br.
.

0□、N2を用いて常圧CVD法により酸化スズを10
00〜6000人程度堆積する。変成薄膜のシート抵抗
としては10〜30Ω/口となるようにする。
0□, tin oxide was removed by atmospheric pressure CVD using N2.
Approximately 00 to 6000 people will accumulate. The sheet resistance of the modified thin film is set to 10 to 30 Ω/portion.

次に本発明の骨子となる炭素または炭素を主成分とする
非晶質または微結晶構造を有する薄膜をメタン、水素、
ジボランの混合カスを用いてグロー放電分解法にて20
人程度堆積させる。
Next, a thin film having carbon or an amorphous or microcrystalline structure mainly composed of carbon, which is the gist of the present invention, is coated with methane, hydrogen,
20% by glow discharge decomposition method using diborane mixed residue
Deposit about the same amount as people.

このとき基板の設置は電極のアノード側よりもカソード
側の方が硬い膜となり全ガス圧力は低いほど硬度が増す
。このときヴイッカーズ硬度は2500Kgf/mm2
以上の膜が得られる。
At this time, the substrate is set as a film that is harder on the cathode side than on the anode side of the electrode, and the lower the total gas pressure, the harder the film becomes. At this time, Vickers hardness is 2500Kgf/mm2
The above film can be obtained.

この膜の表面に今度はECRプラズマCVD法にてP型
機結晶SiC膜を200人程変成積させる。
On the surface of this film, approximately 200 P-type organic crystalline SiC films are then metamorphosed using the ECR plasma CVD method.

このとき、キャリアガスはF1□101005cとし、
反応ガスは5i)14.c)14各1sccm 、Bz
H60,02sccmとし、反応容器内圧力は10−4
〜1O−3torr程度に制御し、磁場875Gaus
s、  tt波出力200〜IKW程度をプラズマ発生
空間に投入することによりEg〜2.3  (eV)導
電率σ 10−’ 〜10° (S/cm:lのP型機
結晶SiC膜が得られる。この後、別室にて、S il
I aガスのグロー放電分解法により真性のa−5il
l膜を3000〜7000A程度積層する。さらに別室
にてHz138sccm、SiHagsccm、 PH
30,02secmにてグロー放電分解するとN型微結
晶Siが得られる。この膜厚は500人程変成十分であ
る。
At this time, the carrier gas is F1□101005c,
The reaction gas is 5i)14. c) 14 each 1sccm, Bz
H60.02sccm, the pressure inside the reaction vessel is 10-4
The magnetic field is controlled at ~1O-3torr and the magnetic field is 875 Gauss.
By injecting s, tt wave output of about 200 to IKW into the plasma generation space, a P-type mechanical crystalline SiC film with Eg ~ 2.3 (eV) and conductivity σ 10-' ~ 10° (S/cm:l) can be obtained. After this, in a separate room,
Intrinsic a-5il is produced by the glow discharge decomposition method of Ia gas.
1 films are stacked to a thickness of about 3000 to 7000A. Furthermore, in a separate room, Hz138sccm, SiHagsccm, PH
N-type microcrystalline Si is obtained by glow discharge decomposition at 30.02 seconds. This film thickness is sufficient for metamorphosis of about 500 people.

最後にAffi電極を蒸着法により2000人程度積層
することにより、光電変換素子が完成する。
Finally, about 2,000 Affi electrodes are stacked by vapor deposition to complete the photoelectric conversion element.

この素子を太陽電池として用いると、P層が微結晶Si
Cであるため開放電圧が0.9v以上と高く、且つ、透
明導電膜からの不純物の混入が炭素または炭素を主成分
とする非晶質または微結晶構造を有する薄膜膜により極
力小さくなるためfillfactorが向上する。従
って太陽光線照射時において光電変換効率は12X以上
の高効率素子が得られることとなる。
When this device is used as a solar cell, the P layer is made of microcrystalline Si.
Since it is C, the open circuit voltage is as high as 0.9V or more, and since the incorporation of impurities from the transparent conductive film is minimized by carbon or a thin film having an amorphous or microcrystalline structure mainly composed of carbon, it is a fill factor. will improve. Therefore, a highly efficient element with a photoelectric conversion efficiency of 12X or more when irradiated with sunlight can be obtained.

