JP2009010108A - Method for manufacturing photoelectric conversion device - Google Patents

Method for manufacturing photoelectric conversion device Download PDF

Info

Publication number
JP2009010108A
JP2009010108A JP2007169010A JP2007169010A JP2009010108A JP 2009010108 A JP2009010108 A JP 2009010108A JP 2007169010 A JP2007169010 A JP 2007169010A JP 2007169010 A JP2007169010 A JP 2007169010A JP 2009010108 A JP2009010108 A JP 2009010108A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
transparent electrode
carbon film
film
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007169010A
Other languages
Japanese (ja)
Inventor
Hiroko Tawada
裕子 多和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2007169010A priority Critical patent/JP2009010108A/en
Publication of JP2009010108A publication Critical patent/JP2009010108A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a photoelectric conversion device whose performance is improved, using a transparent electrode which is superior in light confinement effect, and which can be formed on a substrate by a low-cost method. <P>SOLUTION: The method for manufacturing the photoelectric conversion device includes a process for forming the transparent electrode containing zinc oxide on a transparent insulating substrate and for forming a hydrogenated carbon film on the transparent electrode, and a process for laminating sequentially, at least one photoelectric conversion device and a back electrode on the hydrogenation carbon film, wherein the method is characterized in that the hydrogenation carbon film is formed by decomposing by a high-frequency wave hydrocarbon system material which is gas diluted by hydrogen gas within a range of 5-200 times. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光電変換装置の製造方法に関する。     The present invention relates to a method for manufacturing a photoelectric conversion device.

近年、光電変換装置の一つである太陽電池において、低コスト化と高効率化を両立するために、原材料が少なくてすむ薄膜太陽電池が注目され、開発が精力的に行われている。特に、ガラス等の安価な基体上に例えば300℃以下の低温プロセスを用いて良質の半導体層を形成する方法が低コストを実現可能な方法として期待されている。   In recent years, in order to achieve both cost reduction and high efficiency in a solar cell that is one of photoelectric conversion devices, a thin-film solar cell that requires less raw materials has attracted attention and has been developed vigorously. In particular, a method of forming a high-quality semiconductor layer on a low-priced substrate such as glass by using a low-temperature process of, for example, 300 ° C. or less is expected as a method capable of realizing low cost.

薄膜太陽電池は、一般に、透光性基板上に順に積層された透明電極、1以上の半導体薄膜光電変換ユニット、および裏面電極を含む。そして、1つの光電変換ユニットは導電型層であるp型層とn型層で挟まれたi型層(光電変換層ともいう)を含む。   A thin-film solar cell generally includes a transparent electrode, one or more semiconductor thin-film photoelectric conversion units, and a back electrode that are sequentially stacked on a light-transmitting substrate. One photoelectric conversion unit includes an i-type layer (also referred to as a photoelectric conversion layer) sandwiched between a p-type layer which is a conductive type layer and an n-type layer.

このような薄膜太陽電池は、従来のバルクの単結晶や多結晶シリコンを使用した太陽電池に比べて光電変換層を薄くすることが可能であるが、反面、薄膜全体の光吸収が膜厚によって制限されてしまうという問題がある。そこで、光電変換層を含む光電変換ユニットに入射した光をより有効に利用するために、光電変換ユニットに接する透明導電膜あるいは金属層の表面を凹凸化(テクスチャ化)し、その界面で光を散乱した後、光電変換ユニット内へ入射させることで光路長を延長せしめ、光電変換層内での光吸収量を増加させる工夫がなされている。この技術は「光閉じ込め」と呼ばれており、高い光電変換効率を有する薄膜太陽電池を実用化する上で、重要な要素技術となっている。   Such a thin film solar cell can make the photoelectric conversion layer thinner than a conventional solar cell using bulk single crystal or polycrystalline silicon, but the light absorption of the entire thin film depends on the film thickness. There is a problem of being restricted. Therefore, in order to use light incident on the photoelectric conversion unit including the photoelectric conversion layer more effectively, the surface of the transparent conductive film or metal layer in contact with the photoelectric conversion unit is made uneven (textured), and light is transmitted at the interface. After scattering, the optical path length is extended by making it enter into a photoelectric conversion unit, and the device which makes the light absorption amount in a photoelectric converting layer increase is made | formed. This technology is called “optical confinement” and is an important elemental technology for practical use of a thin film solar cell having high photoelectric conversion efficiency.

薄膜太陽電池等の光電変換装置における透明電極の材料としては、従来酸化錫(SnO)や酸化インジウム錫(ITO)等の透明導電膜が使用されている。しかし、最近では薄膜太陽電池の製造コストをより低減させるために、低コストの酸化亜鉛(ZnO)を用いることが進められている。
(先行例1)
例えば、特許文献1に開示されているZnO膜付薄膜太陽電池用基板は、ガラス等の透光性絶縁基板に微細な表面凹凸を有する下地層を形成し、その上に150℃以上200℃以下の低温条件下で低圧CVD法(あるいはMOCVD法とも呼ばれる)によってZnO膜を形成することにより、薄膜太陽電池に適した凹凸を有する薄膜太陽電池用基板を提供できると開示している。この低圧CVD法は高圧熱CVD法に比べて、200℃以下の低温プロセスのため、低コスト化が図れる。また、ガラスやプラスチックフィルムなどの安価な基体を用いることができる。さらに、強化ガラスを使用できるので大面積太陽電池のガラス基体を約2/3程度に薄くでき、軽くできる。また、低圧CVD法は、スパッタ法に比べて1桁以上速い製膜速度にて製膜が可能であるとともに、原料の利用効率が高いことから、製造コストの面でも薄膜太陽電池にとって好ましい。
Conventionally, a transparent conductive film such as tin oxide (SnO 2 ) or indium tin oxide (ITO) has been used as a material for transparent electrodes in photoelectric conversion devices such as thin film solar cells. Recently, however, low-cost zinc oxide (ZnO) has been used to further reduce the manufacturing cost of thin-film solar cells.
(Prior Example 1)
For example, a substrate for a thin-film solar cell with a ZnO film disclosed in Patent Document 1 forms a base layer having fine surface irregularities on a light-transmitting insulating substrate such as glass, and 150 ° C. or higher and 200 ° C. or lower thereon. It is disclosed that a substrate for a thin film solar cell having irregularities suitable for a thin film solar cell can be provided by forming a ZnO film by a low pressure CVD method (also referred to as MOCVD method) under low temperature conditions. Since this low-pressure CVD method is a low-temperature process of 200 ° C. or lower compared with the high-pressure thermal CVD method, cost can be reduced. In addition, an inexpensive base such as glass or plastic film can be used. Further, since tempered glass can be used, the glass substrate of the large area solar cell can be made thin by about 2/3 and light. In addition, the low pressure CVD method is preferable for a thin film solar cell in terms of manufacturing cost because it can be formed at a film forming speed one digit or more faster than the sputtering method and the utilization efficiency of raw materials is high.

更に、透明電極材料としてZnOを利用する利点としては、SnOやITOと比較して耐プラズマ性が高いことが挙げられる。この点は、非晶質シリコンの形成時に用いられる堆積条件よりも多量の水素を使用し、かつ大きなプラズマ密度を必要とする薄膜多結晶シリコンや微結晶シリコンのような結晶質シリコンを光電変換層に用いた結晶質シリコン薄膜太陽電池に有効である。
(先行例2)
例えば、特許文献2に開示されている太陽電池装置の製造方法では、従来の方法として透明酸化物電極にSnOを用いた例を挙げ、その上に半導体層を堆積する際に高濃度の水素プラズマに曝されるが、化学的に極めて活性な物質であるために還元反応が起こり、太陽電池装置における開放電圧の低下や短絡電流の低下を引き起こすことを問題としている。従って、透明酸化物電極の表面安定化が太陽電池特性の向上に重要であり、その解決策として、透明酸化物電極上に表面安定化層としてダイヤモンドライクカーボン層を形成し、その上に微結晶p型またはn型半導体層と非晶質真性半導体層と非晶質n型またはp型半導体層および金属電極を順次形成することを開示している。
Further, as an advantage of using ZnO as a transparent electrode material, it can be cited that plasma resistance is higher than SnO 2 and ITO. This is because the photoelectric conversion layer uses crystalline silicon such as thin-film polycrystalline silicon or microcrystalline silicon that uses a larger amount of hydrogen than the deposition conditions used when forming amorphous silicon and requires a large plasma density. It is effective for the crystalline silicon thin film solar cell used in the above.
(Prior Example 2)
For example, in the method for manufacturing a solar cell device disclosed in Patent Document 2, an example in which SnO 2 is used as a transparent oxide electrode is given as a conventional method, and a high concentration of hydrogen is deposited when a semiconductor layer is deposited thereon. Although it is exposed to plasma, since it is a chemically extremely active substance, a reduction reaction occurs, which causes a problem of causing a decrease in open circuit voltage and a short circuit current in the solar cell device. Therefore, the surface stabilization of the transparent oxide electrode is important for improving the solar cell characteristics. As a solution, a diamond-like carbon layer is formed as a surface stabilization layer on the transparent oxide electrode, and microcrystals are formed thereon. It discloses that a p-type or n-type semiconductor layer, an amorphous intrinsic semiconductor layer, an amorphous n-type or p-type semiconductor layer, and a metal electrode are sequentially formed.