〔効果〕〔effect〕

本発明の構成を有することにより、半導体層の下地の透
明導電膜層からの不純物の半導体層作製時に起こる混入
を防止することができまた長期の使用中に発生する不純
物の拡散を防止することができる。
By having the structure of the present invention, it is possible to prevent impurities from entering the transparent conductive film layer underlying the semiconductor layer during fabrication of the semiconductor layer, and to prevent impurities from diffusing during long-term use. can.

また、もし、この炭素薄膜より炭素自身が半導体層に拡
散して行っても、SnかZn、Inのように半導体層中
でトラップ準位を形成することはない。
Further, even if carbon itself diffuses into the semiconductor layer from this carbon thin film, it will not form a trap level in the semiconductor layer unlike Sn, Zn, or In.

さらに先入射光側の透明導電膜と半導体層との間に炭素
を主成分とする薄膜を用いた場合に炭素が拡散すると先
入射光側の半導体層のエネルギーギャップが広くなりよ
り多くの光を光電変換を行う領域に導くことができた。
Furthermore, when a thin film mainly composed of carbon is used between the transparent conductive film on the side of the first incident light and the semiconductor layer, when carbon diffuses, the energy gap of the semiconductor layer on the side of the first incident light widens, allowing more light to pass through. We were able to lead to the area where photoelectric conversion is performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光電変換装置の概略図を示す。 第2図は本発明の光電変換装置の概略図を示す。 1・・・基板 3・・・炭素を主成分とする薄膜 4・・・半導体層 FIG. 1 shows a schematic diagram of a conventional photoelectric conversion device. FIG. 2 shows a schematic diagram of the photoelectric conversion device of the present invention. 1... Board 3...Thin film whose main component is carbon 4...Semiconductor layer

Claims (1)

【特許請求の範囲】 1、透明導電膜上に炭素または炭素を主成分とする非晶
質または微結晶構造を有する薄膜を成膜し、これに非晶
質または微結晶の半導体層を積層形成したことを特徴と
する光電変換装置。 2、前記薄膜はPまたはN型用の不純物が添加された平
均膜厚5〜200Åの厚さを有する特許請求の範囲第1
項記載の光電変換装置。 3、特許請求の範囲第1項の光電変換装置において非晶
質または微結晶半導体層はシリコン層またはシリコン・
カーバイド層である光電変換装置。
[Claims] 1. A thin film having an amorphous or microcrystalline structure mainly composed of carbon or carbon is formed on a transparent conductive film, and an amorphous or microcrystalline semiconductor layer is laminated thereon. A photoelectric conversion device characterized by: 2. The thin film is doped with P or N type impurities and has an average thickness of 5 to 200 Å.
The photoelectric conversion device described in . 3. In the photoelectric conversion device according to claim 1, the amorphous or microcrystalline semiconductor layer is a silicon layer or a silicon layer.
A photoelectric conversion device that is a carbide layer.
JP63025917A 1988-02-05 1988-02-05 Photoelectric conversion device Pending JPH01201968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63025917A JPH01201968A (en) 1988-02-05 1988-02-05 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63025917A JPH01201968A (en) 1988-02-05 1988-02-05 Photoelectric conversion device

Publications (1)

Publication Number Publication Date
JPH01201968A true JPH01201968A (en) 1989-08-14

Family

ID=12179129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63025917A Pending JPH01201968A (en) 1988-02-05 1988-02-05 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPH01201968A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03136283A (en) * 1989-10-20 1991-06-11 Sanyo Electric Co Ltd Photovoltaic device
JP2009010108A (en) * 2007-06-27 2009-01-15 Kaneka Corp Method for manufacturing photoelectric conversion device
JP2009117463A (en) * 2007-11-02 2009-05-28 Kaneka Corp Thin-film photoelectric conversion device
JP2009147172A (en) * 2007-12-14 2009-07-02 Kaneka Corp Multi-junction silicon thin-film photoelectric converter
JP2009231246A (en) * 2008-03-25 2009-10-08 Kaneka Corp Manufacturing method of transparent conductive film and transparent conductive film produced by that method
JP2009231781A (en) * 2008-03-25 2009-10-08 Kaneka Corp Multijunction silicon thin film photoelectric converter
JP2010087205A (en) * 2008-09-30 2010-04-15 Kaneka Corp Multi-junction thin-film photoelectric converter
JP2011003848A (en) * 2009-06-22 2011-01-06 Kaneka Corp Crystal silicon-based solar cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139074A (en) * 1984-12-10 1986-06-26 Sanyo Electric Co Ltd Photovoltaic element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139074A (en) * 1984-12-10 1986-06-26 Sanyo Electric Co Ltd Photovoltaic element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03136283A (en) * 1989-10-20 1991-06-11 Sanyo Electric Co Ltd Photovoltaic device
JP2009010108A (en) * 2007-06-27 2009-01-15 Kaneka Corp Method for manufacturing photoelectric conversion device
JP2009117463A (en) * 2007-11-02 2009-05-28 Kaneka Corp Thin-film photoelectric conversion device
JP2009147172A (en) * 2007-12-14 2009-07-02 Kaneka Corp Multi-junction silicon thin-film photoelectric converter
JP2009231246A (en) * 2008-03-25 2009-10-08 Kaneka Corp Manufacturing method of transparent conductive film and transparent conductive film produced by that method
JP2009231781A (en) * 2008-03-25 2009-10-08 Kaneka Corp Multijunction silicon thin film photoelectric converter
JP2010087205A (en) * 2008-09-30 2010-04-15 Kaneka Corp Multi-junction thin-film photoelectric converter
JP2011003848A (en) * 2009-06-22 2011-01-06 Kaneka Corp Crystal silicon-based solar cell

Similar Documents

Publication Publication Date Title
US4612411A (en) Thin film solar cell with ZnO window layer
US7601558B2 (en) Transparent zinc oxide electrode having a graded oxygen content
US6187150B1 (en) Method for manufacturing thin film photovoltaic device
US6459034B2 (en) Multi-junction solar cell
US4117506A (en) Amorphous silicon photovoltaic device having an insulating layer
US4365107A (en) Amorphous film solar cell
KR20090096637A (en) Reactive sputter deposition of a transparent conductive film
KR20100029414A (en) Solar cell and method of fabricating the same
US6849917B2 (en) Photovoltaic element
EP0092925A1 (en) Solar cell incorporating a photoactive compensated intrinsic amorphous silicon layer and an insulating layer and method of fabrication thereof
KR20060003277A (en) Solar cell with zinc oxide thin film and fabricating method thereof
EP0139488A1 (en) A method for sputtering a pin or nip amorphous silicon semiconductor device with the P and N-layers sputtered from boron and phosphorus heavily doped targets
JPH01201968A (en) Photoelectric conversion device
WO2008059857A1 (en) Thin-film photoelectric conversion device
US4903102A (en) Semiconductor photoelectric conversion device and method of making the same
JP3419108B2 (en) Manufacturing method of thin film solar cell
JP2948236B2 (en) Photovoltaic device
US20100139757A1 (en) Photovoltaic cell structure
JPH0312973A (en) Amorphous thin film solar cell
JPS60210825A (en) Solar battery
US20090260680A1 (en) Photovoltaic Devices and Associated Methods
JP2822358B2 (en) Manufacturing method of thin film solar cell
JPS59101879A (en) Thin film solar battery
JPH06181330A (en) Amorphous semiconductor solar cell and manufacture thereof
JP4400945B2 (en) Photovoltaic element and manufacturing method thereof