なお、本願明細書における、「結晶質」、「微結晶」の用語は、部分的に非晶質を含んでいるものも含んでいるものとする。
特開2005−311292号公報 特開2001−127315号公報
In the specification of the present application, the terms “crystalline” and “microcrystal” include those partially including amorphous.
JP-A-2005-311292 JP 2001-127315 A

本発明の目的は、薄膜太陽電池等の光電変換装置に用いられる透明電極の表面凹凸を光閉込めに効果的なものとし、かつ光電変換装置の性能を改善する透明電極を安価な製造方法で提供し、さらにそれを用いて光電変換装置の性能を向上させることにある。   The object of the present invention is to make the surface unevenness of a transparent electrode used in a photoelectric conversion device such as a thin-film solar cell effective for light confinement, and to produce a transparent electrode that improves the performance of the photoelectric conversion device with an inexpensive manufacturing method. It is to provide and further improve the performance of the photoelectric conversion device using the same.

まず、特許文献1の実施例に記載の方法は、低圧CVD法を用いているため、光閉じ込め効果に有効な薄膜太陽電池用透明電極の表面凹凸が比較的得られやすい。しかし、更に薄膜太陽電池の高効率化を実現するために、光電変換に利用される約1200nm程度までの波長の光において、より高透過率を有する薄膜太陽電池用透明電極を得ようとした場合、ZnO膜のドーピング元素添加量を現状よりも減らす必要がある。その結果、薄膜太陽電池特性に影響する電気抵抗とを両立させるために、透明電極であるZnO膜を厚くする必要があった。従って、薄膜太陽電池用基板全体の透過率は、著しい改善が得られにくいことが判明した。これは、主に低温形成であるためにZnO膜の粒径が小さく、透明導電膜としての移動度が小さいことが影響していると考えられ、ZnO材料での低コスト化を実現する上で問題となる。   First, since the method described in the example of Patent Document 1 uses a low-pressure CVD method, the surface unevenness of the transparent electrode for a thin-film solar cell effective for the light confinement effect is relatively easily obtained. However, in order to achieve higher efficiency of the thin film solar cell, in the case of trying to obtain a transparent electrode for a thin film solar cell having higher transmittance in light having a wavelength up to about 1200 nm used for photoelectric conversion Therefore, it is necessary to reduce the doping element addition amount of the ZnO film from the current level. As a result, it was necessary to increase the thickness of the ZnO film, which is a transparent electrode, in order to achieve both electrical resistance affecting thin film solar cell characteristics. Therefore, it has been found that the transmittance of the entire thin film solar cell substrate cannot be significantly improved. This is thought to be due to the fact that the ZnO film has a small particle size and a low mobility as a transparent conductive film because it is mainly formed at a low temperature. It becomes a problem.

一方、特許文献2では、具体的な透明酸化物電極としてSnOのみ開示されている。前述したとおり、SnOの表面は高濃度の水素プラズマの影響を受けやすいため、SnOの表面を安定化するためにプラズマCVD法で形成するダイヤモンドライクカーボン層の形成条件、例えば原料ガス流量比や高周波電力の投入量、そして温度等も制約を受ける。特許文献2の実施例1に記載されているダイヤモンドライクカーボン層のプラズマCVD法による形成条件は、原料ガスとしてメタン(CH)と水素(H)とを流量比1:1で流し、13.56MHzの高周波電力を100W印加するもので、約2nmの膜厚で形成されることが開示されている。しかし、透明電極としてZnOを使用した場合は、SnOと比較して耐プラズマ性が高い反面、その上に形成される半導体層、特に非晶質半導体層とのオーミック特性が一般的に優れないため、特許文献2の実施例では特性が改善されないことが判った。 On the other hand, Patent Document 2 discloses only SnO 2 as a specific transparent oxide electrode. As described above, since the surface of SnO 2 is easily affected by high concentration hydrogen plasma, the formation conditions of the diamond-like carbon layer formed by the plasma CVD method to stabilize the surface of SnO 2 , for example, the raw material gas flow rate ratio And the amount of high frequency power input, temperature, etc. are also restricted. The formation conditions of the diamond-like carbon layer described in Example 1 of Patent Document 2 by the plasma CVD method are such that methane (CH 4 ) and hydrogen (H 2 ) are flowed as a raw material gas at a flow rate ratio of 1: 1, 13 It is disclosed that 100 W of high frequency power of .56 MHz is applied and the film is formed with a film thickness of about 2 nm. However, when ZnO is used as the transparent electrode, the plasma resistance is higher than that of SnO 2 , but the ohmic characteristics of the semiconductor layer formed thereon, particularly the amorphous semiconductor layer, are generally not excellent. Therefore, it was found that the characteristics were not improved in the example of Patent Document 2.

上記問題に鑑み、より高い出力特性を有する光電変換装置を得る方法を鋭意検討の結果、透明電極に高透過率でかつ光閉じ込めに有効な表面凹凸を有するZnO膜を用い、かつその上に水素化炭素膜を適切な条件にて形成することで、主にZnO膜からなる透明電極の特性を生かした光電変換装置を形成できる場合があることを本発明者らは見出し、本発明を考案するに至った。   In view of the above problems, as a result of intensive studies on a method of obtaining a photoelectric conversion device having higher output characteristics, a transparent electrode is used, and a ZnO film having surface irregularities effective for light confinement is used for the transparent electrode, and hydrogen is formed thereon The present inventors have found that a photoelectric conversion device that makes use of the characteristics of a transparent electrode mainly composed of a ZnO film can be formed by forming the carbonized carbon film under appropriate conditions, and devise the present invention. It came to.

上記課題を解決するために、本発明は、透光性絶縁基板上に、酸化亜鉛を含む透明電極を形成し、その透明電極上に水素化炭素膜を形成する工程と、その水素化炭素膜上に少なくとも一つの光電変換ユニット、および裏面電極を順次積層する工程を含む光電変換装置の製造方法であって、該水素化炭素膜は5〜200倍の範囲で水素ガスによって希釈された炭化水素系原料ガスを、高周波で分解して形成することを特徴としている。   In order to solve the above problems, the present invention provides a step of forming a transparent electrode containing zinc oxide on a light-transmitting insulating substrate, and forming a hydrogenated carbon film on the transparent electrode, and the hydrogenated carbon film. A method for manufacturing a photoelectric conversion device comprising a step of sequentially laminating at least one photoelectric conversion unit and a back electrode, wherein the hydrogenated carbon film is a hydrocarbon diluted with hydrogen gas in a range of 5 to 200 times It is characterized in that the system raw material gas is decomposed and formed at a high frequency.

さらに本発明の光電変換装置の透明電極は、低圧CVD法によって形成することができる。加えて、本発明の光電変換装置の水素化炭素膜は、プラズマCVD法によって形成することができる。   Furthermore, the transparent electrode of the photoelectric conversion device of the present invention can be formed by a low pressure CVD method. In addition, the hydrogenated carbon film of the photoelectric conversion device of the present invention can be formed by a plasma CVD method.

本発明によれば、基板上に安価な製造方法で形成できる光閉込め効果に優れた透明電極を用いて、光電変換装置の性能を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the performance of a photoelectric conversion apparatus can be improved using the transparent electrode excellent in the light confinement effect which can be formed with a cheap manufacturing method on a board | substrate.

以下、本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail.

図1は本発明の一つの実施形態を用いて製造した薄膜光電変換装置6の構成を示す模式的な断面図である。図1における光電変換装置6は、透光性絶縁基板1の上に透明電極2と、水素化炭素膜3、光電変換ユニット4を構成する一導電型層41、真性光電変換層42、逆導電型層43と、裏面電極5を順次堆積した構成を有する。この光電変換装置6に対しては、透光性絶縁基板1側から光電変換されるべき太陽光(hν)が入射される。   FIG. 1 is a schematic cross-sectional view showing a configuration of a thin film photoelectric conversion device 6 manufactured by using one embodiment of the present invention. A photoelectric conversion device 6 in FIG. 1 includes a transparent electrode 2, a hydrogenated carbon film 3, a one-conductivity-type layer 41 that constitutes a photoelectric conversion unit 4, an intrinsic photoelectric conversion layer 42, and reverse conductivity on a translucent insulating substrate 1. The mold layer 43 and the back electrode 5 are sequentially deposited. Sunlight (hν) to be subjected to photoelectric conversion is incident on the photoelectric conversion device 6 from the translucent insulating substrate 1 side.

なお、透光性絶縁基板1は光電変換装置を構成した際に光入射側に位置することから、より多くの太陽光を透過させて光電変換ユニットに吸収させるためにできるだけ透明であることが好ましく、その材料としてはガラス板、透光性プラスチックフィルム等が用いられる。同様の意図から、太陽光の光入射面における光反射ロスを低減させるように、透光性絶縁基板1の光入射面に無反射コーティングを行うことが望ましい。   In addition, since the translucent insulating substrate 1 is located on the light incident side when the photoelectric conversion device is configured, it is preferable that the translucent insulating substrate 1 is as transparent as possible so that more sunlight is transmitted and absorbed by the photoelectric conversion unit. As the material, a glass plate, a translucent plastic film or the like is used. For the same purpose, it is desirable to apply a non-reflective coating to the light incident surface of the translucent insulating substrate 1 so as to reduce the light reflection loss on the light incident surface of sunlight.

透光性絶縁基板1の透明電極2側は、透明電極2の付着力を向上させるために、透光性絶縁基板1の表面に微細な表面凹凸を付与してもよい。   The transparent electrode 2 side of the transparent insulating substrate 1 may be provided with fine surface irregularities on the surface of the transparent insulating substrate 1 in order to improve the adhesion of the transparent electrode 2.

透明電極2は、主にZnOからなることが好ましい。なぜなら、ZnOはSnOやITOよりも耐プラズマ性が高く、水素を使用した大きなプラズマ密度での光電変換層の堆積環境下でも、ZnO膜が還元されにくい。従って、還元された膜の黒化部分での入射光の吸収が生じにくく、光電変換層への透過光量が減少する可能性も低いため、薄膜光電変換装置用の透明電極材料として好適である。また、透明電極2は薄膜光電変換装置に適した光閉じ込め効果を得る役割を果たすため、表面凹凸を有している必要がある。なお、本発明では透明電極の凹凸の評価指標として、主にヘイズ率を用いている。ヘイズ率とは、(拡散透過率/全光線透過率)×100[%]で表されるものである(JIS K7136)。ヘイズ率の簡易評価方法としては、D65光源もしくはC光源を用いたヘイズメータによる測定が一般的に用いられる。 The transparent electrode 2 is preferably mainly composed of ZnO. This is because ZnO has higher plasma resistance than SnO 2 and ITO, and the ZnO film is difficult to be reduced even in a deposition environment of the photoelectric conversion layer with a large plasma density using hydrogen. Therefore, since it is difficult for absorption of incident light at the blackened portion of the reduced film and the amount of transmitted light to the photoelectric conversion layer is low, it is suitable as a transparent electrode material for a thin film photoelectric conversion device. Moreover, since the transparent electrode 2 plays the role which acquires the light confinement effect suitable for a thin film photoelectric conversion apparatus, it needs to have a surface asperity. In the present invention, the haze ratio is mainly used as an evaluation index of the unevenness of the transparent electrode. The haze ratio is expressed by (diffuse transmittance / total light transmittance) × 100 [%] (JIS K7136). As a simple evaluation method of the haze ratio, measurement with a haze meter using a D65 light source or a C light source is generally used.

透明電極層2の表面凹凸は、光電変換装置に適した光閉じ込め効果を得るために、透光性絶縁基板1上に透明電極層2を形成した状態で、10〜40%程度のヘイズ率を有することが好ましい。このようなヘイズ率を有する透明電極の表面凹凸の平均高低差は10〜300nm程度である。透明導電膜2の表面凹凸が小さすぎる場合は、十分な光閉じ込め効果を得ることができず、大きすぎる場合は光電変換装置に電気的および機械的な短絡を生じさせる原因となり、光電変換装置の特性低下を引き起こす。このような透明電極2は大きな設備を要する高圧熱CVD法よりも簡便な蒸着法、低圧CVD法等を用いることができるが、特に低圧CVD法にて形成することが好ましい。なぜなら、ZnOは200℃以下の低温でも光閉じ込め効果を有するテクスチャが形成できるからである。また、低圧CVD法は、スパッタ法に比べて1桁以上速い堆積速度にて製膜が可能であるとともに、原料の利用効率が高いことから、製造コストの面でも好ましい。例えば、本発明の透明電極層2は、基板温度が150℃以上、圧力5〜1000Pa、原料ガスとしてジエチル亜鉛(DEZ)、水、ドーピングガス、および希釈ガスで形成される。亜鉛の原料ガスとしてはこの他にジメチル亜鉛を用いることもできる。酸素の原料ガスとしては、酸素、二酸化炭素、一酸化炭素、酸化二窒素、二酸化窒素、二酸化硫黄、五酸化二窒素、アルコール類(R(OH))、ケトン類(R(CO)R’)、エーテル類(ROR’)、アルデヒド類(R(COH))、アミド類((RCO)(NH3−x)、x=1,2,3)、スルホキシド類(R(SO)R’)(ただし、RおよびR’はアルキル基)を用いることもできる。希釈ガスとしては希ガス(He、Ar、Xe、Kr、Rn)、窒素、水素などを用いることができる。ドーピングガスとしてはジボラン(B)、アルキルアルミ、アルキルガリウムなどを用いることができる。DEZと水の比は1:1から1:5、DEZに対するBの比は0.05%以上が好ましい。DEZ、水は常温常圧で液体なので、加熱蒸発、バブリング、噴霧などの方法で気化させてから、供給する。ZnOの膜厚を500〜3000nmにすると、粒径が概ね50〜500nmで、かつ凹凸の平均高低差が概ね10〜300nmの表面凹凸を有する薄膜が得られ、光電変換装置の光閉じ込め効果を得る点で好ましい。なお、ここでいう基板温度とは、基板が製膜装置の加熱部と接している面の温度のことをいう。 The surface unevenness of the transparent electrode layer 2 has a haze ratio of about 10 to 40% in a state where the transparent electrode layer 2 is formed on the translucent insulating substrate 1 in order to obtain a light confinement effect suitable for the photoelectric conversion device. It is preferable to have. The average height difference of the surface irregularities of the transparent electrode having such a haze ratio is about 10 to 300 nm. When the surface unevenness of the transparent conductive film 2 is too small, a sufficient light confinement effect cannot be obtained, and when it is too large, an electrical and mechanical short circuit is caused in the photoelectric conversion device. Causes deterioration of characteristics. Such a transparent electrode 2 can be formed by a vapor deposition method, a low pressure CVD method or the like which is simpler than the high pressure thermal CVD method which requires a large facility, but is preferably formed by a low pressure CVD method. This is because ZnO can form a texture having a light confinement effect even at a low temperature of 200 ° C. or lower. The low-pressure CVD method is preferable in terms of manufacturing cost because it can form a film at a deposition rate one digit or more faster than the sputtering method and has high utilization efficiency of raw materials. For example, the transparent electrode layer 2 of the present invention is formed of a substrate temperature of 150 ° C. or higher, a pressure of 5 to 1000 Pa, and a source gas of diethyl zinc (DEZ), water, a doping gas, and a dilution gas. In addition to this, dimethyl zinc can also be used as the zinc source gas. Examples of oxygen source gases include oxygen, carbon dioxide, carbon monoxide, dinitrogen oxide, nitrogen dioxide, sulfur dioxide, dinitrogen pentoxide, alcohols (R (OH)), and ketones (R (CO) R ′). , Ethers (ROR ′), aldehydes (R (COH)), amides ((RCO) x (NH 3−x ), x = 1,2,3), sulfoxides (R (SO) R ′) (However, R and R ′ are alkyl groups). As the dilution gas, a rare gas (He, Ar, Xe, Kr, Rn), nitrogen, hydrogen, or the like can be used. As the doping gas, diborane (B 2 H 6 ), alkylaluminum, alkylgallium, or the like can be used. The ratio of DEZ to water is preferably 1: 1 to 1: 5, and the ratio of B 2 H 6 to DEZ is preferably 0.05% or more. Since DEZ and water are liquids at normal temperature and normal pressure, they are vaporized by methods such as heat evaporation, bubbling, and spraying before being supplied. When the film thickness of ZnO is 500 to 3000 nm, a thin film having surface irregularities having a particle size of approximately 50 to 500 nm and an average height difference of irregularities of approximately 10 to 300 nm is obtained, and the light confinement effect of the photoelectric conversion device is obtained. This is preferable. The substrate temperature here means the temperature of the surface where the substrate is in contact with the heating unit of the film forming apparatus.

本発明の透明電極2の平均膜厚は、500〜2000nmであることが好ましく、さらに800〜1800nmであることがより好ましい。なぜなら、ZnO膜が薄すぎれば、光閉じ込め効果に有効に寄与する凹凸を十分に付与すること自体が困難となり、また透明電極として必要な導電性が得にくく、厚すぎればZnO膜自体による光吸収により、ZnOを透過し光電変換ユニットへ到達する光量が減るため、効率が低下するからである。さらに、厚すぎる場合は、製膜時間の増大によりその製膜コストが増大する。この透明電極2の平均膜厚の場合、表面凹凸の平均高低差は概ね10〜100nmを有する。   The average film thickness of the transparent electrode 2 of the present invention is preferably 500 to 2000 nm, and more preferably 800 to 1800 nm. This is because if the ZnO film is too thin, it will be difficult to sufficiently provide unevenness that effectively contributes to the light confinement effect, and it will be difficult to obtain the necessary conductivity as a transparent electrode. This is because the amount of light that passes through ZnO and reaches the photoelectric conversion unit is reduced, so that the efficiency is lowered. Furthermore, when it is too thick, the film forming cost increases due to an increase in the film forming time. In the case of the average film thickness of the transparent electrode 2, the average height difference of the surface irregularities is approximately 10 to 100 nm.

透明電極2上に形成される水素化炭素膜3は、プラズマCVD法にて形成することが好ましい。なぜなら、水素化炭素膜3は光電変換ユニット4よりも光入射側に位置するため、光吸収損失が生じる可能性のある水素化炭素膜3をできるだけ必要最小限の膜厚で形成する必要があり、プラズマCVD法は薄膜を制御よく形成できるからである。加えて、引き続き形成する光電変換ユニット4も同じ方法を用いて形成できる点でも好適である。例えば、本発明の水素化炭素膜3は、基板温度が100〜300℃、圧力30〜2000Pa、原料ガスとしては主にメタン(CH)、水素で形成される。この他に、ドーピングガス、例えば次の光電変換ユニットのp型層に用いられるB等を含んでいてもよい。水素化炭素膜3の原料ガスとしてはこの他にエタン、プロパン、ブタン、エチレン、アセチレン等の炭化水素系ガスを用いることもできる。炭化水素系原料ガスは、5〜200倍の範囲で水素ガスによって希釈されることが好ましく、さらに5〜100倍の範囲がより好ましい。なぜなら、本発明の水素化炭素膜3を形成する条件下では、水素化炭素膜3を形成するのみならず、下地層となる透明電極2へプラズマで分解された水素原子を供給する目的があるためである。しかし、希釈倍率が大きすぎると水素化炭素膜3の堆積速度を低下させ、また膜を堆積するのと平行して水素原子で堆積された膜をエッチングする可能性があるため、好ましくない。プラズマCVD法を用いた場合の高周波電力は、100〜800mW/cmで印加することが好ましく、さらに200〜500mW/cmであることがより好ましい。なぜなら、高周波電力の印加量が小さすぎれば、原料ガスの分解率が低下するため、水素化炭素膜3の堆積速度が遅くなり、製造コストが上昇する可能性がある。また、高周波電力の印加量が大きすぎれば、水素化炭素膜3の堆積速度が速くなりすぎ、薄い膜厚を制御しづらくなる。また、本発明の水素化炭素膜3は、特許文献2と比較しても、大きな高周波電力で形成することを特徴としている。この方法を用いることにより、主にZnOからなる透明電極2が、多量のプラズマで分解された水素に曝されることで低抵抗化し、高透過率と低抵抗を両立することが可能となり、光電変換装置の高効率化が実現できる。 The hydrogenated carbon film 3 formed on the transparent electrode 2 is preferably formed by a plasma CVD method. This is because the hydrogenated carbon film 3 is located closer to the light incident side than the photoelectric conversion unit 4, and therefore it is necessary to form the hydrogenated carbon film 3 that may cause light absorption loss with the minimum necessary film thickness. This is because the plasma CVD method can form a thin film with good control. In addition, the photoelectric conversion unit 4 to be subsequently formed is also preferable in that it can be formed using the same method. For example, the hydrogenated carbon film 3 of the present invention is formed of a substrate temperature of 100 to 300 ° C., a pressure of 30 to 2000 Pa, and a source gas mainly composed of methane (CH 4 ) and hydrogen. In addition, a doping gas such as B 2 H 6 used for the p-type layer of the next photoelectric conversion unit may be included. As the raw material gas for the hydrogenated carbon film 3, a hydrocarbon gas such as ethane, propane, butane, ethylene, acetylene or the like can be used. The hydrocarbon-based source gas is preferably diluted with hydrogen gas in a range of 5 to 200 times, and more preferably in a range of 5 to 100 times. This is because, under the conditions for forming the hydrogenated carbon film 3 of the present invention, not only the hydrogenated carbon film 3 is formed but also the purpose of supplying hydrogen atoms decomposed by plasma to the transparent electrode 2 serving as an underlayer. Because. However, if the dilution ratio is too large, the deposition rate of the hydrogenated carbon film 3 is decreased, and a film deposited with hydrogen atoms may be etched in parallel with the deposition of the film, which is not preferable. When the plasma CVD method is used, the high frequency power is preferably applied at 100 to 800 mW / cm 2 , and more preferably 200 to 500 mW / cm 2 . This is because if the amount of high-frequency power applied is too small, the decomposition rate of the raw material gas is lowered, so that the deposition rate of the hydrogenated carbon film 3 is slowed and the manufacturing cost may increase. On the other hand, if the amount of high-frequency power applied is too large, the deposition rate of the hydrogenated carbon film 3 becomes too fast, making it difficult to control the thin film thickness. Further, the hydrogenated carbon film 3 of the present invention is characterized in that it is formed with a large high-frequency power as compared with Patent Document 2. By using this method, the transparent electrode 2 mainly composed of ZnO is exposed to hydrogen decomposed by a large amount of plasma, thereby making it possible to reduce resistance and to achieve both high transmittance and low resistance. High efficiency of the conversion device can be realized.

水素化炭素膜3は、光電変換ユニット4への光吸収を妨げる可能性があるために、膜厚はなるべく薄く形成する必要があり、水素化炭素膜3の平均膜厚は、1〜20nmであることが好ましい。逆に薄すぎれば本発明の効果を発現しないため、水素化炭素膜3の平均膜厚には好適な範囲が存在する。また、水素化炭素膜3を形成することにより、低圧CVD法を用いて形成した透明電極2の表面凹凸に関係する結晶粒界のポスト酸化等やその他の化学変化を防ぐことが可能となる。   Since the hydrogenated carbon film 3 may hinder light absorption into the photoelectric conversion unit 4, it is necessary to form the film thickness as thin as possible. The average film thickness of the hydrogenated carbon film 3 is 1 to 20 nm. Preferably there is. Conversely, if it is too thin, the effect of the present invention is not exhibited, and therefore there is a suitable range for the average film thickness of the hydrogenated carbon film 3. Further, by forming the hydrogenated carbon film 3, it becomes possible to prevent post-oxidation of crystal grain boundaries and other chemical changes related to the surface irregularities of the transparent electrode 2 formed by using the low pressure CVD method.

水素化炭素膜3上に形成される光電変換ユニット4は図示したように1つの光電変換ユニットとしてもよいが、複数の光電変換ユニットを積層してもよい。光電変換ユニット4としては、太陽光の主波長域(400〜1200nm)に吸収を有するものが好ましく、例えば結晶質シリコン系薄膜を真性光電変換層42とした結晶質シリコン系光電変換ユニットが挙げられる。また、「シリコン系」の材料には、シリコンに加え、シリコンカーバイドやシリコンゲルマニウムなど、シリコンを含むシリコン合金半導体材料も該当するものとする。   The photoelectric conversion unit 4 formed on the hydrogenated carbon film 3 may be a single photoelectric conversion unit as illustrated, but a plurality of photoelectric conversion units may be stacked. As the photoelectric conversion unit 4, one having absorption in the main wavelength range (400 to 1200 nm) of sunlight is preferable. For example, a crystalline silicon-based photoelectric conversion unit in which a crystalline silicon-based thin film is an intrinsic photoelectric conversion layer 42 is exemplified. . In addition to silicon, “silicon-based” materials include silicon alloy semiconductor materials containing silicon such as silicon carbide and silicon germanium.

結晶質シリコン系光電変換ユニットは、例えばpin型の順にプラズマCVD法により各半導体層を積層して形成される。具体的には、例えば導電型決定不純物原子であるボロンが0.01原子%以上ドープされたp型微結晶シリコン系層、光電変換層となる真性結晶質シリコン層、および導電型決定不純物原子であるリンが0.01原子%以上ドープされたn型微結晶シリコン系層をこの順に堆積すればよい。しかし、これら各層は上記に限定されず、例えばp型層として非晶質シリコン系膜を用いてもよい。またp型層として、非晶質または微結晶のシリコンカーバイド、シリコンゲルマニウムなどの合金材料を用いてもよい。なお、導電型(p型、n型)微結晶シリコン系層の膜厚は3nm以上100nm以下が好ましく、5nm以上50nm以下がさらに好ましい。   The crystalline silicon-based photoelectric conversion unit is formed by stacking semiconductor layers by plasma CVD, for example, in the order of pin type. Specifically, for example, a p-type microcrystalline silicon-based layer doped with 0.01 atomic% or more of boron, which is a conductivity type determining impurity atom, an intrinsic crystalline silicon layer serving as a photoelectric conversion layer, and a conductivity type determining impurity atom An n-type microcrystalline silicon-based layer doped with 0.01 atomic% or more of certain phosphorus may be deposited in this order. However, these layers are not limited to the above. For example, an amorphous silicon film may be used as the p-type layer. Further, an alloy material such as amorphous or microcrystalline silicon carbide or silicon germanium may be used for the p-type layer. Note that the film thickness of the conductive (p-type, n-type) microcrystalline silicon-based layer is preferably 3 nm to 100 nm, and more preferably 5 nm to 50 nm.

真性光電変換層42である真性結晶質シリコン層は、プラズマCVD法によって基体温度300℃以下で形成することが好ましい。低温で形成することにより、結晶粒界や粒内における欠陥を終端させて不活性化させる水素原子を多く含ませることが好ましい。具体的には、光電変換層の水素含有量は1〜30原子%の範囲内にあるのが好ましい。この層は、導電型決定不純物原子の密度が1×1018cm−3以下である実質的に真性半導体である薄膜として形成されることが好ましい。さらに、真性結晶質シリコン層に含まれる結晶粒の多くは、透明電極2側から柱状に延びて成長しており、その膜面に対して(110)の優先配向面を有することが好ましい。真性結晶質シリコン層の膜厚は光吸収の観点から1μm以上が好ましく、結晶質薄膜の内部応力による剥離を抑える観点から10μm以下が好ましい。ただし、薄膜結晶質光電変換ユニットとしては、太陽光の主波長域(400〜1200nm)に吸収を有するものが好ましいため、真性結晶質シリコン層に代えて、合金材料である結晶質シリコンカーバイド層(例えば10原子%以下の炭素を含有する結晶質シリコンからなる結晶質シリコンカーバイド層)や結晶質シリコンゲルマニウム層(例えば30原子%以下のゲルマニウムを含有する結晶質シリコンからなる結晶質シリコンゲルマニウム層)を形成してもよい。 The intrinsic crystalline silicon layer that is the intrinsic photoelectric conversion layer 42 is preferably formed by a plasma CVD method at a substrate temperature of 300 ° C. or lower. By forming at a low temperature, it is preferable to include many hydrogen atoms that terminate and inactivate defects in the grain boundaries and grains. Specifically, the hydrogen content of the photoelectric conversion layer is preferably in the range of 1 to 30 atomic%. This layer is preferably formed as a thin film which is a substantially intrinsic semiconductor having a conductivity type determining impurity atom density of 1 × 10 18 cm −3 or less. Further, most of the crystal grains contained in the intrinsic crystalline silicon layer are grown in a columnar shape from the transparent electrode 2 side, and preferably have a (110) preferential orientation plane with respect to the film surface. The film thickness of the intrinsic crystalline silicon layer is preferably 1 μm or more from the viewpoint of light absorption, and preferably 10 μm or less from the viewpoint of suppressing peeling due to internal stress of the crystalline thin film. However, since the thin film crystalline photoelectric conversion unit preferably has absorption in the main wavelength region of sunlight (400 to 1200 nm), instead of the intrinsic crystalline silicon layer, a crystalline silicon carbide layer (alloy material) ( For example, a crystalline silicon carbide layer made of crystalline silicon containing 10 atomic% or less of carbon or a crystalline silicon germanium layer (for example, a crystalline silicon germanium layer made of crystalline silicon containing 30 atomic% or less of germanium) It may be formed.

光電変換ユニット4の上には、裏面電極5が形成される。裏面電極としては、Al、Ag、Au、Cu、PtおよびCrから選ばれる少なくとも一つの材料からなる少なくとも一層の金属層52をスパッタ法または蒸着法により形成することが好ましい。また、光電変換ユニット4と金属層52との間に、ITO、SnO、ZnO等の導電性酸化物層51を形成するほうが好ましい。この導電性酸化物層51は、光電変換ユニット4と金属層52との間の密着性を高めるとともに、裏面電極5の光反射率を高め、さらに、光電変換ユニット層4の化学変化を防止する機能を有する。 A back electrode 5 is formed on the photoelectric conversion unit 4. As the back electrode, it is preferable to form at least one metal layer 52 made of at least one material selected from Al, Ag, Au, Cu, Pt and Cr by sputtering or vapor deposition. Further, it is preferable to form a conductive oxide layer 51 such as ITO, SnO 2 , or ZnO between the photoelectric conversion unit 4 and the metal layer 52. The conductive oxide layer 51 enhances the adhesion between the photoelectric conversion unit 4 and the metal layer 52, increases the light reflectance of the back electrode 5, and further prevents chemical changes in the photoelectric conversion unit layer 4. It has a function.

図示はしていないが、本発明の実施形態の一つとして、水素化炭素膜3の上に非晶質光電変換ユニットと結晶質光電変換ユニットを順に積層したタンデム型光電変換装置がある。非晶質光電変換ユニットは、一導電型層、真性非晶質光電変換層および逆導電型層が含まれる。非晶質光電変換ユニットとして非晶質シリコン系材料を選べば、約360〜800nmの光に対して感度を有し、結晶質光電変換ユニットに結晶質シリコン系材料を選べばそれより長い約1200nmまでの光に対して感度を有する。したがって、光入射側から非晶質シリコン系光電変換ユニット、結晶質シリコン系光電変換ユニットの順で配置される太陽電池は、入射光をより広い範囲で有効利用可能な光電変換装置となる。結晶質光電変換ユニットは、前述の実施形態と同様に形成する。   Although not shown, as one embodiment of the present invention, there is a tandem photoelectric conversion device in which an amorphous photoelectric conversion unit and a crystalline photoelectric conversion unit are sequentially stacked on a hydrogenated carbon film 3. The amorphous photoelectric conversion unit includes a one conductivity type layer, an intrinsic amorphous photoelectric conversion layer, and a reverse conductivity type layer. If an amorphous silicon-based material is selected as the amorphous photoelectric conversion unit, it has sensitivity to light of about 360 to 800 nm, and if a crystalline silicon-based material is selected for the crystalline photoelectric conversion unit, it is longer than about 1200 nm. Sensitivity to light up to. Therefore, the solar cell arranged in the order of the amorphous silicon-based photoelectric conversion unit and the crystalline silicon-based photoelectric conversion unit from the light incident side becomes a photoelectric conversion device that can effectively use incident light in a wider range. The crystalline photoelectric conversion unit is formed in the same manner as in the above embodiment.

非晶質光電変換ユニットは、例えばpin型の順にプラズマCVD法により各半導体層を積層して形成される。具体的には、例えば導電型決定不純物原子であるボロンが0.01原子%以上ドープされたp型非晶質シリコン系層、光電変換層となる真性非晶質シリコン系層、および導電型決定不純物原子であるリンが0.01原子%以上ドープされたn型非晶質シリコン系層をこの順に堆積すればよい。しかし、これら各層は上記に限定されず、例えばp型層として微結晶シリコン系膜を用いてもよい。またp型層として、非晶質または微結晶のシリコンカーバイド、シリコンナイトライド、シリコンオキサイド、シリコンゲルマニウムなどの合金材料を用いてもよい。なお、水素化炭素膜3とp型層のオーミック特性の点では、微結晶の膜を用いるほうが好ましいが、短絡電流と開放電圧を両立させる点から、薄い微結晶の膜と従来の非晶質の膜を積層した構造でもよい。真性非晶質半導体層としては、シリコンカーバイド、シリコンゲルマニウムなどの合金材料を用いてもよい。真性非晶質シリコン系層としては、膜中の欠陥密度を低減して薄膜光電変換装置の再結合電流損失を低減するために、膜中に水素を2〜15%含むことが望ましい。また、真性非晶質シリコン系層は、光照射による劣化を低減するために、膜厚50nm以上500nm以下が望ましい。n型層としては、微結晶シリコン系膜を用いてもよい。なお、導電型(p型、n型)微結晶シリコン系層または非晶質シリコン系層の膜厚は3nm以上100nm以下が好ましく、5nm以上50nm以下がさらに好ましい。
最後に、光電変換装置が薄膜太陽電池等の場合は、裏面側は封止樹脂(図示せず)が添付されることにより保護される。
The amorphous photoelectric conversion unit is formed by stacking each semiconductor layer by a plasma CVD method in the order of, for example, a pin type. Specifically, for example, a p-type amorphous silicon-based layer doped with 0.01 atomic% or more of boron, which is a conductivity-determining impurity atom, an intrinsic amorphous silicon-based layer that becomes a photoelectric conversion layer, and a conductivity-type determination An n-type amorphous silicon-based layer doped with 0.01 atomic% or more of phosphorus, which is an impurity atom, may be deposited in this order. However, these layers are not limited to the above. For example, a microcrystalline silicon film may be used as the p-type layer. Further, an alloy material such as amorphous or microcrystalline silicon carbide, silicon nitride, silicon oxide, silicon germanium, or the like may be used for the p-type layer. In terms of ohmic characteristics between the hydrogenated carbon film 3 and the p-type layer, it is preferable to use a microcrystalline film. However, a thin microcrystalline film and a conventional amorphous film are used in order to achieve both a short-circuit current and an open-circuit voltage. A structure in which these films are laminated may also be used. As the intrinsic amorphous semiconductor layer, an alloy material such as silicon carbide or silicon germanium may be used. The intrinsic amorphous silicon-based layer preferably contains 2 to 15% of hydrogen in the film in order to reduce the defect density in the film and reduce the recombination current loss of the thin film photoelectric conversion device. In addition, the intrinsic amorphous silicon-based layer desirably has a thickness of 50 nm to 500 nm in order to reduce deterioration due to light irradiation. A microcrystalline silicon film may be used as the n-type layer. Note that the film thickness of the conductive type (p-type, n-type) microcrystalline silicon-based layer or amorphous silicon-based layer is preferably 3 nm to 100 nm, and more preferably 5 nm to 50 nm.
Finally, when the photoelectric conversion device is a thin film solar cell or the like, the back surface side is protected by attaching a sealing resin (not shown).

以下、本発明を実施例に基づいて詳細に説明するが、本発明はその趣旨を超えない限り以下の記載例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to the following description examples, unless the meaning is exceeded.

(実施例1)
実施例1として図1に示される光電変換装置6を作製した。
Example 1
As Example 1, a photoelectric conversion device 6 shown in FIG.

透光性絶縁基板1として厚み0.7mm、125mm角のガラス基板を用い、その上に透明電極2として、低圧CVD法によりBドープZnOを1.5μmの厚みで形成した。この透明電極2は、基板温度を160℃とし、原料ガスとしてジエチルジンク(DEZ)と水、ドーパントガスとしてジボランガスを供給し、減圧条件下CVD法にて形成している。得られた透明電極付き基板は、シート抵抗が15Ω/□程度、ヘイズ率は30%であった。得られた透明電極付き基板の全光線透過率をガラス側から光を入射し、分光光度計にて測定した。波長400〜1200nmの範囲で概ね80%以上の透過率を示した。   A glass substrate having a thickness of 0.7 mm and a 125 mm square was used as the translucent insulating substrate 1, and B-doped ZnO was formed thereon with a thickness of 1.5 μm as the transparent electrode 2 by low-pressure CVD. The transparent electrode 2 is formed by a CVD method under a reduced pressure condition with a substrate temperature of 160 ° C., diethyl zinc (DEZ) and water as source gases, and diborane gas as a dopant gas. The obtained substrate with a transparent electrode had a sheet resistance of about 15Ω / □ and a haze ratio of 30%. The total light transmittance of the obtained substrate with a transparent electrode was measured with a spectrophotometer by entering light from the glass side. A transmittance of approximately 80% or more was exhibited in the wavelength range of 400 to 1200 nm.

続いて、透明電極2の上に厚さ2nmの水素化炭素膜3をプラズマCVD法で形成した。水素化炭素膜3を形成する際は、基板温度を180℃とし、原料ガスとして、CHと水素を用いた。水素によるCHの希釈倍率は10倍とし、高周波電力にはRFを用いて、300mW/cmを印加した。得られた水素化炭素膜3形成後の透明電極付き基板は、シート抵抗が10Ω/□程度、ヘイズ率は28%であった。このシート抵抗の減少は、水素化炭素膜3を形成する条件に含まれるプラズマ分解された水素原子によるものと推測している。また、水素化炭素膜3形成前後で、波長400〜1200nmの範囲での光線透過率はほとんど変化していなかったことから、水素化炭素膜3を形成する条件で透明電極が還元されていないことと、水素化炭素膜3の部分でほとんど光吸収が生じていないことがわかる。 Subsequently, a hydrogenated carbon film 3 having a thickness of 2 nm was formed on the transparent electrode 2 by a plasma CVD method. When forming a hydrogenated carbon film 3, a substrate temperature of 180 ° C., as a material gas, using CH 4 and hydrogen. The dilution ratio of CH 4 with hydrogen was 10 times, and 300 mW / cm 2 was applied as RF power using RF. The obtained substrate with a transparent electrode after forming the hydrogenated carbon film 3 had a sheet resistance of about 10Ω / □ and a haze ratio of 28%. This decrease in sheet resistance is presumed to be due to plasma-decomposed hydrogen atoms included in the conditions for forming the hydrogenated carbon film 3. In addition, since the light transmittance in the wavelength range of 400 to 1200 nm was hardly changed before and after the formation of the hydrogenated carbon film 3, the transparent electrode was not reduced under the conditions for forming the hydrogenated carbon film 3. It can be seen that almost no light absorption occurs in the hydrogenated carbon film 3 portion.

続いて、水素化炭素膜3の上に、厚さ15nmのp型微結晶シリコン層41、厚さ1.5μmの真性結晶質シリコン光電変換層42、及び厚さ15nmのn型微結晶シリコン層43からなる結晶質シリコン光電変換ユニット4を順次プラズマCVD法で形成した。その後、裏面電極5として厚さ90nmのAlドープされたZnO51と厚さ200nmのAg52をスパッタ法にて順次形成した。   Subsequently, a p-type microcrystalline silicon layer 41 having a thickness of 15 nm, an intrinsic crystalline silicon photoelectric conversion layer 42 having a thickness of 1.5 μm, and an n-type microcrystalline silicon layer having a thickness of 15 nm are formed on the hydrogenated carbon film 3. A crystalline silicon photoelectric conversion unit 4 composed of 43 was sequentially formed by a plasma CVD method. Thereafter, Al-doped ZnO 51 having a thickness of 90 nm and Ag 52 having a thickness of 200 nm were sequentially formed as the back electrode 5 by sputtering.

以上のようにして得られた光電変換装置6にAM1.5の光を100mW/cm光量で照射して出力特性を測定したところ、開放電圧(Voc)が0.548V、短絡電流密度(Jsc)が25.0mA/cm、曲線因子(F.F.)が0.727、そして変換効率が10.0%であった。 When the photoelectric conversion device 6 obtained as described above was irradiated with AM 1.5 light at 100 mW / cm 2 and measured for output characteristics, the open circuit voltage (Voc) was 0.548 V and the short-circuit current density (Jsc). ) Was 25.0 mA / cm 2 , the fill factor (FF) was 0.727, and the conversion efficiency was 10.0%.

(実施例2)
実施例2においても、実施例1と同様に光電変換装置6を作製した。ただし、実施例1と異なるのは、水素化炭素膜3の厚みを4nmとした点である。この条件で得られた水素化炭素膜3形成後の透明電極付き基板は、シート抵抗が10Ω/□程度、ヘイズ率は27%であった。また、得られた光電変換装置6にAM1.5の光を100mW/cm光量で照射して出力特性を測定したところ、Vocが0.545V、Jscが24.8mA/cm、F.F.が0.728、そして変換効率が9.8%であった。
(実施例3)
実施例3においても、実施例1と同様に光電変換装置6を作製した。ただし、実施例1と異なるのは、水素化炭素膜3の厚みを9nmとした点である。得られた光電変換装置6にAM1.5の光を100mW/cm光量で照射して出力特性を測定したところ、Vocが0.544V、Jscが24.5mA/cm、F.F.が0.730、そして変換効率が9.7%であった。
(実施例4)
実施例4においても、実施例1と同様に光電変換装置6を作製した。ただし、実施例1と異なるのは、水素化炭素膜3を形成する際の水素によるCHの希釈倍率を20倍とした点である。得られた光電変換装置6にAM1.5の光を100mW/cm光量で照射して出力特性を測定したところ、Vocが0.546V、Jscが24.9mA/cm、F.F.が0.730、そして変換効率が9.9%であった。
(実施例5)
実施例5においても、実施例1と同様に光電変換装置6を作製した。ただし、実施例1と異なるのは、水素化炭素膜3を形成する際の高周波電力を500mW/cm印加した点である。得られた光電変換装置6にAM1.5の光を100mW/cm光量で照射して出力特性を測定したところ、Vocが0.546V、Jscが24.8mA/cm、F.F.が0.735、そして変換効率が10.0%であった。
(比較例1)
比較例1は実施例1とほぼ同様に光電変換装置6を作製した。ただし、実施例1と異なるのは、水素化炭素膜3を形成しなかった点である。
(Example 2)
Also in Example 2, the photoelectric conversion device 6 was produced in the same manner as in Example 1. However, the difference from Example 1 is that the thickness of the hydrogenated carbon film 3 is set to 4 nm. The substrate with a transparent electrode after forming the hydrogenated carbon film 3 obtained under these conditions had a sheet resistance of about 10Ω / □ and a haze ratio of 27%. Further, when the light of AM1.5 photoelectric conversion device 6 obtained was measured output characteristic by irradiating with 100 mW / cm 2 light intensity, Voc is 0.545V, Jsc is 24.8mA / cm 2, F. F. Was 0.728, and the conversion efficiency was 9.8%.
(Example 3)
Also in Example 3, the photoelectric conversion device 6 was produced in the same manner as in Example 1. However, the difference from Example 1 is that the thickness of the hydrogenated carbon film 3 is 9 nm. When the output characteristics were measured by irradiating the obtained photoelectric conversion device 6 with AM 1.5 light at a light quantity of 100 mW / cm 2 , Voc was 0.544 V, Jsc was 24.5 mA / cm 2 , F.I. F. Was 0.730 and the conversion efficiency was 9.7%.
Example 4
Also in Example 4, the photoelectric conversion device 6 was produced in the same manner as in Example 1. However, the difference from Example 1 is that the dilution ratio of CH 4 with hydrogen when forming the hydrogenated carbon film 3 is set to 20 times. When the output characteristics were measured by irradiating the obtained photoelectric conversion device 6 with AM 1.5 light at a light amount of 100 mW / cm 2 , Voc was 0.546 V, Jsc was 24.9 mA / cm 2 , F.I. F. Was 0.730 and the conversion efficiency was 9.9%.
(Example 5)
Also in Example 5, the photoelectric conversion device 6 was produced in the same manner as in Example 1. However, the difference from Example 1 is that high frequency power for forming the hydrogenated carbon film 3 was applied at 500 mW / cm 2 . When the output characteristics were measured by irradiating the obtained photoelectric conversion device 6 with AM 1.5 light at a light quantity of 100 mW / cm 2 , Voc was 0.546 V, Jsc was 24.8 mA / cm 2 , F.I. F. Was 0.735, and the conversion efficiency was 10.0%.
(Comparative Example 1)
In Comparative Example 1, a photoelectric conversion device 6 was produced in substantially the same manner as in Example 1. However, the difference from Example 1 is that the hydrogenated carbon film 3 was not formed.

得られた光電変換装置6にAM1.5の光を100mW/cm光量で照射して出力特性を測定したところ、Vocが0.502V、Jscが25.1mA/cm、F.F.が0.681、そして変換効率が8.6%であった。この結果を実施例1の結果と比べると、VocおよびF.F.の値に低下が見られる。これは、光電変換ユニットが接する透明電極部分のシート抵抗が影響していると考えられ、この値の差により光電変換装置のシリーズ抵抗に差が生じたと推測できる。
(比較例2)
比較例2は実施例1とほぼ同様に光電変換装置6を作製した。ただし、実施例1と異なるのは、水素化炭素膜3を堆積する条件のうち、CHを添加しなかった点である。従って、本条件は透明電極2をプラズマで分解した水素原子に曝したものであり、この条件で得られた水素プラズマ処理後に相当する透明電極付き基板は、シート抵抗が11Ω/□程度、ヘイズ率は29%であった。さらに、波長400〜1200nmの範囲での光線透過率は、プラズマで分解した水素原子に曝した後でほぼ全波長領域において少しずつ低下していた。このことから、CHを添加しないこの条件では、耐プラズマ性が高いとされるZnOからなる透明電極でも、条件によっては表面が還元されることがわかり、逆に実施例1の条件はCHを添加することによって還元を防止できる条件であることがわかった。
When the output characteristics were measured by irradiating the obtained photoelectric conversion device 6 with AM 1.5 light at a light quantity of 100 mW / cm 2 , Voc was 0.502 V, Jsc was 25.1 mA / cm 2 , F.R. F. Was 0.681, and the conversion efficiency was 8.6%. When this result is compared with the result of Example 1, Voc and F.R. F. There is a decrease in the value of. This is considered to be due to the influence of the sheet resistance of the transparent electrode portion in contact with the photoelectric conversion unit, and it can be inferred that the difference in the series resistance of the photoelectric conversion device is caused by the difference in this value.
(Comparative Example 2)
In Comparative Example 2, a photoelectric conversion device 6 was produced in substantially the same manner as in Example 1. However, the difference from Example 1 is that, among the conditions for depositing the hydrogenated carbon film 3, CH 4 was not added. Therefore, this condition is that the transparent electrode 2 is exposed to hydrogen atoms decomposed by plasma, and the substrate with the transparent electrode obtained after the hydrogen plasma treatment obtained under this condition has a sheet resistance of about 11Ω / □ and a haze ratio. Was 29%. Furthermore, the light transmittance in the wavelength range of 400 to 1200 nm gradually decreased in almost all wavelength regions after exposure to hydrogen atoms decomposed by plasma. Therefore, in this condition without the addition of CH 4, also a transparent electrode composed of ZnO that is highly plasma resistance, notice that the surface depending on the conditions is reduced, contrary to the conditions of Example 1 is CH 4 It was found that the conditions can prevent the reduction by adding.

また、得られた光電変換装置6にAM1.5の光を100mW/cm光量で照射して出力特性を測定したところ、Vocが0.533V、Jscが23.6mA/cm、F.F.が0.724、そして変換効率が9.1%であった。この結果を実施例1の結果と比べると、Jscの値に大幅な低下が見られる。これは、透明電極部分の還元による光吸収が影響していると考えられる。
(比較例3)
比較例3は特許文献2に記載の実施例1とほぼ同様の方法を用いて、主にZnOからなる透明電極2上にダイヤモンドライクカーボン膜を作製した。ただし、特許文献2は透明電極にSnOを用いているところが異なり、さらに基板材料の詳細や基板温度、そして高周波電力を印加する際の単位面積当たりの数値が不明瞭であるため、本発明と比較できるであろう条件を選んで実施した。透光性絶縁基板1としては本発明の実施例1と同様に厚み0.7mm、125mm角のガラス基板を用い、透明電極2は実施例1と同様の条件で形成した。続いて、ダイヤモンドライクカーボン膜を形成する際は、基板温度を180℃とし、CHと水素とを流量比1:1で使用し、高周波電力にはRFを用いて100mW/cmを印加し、約2nm堆積した。ちなみに、本条件でSnOからなる透明電極上にダイヤモンドライクカーボン膜を形成した場合、若干透明電極の還元による透過率低下が見られたため、特許文献2よりも透明電極に対して少し過酷な条件と推測される。得られた水素化炭素膜3形成後の透明電極付き基板は、シート抵抗が16Ω/□程度、ヘイズ率は29%であった。このシート抵抗の値は、水素化炭素膜3を形成する前の状態と変わらない、もしくは少し上昇したものであり、比較例3の水素化炭素膜3形成条件は本発明のZnOからなる透明電極のシート抵抗を下げる効果がないことがわかった。また、得られた透明電極付き基板の全光線透過率は、波長400〜1200nmの範囲で80%以上を示したが、本発明の実施例1と比較すると、全波長領域において透過率が下回っており、比較例3の水素化炭素膜の透過率が実施例1のものと比較して低いものであると推測される。
Further, when the output characteristics were measured by irradiating the obtained photoelectric conversion device 6 with AM 1.5 light at a light quantity of 100 mW / cm 2 , Voc was 0.533 V, Jsc was 23.6 mA / cm 2 , F.D. F. Was 0.724, and the conversion efficiency was 9.1%. When this result is compared with the result of Example 1, the value of Jsc is significantly reduced. This is considered to be due to light absorption due to reduction of the transparent electrode portion.
(Comparative Example 3)
In Comparative Example 3, a diamond-like carbon film was formed on the transparent electrode 2 mainly made of ZnO by using a method substantially similar to Example 1 described in Patent Document 2. However, Patent Document 2 is different in that SnO 2 is used for the transparent electrode, and the details of the substrate material, the substrate temperature, and the numerical value per unit area when applying high-frequency power are unclear. The conditions that could be compared were selected and implemented. As the translucent insulating substrate 1, a glass substrate having a thickness of 0.7 mm and a 125 mm square was used as in Example 1 of the present invention, and the transparent electrode 2 was formed under the same conditions as in Example 1. Subsequently, when the diamond-like carbon film is formed, the substrate temperature is set to 180 ° C., CH 4 and hydrogen are used at a flow rate ratio of 1: 1, and 100 mW / cm 2 is applied to the high-frequency power using RF. About 2 nm. Incidentally, when a diamond-like carbon film was formed on a transparent electrode made of SnO 2 under these conditions, the transmittance was slightly reduced due to the reduction of the transparent electrode. It is guessed. The obtained substrate with a transparent electrode after the formation of the hydrogenated carbon film 3 had a sheet resistance of about 16Ω / □ and a haze ratio of 29%. The value of the sheet resistance is the same as that before the hydrogenated carbon film 3 is formed or slightly increased. The conditions for forming the hydrogenated carbon film 3 in Comparative Example 3 are the transparent electrode made of ZnO of the present invention. It was found that there was no effect to lower the sheet resistance. Moreover, although the total light transmittance of the obtained substrate with a transparent electrode showed 80% or more in a wavelength range of 400 to 1200 nm, compared with Example 1 of the present invention, the transmittance was lower in all wavelength regions. Thus, it is estimated that the permeability of the hydrogenated carbon film of Comparative Example 3 is lower than that of Example 1.

引き続いて、この透明電極上に、本発明の実施例1に記載の同様の方法で光電変換装置6を作製した。得られた光電変換装置6にAM1.5の光を100mW/cm光量で照射して出力特性を測定したところ、Vocが0.505V、Jscが24.4mA/cm、F.F.が0.676、そして変換効率が8.3%であった。この結果を実施例1の結果と比べると、VocおよびF.F.の値に大幅な低下が見られる。これは透明電極部分のシート抵抗が高いことと、水素化炭素膜と光電変換ユニットとのオーミック特性が実施例1と比較して悪いことが影響していると考えられる。
(比較例4)
比較例4は本発明の実施例1とほぼ同様に光電変換装置6を作製した。ただし、実施例1と異なるのは、透明電極にSnOを用いた点である。なお、SnO透明電極は、薄膜太陽電池に従来使用されているフッ素ドープされたものを用いた。実施例1と同様の方法を用いて、主にSnOからなる透明電極2上に水素化炭素膜3を作製したところ、得られた透明電極付き基板は、シート抵抗が8Ω/□程度、ヘイズ率は15%であった。ただし、得られた透明電極付き基板のSnO膜表面が茶色くなっていたため、透明電極が還元されていると推測している。従って、本水素化炭素膜形成に用いた条件は、透明電極の還元による透過率低下を招くことから、耐プラズマ性の低いSnOからなる透明電極2には不向きな条件と言える。
Subsequently, a photoelectric conversion device 6 was produced on the transparent electrode by the same method as described in Example 1 of the present invention. When the output characteristics were measured by irradiating the obtained photoelectric conversion device 6 with AM1.5 light at a light amount of 100 mW / cm 2 , Voc was 0.505 V, Jsc was 24.4 mA / cm 2 , F.D. F. Was 0.676, and the conversion efficiency was 8.3%. When this result is compared with the result of Example 1, Voc and F.R. F. There is a significant decrease in the value of. This is thought to be due to the fact that the sheet resistance of the transparent electrode portion is high and the ohmic characteristics of the hydrogenated carbon film and the photoelectric conversion unit are worse than those of Example 1.
(Comparative Example 4)
In Comparative Example 4, a photoelectric conversion device 6 was produced in substantially the same manner as in Example 1 of the present invention. However, the difference from Example 1 is that SnO 2 was used for the transparent electrode. Incidentally, SnO 2 transparent electrode was used as the fluorine-doped conventionally used in thin film solar cells. When the hydrogenated carbon film 3 was produced on the transparent electrode 2 mainly made of SnO 2 using the same method as in Example 1, the obtained substrate with a transparent electrode had a sheet resistance of about 8Ω / □, haze. The rate was 15%. However, since the SnO 2 film surface of the obtained substrate with a transparent electrode was brown, it is assumed that the transparent electrode was reduced. Therefore, it can be said that the conditions used for forming the hydrogenated carbon film are unsuitable for the transparent electrode 2 made of SnO 2 having low plasma resistance because the transmittance is reduced by the reduction of the transparent electrode.

また、得られた光電変換装置6にAM1.5の光を100mW/cm光量で照射して出力特性を測定したところ、Vocが0.500V、Jscが18.3mA/cm、F.F.が0.603、そして変換効率が5.5%であった。この結果を実施例1の結果と比べると、全てのパラメータにおいて低下が見られている。特にJscの大幅な低下は、透明電極部分が水素の多い高プラズマ密度条件下で還元され、全ての波長領域において透過率低下を生じたことが影響していると考えられる。 Further, when the output characteristics were measured by irradiating the obtained photoelectric conversion device 6 with AM1.5 light at a light amount of 100 mW / cm 2 , Voc was 0.500 V, Jsc was 18.3 mA / cm 2 , F.D. F. Was 0.603, and the conversion efficiency was 5.5%. When this result is compared with the result of Example 1, there is a decrease in all parameters. In particular, the significant decrease in Jsc is considered to be due to the fact that the transparent electrode portion was reduced under a high plasma density condition containing a lot of hydrogen, resulting in a decrease in transmittance in all wavelength regions.

表1は上述の実施例1〜5および比較例1〜4による透明電極2の主要な構成および特性とそれぞれの透明電極を用いて作製した結晶質光電変換装置の出力特性の測定結果をまとめたものである。   Table 1 summarizes the main configuration and characteristics of the transparent electrode 2 according to the above-described Examples 1 to 5 and Comparative Examples 1 to 4, and the measurement results of the output characteristics of the crystalline photoelectric conversion device produced using each transparent electrode. Is.

Figure 2009010108
表1の結果から分かるように、実施例1〜5のいずれにおいても、比較例1〜4を上回る変換効率の光電変換装置を得た。
Figure 2009010108
As can be seen from the results in Table 1, in any of Examples 1 to 5, a photoelectric conversion device having a conversion efficiency exceeding Comparative Examples 1 to 4 was obtained.

以上、詳細に説明したように、本発明によれば、安価な方法で形成できる光閉じ込め効果に優れた透明電極を用いて、性能が改善された光電変換装置の製造方法を提供することができる。
As described above in detail, according to the present invention, it is possible to provide a method for manufacturing a photoelectric conversion device with improved performance by using a transparent electrode excellent in light confinement effect that can be formed by an inexpensive method. .

本発明の一実施形態である光電変換装置の断面図Sectional drawing of the photoelectric conversion apparatus which is one Embodiment of this invention

符号の説明Explanation of symbols

1 透光性絶縁基板
2 透明電極
3 水素化炭素膜
4 光電変換ユニット
41 一導電型層
42 真性光電変換層
43 逆導電型層
5 裏面電極
51 導電性酸化物層
52 金属層
6 光電変換装置
DESCRIPTION OF SYMBOLS 1 Translucent insulated substrate 2 Transparent electrode 3 Hydrogenated carbon film | membrane 4 Photoelectric conversion unit 41 One conductivity type layer 42 Intrinsic photoelectric conversion layer 43 Reverse conductivity type layer 5 Back surface electrode 51 Conductive oxide layer 52 Metal layer 6 Photoelectric conversion apparatus

Claims (3)

透光性絶縁基板上に、酸化亜鉛を含む透明電極を形成し、前記透明電極上に水素化炭素膜を形成する工程と、前記水素化炭素膜上に少なくとも一つの光電変換ユニット、および裏面電極を順次積層する工程とを含む光電変換装置の製造方法であって、前記水素化炭素膜を形成する工程において、5〜200倍の範囲で水素ガスによって希釈された炭化水素系原料ガスを高周波で分解して、前記水素化炭素膜を形成することを特徴とする光電変換装置の製造方法。   Forming a transparent electrode containing zinc oxide on a light-transmitting insulating substrate and forming a hydrogenated carbon film on the transparent electrode; at least one photoelectric conversion unit on the hydrogenated carbon film; and a back electrode In the step of forming the hydrogenated carbon film, in the step of forming the hydrogenated carbon film, the hydrocarbon-based source gas diluted with hydrogen gas in a range of 5 to 200 times is produced at a high frequency. A method for producing a photoelectric conversion device, comprising decomposing to form the hydrogenated carbon film. 前記透明電極を低圧CVD法によって形成することを特徴とする請求項1に記載の光電変換装置の製造方法。   The method for manufacturing a photoelectric conversion device according to claim 1, wherein the transparent electrode is formed by a low-pressure CVD method. 前記水素化炭素膜をプラズマCVD法によって形成することを特徴とする請求項1または請求項2に記載の光電変換装置の製造方法。   The method of manufacturing a photoelectric conversion device according to claim 1, wherein the hydrogenated carbon film is formed by a plasma CVD method.
JP2007169010A 2007-06-27 2007-06-27 Method for manufacturing photoelectric conversion device Pending JP2009010108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007169010A JP2009010108A (en) 2007-06-27 2007-06-27 Method for manufacturing photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007169010A JP2009010108A (en) 2007-06-27 2007-06-27 Method for manufacturing photoelectric conversion device

Publications (1)

Publication Number Publication Date
JP2009010108A true JP2009010108A (en) 2009-01-15

Family

ID=40324921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007169010A Pending JP2009010108A (en) 2007-06-27 2007-06-27 Method for manufacturing photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2009010108A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010104111A1 (en) * 2009-03-13 2010-09-16 住友金属鉱山株式会社 Transparent conductive film and transparent conductive film laminate, processes for production of same, and silicon thin film solar cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201968A (en) * 1988-02-05 1989-08-14 Semiconductor Energy Lab Co Ltd Photoelectric conversion device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201968A (en) * 1988-02-05 1989-08-14 Semiconductor Energy Lab Co Ltd Photoelectric conversion device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010104111A1 (en) * 2009-03-13 2010-09-16 住友金属鉱山株式会社 Transparent conductive film and transparent conductive film laminate, processes for production of same, and silicon thin film solar cell
JP5621764B2 (en) * 2009-03-13 2014-11-12 住友金属鉱山株式会社 Transparent conductive film, transparent conductive film laminate, manufacturing method thereof, and silicon-based thin film solar cell

Similar Documents

Publication Publication Date Title
JP5156641B2 (en) Substrate with transparent conductive film for photoelectric conversion device and method for manufacturing photoelectric conversion device
JP4928337B2 (en) Method for manufacturing photoelectric conversion device
JP5600660B2 (en) Thin film solar cell substrate and method for manufacturing thin film solar cell
JP5069791B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
JP4713819B2 (en) Substrate for thin film photoelectric conversion device and thin film photoelectric conversion device using the same
JP4939058B2 (en) Method for producing transparent conductive film and method for producing tandem-type thin film photoelectric conversion device
JP2008270562A (en) Multi-junction type solar cell
JP4904311B2 (en) Method for manufacturing substrate with transparent conductive film for thin film photoelectric conversion device
JP5602251B2 (en) Transparent electrode substrate and manufacturing method thereof, photoelectric conversion device and manufacturing method thereof, and photoelectric conversion module
US20110308582A1 (en) Photoelectric conversion device and manufacturning method thereof
JP5291633B2 (en) Silicon-based thin film photoelectric conversion device and manufacturing method thereof
JP2012023350A (en) Method of producing photoelectric conversion device
JP5719846B2 (en) Transparent electrode for thin film solar cell, substrate with transparent electrode for thin film solar cell and thin film solar cell using the same, and method for producing transparent electrode for thin film solar cell
US9076909B2 (en) Photoelectric conversion device and method for manufacturing the same
JPWO2005109526A1 (en) Thin film photoelectric converter
JP5180574B2 (en) Multi-junction silicon-based thin film photoelectric conversion device
WO2008059857A1 (en) Thin-film photoelectric conversion device
KR101771410B1 (en) Photoelectric conversion device and method for manufacturing the same
JP2008283075A (en) Manufacturing method of photoelectric conversion device
AU2022348889A1 (en) Method for preparing heterojunction solar cell, heterojunction solar cell and application thereof
JP5469298B2 (en) Transparent conductive film for photoelectric conversion device and method for producing the same
JP5180640B2 (en) Multi-junction silicon-based thin film photoelectric conversion device
JP2009010108A (en) Method for manufacturing photoelectric conversion device
CN217606831U (en) High-efficiency heterojunction solar cell
JP5763411B2 (en) Stacked photoelectric conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121127