JP2010080672A - Photoelectric conversion device and method for manufacturing photoelectric conversion device - Google Patents

Photoelectric conversion device and method for manufacturing photoelectric conversion device Download PDF

Info

Publication number
JP2010080672A
JP2010080672A JP2008247289A JP2008247289A JP2010080672A JP 2010080672 A JP2010080672 A JP 2010080672A JP 2008247289 A JP2008247289 A JP 2008247289A JP 2008247289 A JP2008247289 A JP 2008247289A JP 2010080672 A JP2010080672 A JP 2010080672A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
layer
type
conversion device
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008247289A
Other languages
Japanese (ja)
Inventor
Takashi Fujibayashi
崇 藤林
Hiroko Tawada
裕子 多和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2008247289A priority Critical patent/JP2010080672A/en
Publication of JP2010080672A publication Critical patent/JP2010080672A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a reflectance loss of a transparent conductive layer/photoelectric conversion layer interface, and to extremely improve the interface electric characteristics of the conductive layer and the photoelectric conversion layer. <P>SOLUTION: The photoelectric conversion device includes sequentially from a light entering side: a light translucent substrate; a transmissive conductive layer; a p-type conductive layer including a silicon oxide; a p-type conductive layer including a microcrystalline silicon; a photoelectric conversion layer; and a back electrode layer. The p-type conductive layer including the silicon oxide is formed on the transmissive conductive layer, the p-type conductive layer including the microcrystalline silicon is formed on the p-type conductive layer including silicon oxide, and the photoelectric conversion layer is formed on the p-type conductive layer including the microcrystalline silicon. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光電変換装置に関し、特に光電変換特性を向上させる反射防止体構造を有する光電変換装置に関する。   The present invention relates to a photoelectric conversion device, and more particularly to a photoelectric conversion device having an antireflection structure that improves photoelectric conversion characteristics.

特許文献1では、「太陽電池の窓層として用いるために他の元素を添加してワイドギャップ化するときに低下するa−Si系膜の光導電率を向上させるために微結晶化する」ことを課題として、「CO2の(SiH4 +CO2)に対する流量比を0.6以下とした(CO2+SiH4 +H2)混合ガスを高周波パワー密度を高めてグロー放電分解する」ことを構成とし、「Siの微結晶相とa−SiO相とが混在している半導体膜を得ることができる。この膜は、10-6S/cm以上の高光導電率で、吸収係数が106cm-1以下の低い値を示す」ことを効果としている。
特開平6−267868号公報
In patent document 1, “it microcrystallizes in order to improve the photoconductivity of the a-Si system film | membrane which falls when adding another element and using it as a window layer of a solar cell, and making it a wide gap.” As a configuration, “(CO 2 + SiH 4 + H 2 ) mixed gas with a flow rate ratio of CO 2 to (SiH 4 + CO 2 ) of 0.6 or less is subjected to glow discharge decomposition by increasing the high frequency power density” , “A semiconductor film in which a microcrystalline phase of Si and an a-SiO phase are mixed can be obtained. This film has a high photoconductivity of 10 −6 S / cm or more and an absorption coefficient of 10 6 cm −. The effect is “showing a low value of 1 or less”.
JP-A-6-267868

特許文献1全体の記載より、特許文献1の図面の簡単な説明欄の図2における「本発明により成膜されるp形SiO膜」とは、下記と同一の意味であると解釈できる;「微結晶化したSi層とa−SiO相とが混在しているSiO膜」(0008欄)や、「本発明の実施例によるSiO(0011欄)」や、「(図1の)線11に示す微結晶相を含むa−SiO膜(0011欄)」や、「3 p型a−Si層(符号の説明欄)」。   From the description of the entire patent document 1, the “p-type SiO film formed according to the present invention” in FIG. 2 in the brief description column of the drawings of patent document 1 can be interpreted as having the same meaning as described below; In the SiO film in which the microcrystallized Si layer and the a-SiO phase are mixed ”(column 0008),“ SiO according to the embodiment of the present invention (column 0011) ”,“ line 11 (FIG. 1) ” A-SiO film including a microcrystalline phase (column 0011) "or" 3 p-type a-Si layer (description column) ".

特許文献1の0006欄の記載によれば、特許文献1の図2の「3 p型a−Si層(符号の説明欄)」は、「本発明により成膜されるp形SiO膜(図面の簡単な説明欄の図2)」であると解釈できる。   According to the description in column 0006 of Patent Document 1, “3 p-type a-Si layer (description column)” in FIG. 2 of Patent Document 1 is “p-type SiO film (drawing) according to the present invention” 2) ”in the simple explanation column.

特許文献1は、a−Si系膜のうち、酸素を含む非晶質シリコンオキサイド(以下a−SiOと記す)膜を微結晶化した、低光吸収係数で高光導電率のシリコンオキサイド(以下SiOと記す)半導体膜の工業化に適した製膜方法を提供することにある。(0006欄)。すなわち、0006欄でいうところの「a−Si系膜」は、図2の「3 p型a−Si層(符号の説明欄)」であり、「本発明により成膜されるp形SiO膜(図面の簡単な説明欄の図2)」である、と解釈できる。   Patent Document 1 discloses a silicon oxide (hereinafter referred to as SiO) having a low light absorption coefficient and a high photoconductivity obtained by microcrystallizing an amorphous silicon oxide (hereinafter referred to as a-SiO) film containing oxygen among a-Si based films. It is to provide a film forming method suitable for the industrialization of semiconductor films. (Column 0006). That is, the “a-Si-based film” in the column 0006 is “3 p-type a-Si layer (description column)” in FIG. 2, and “p-type SiO film formed by the present invention”. (FIG. 2 in the simple description column of the drawing).

このような解釈に従えば、特許文献1の図2に記載されているのは、光入射側から順に、1ガラス基板、2透明電極、3p形a−Si層、すなわち、光入射側から順に、1ガラス基板、2透明電極、3p形SiO膜である。   According to such an interpretation, FIG. 2 of Patent Document 1 describes, in order from the light incident side, one glass substrate, two transparent electrodes, 3p-type a-Si layer, that is, sequentially from the light incident side. 1 glass substrate, 2 transparent electrode, 3p-type SiO film.

すなわち、特許文献1では、透明導電層上に直接シリコンオキサイドを含む層が製膜されているため、界面電気特性が著しく悪化し、光電変換層のフィルファクターの低下が強く懸念される。特許文献1では、p/i界面層を挿入することを特許文献1の図2に示しているが、どのような材料を用いるかの記載も示唆もない。   That is, in Patent Document 1, since a layer containing silicon oxide is directly formed on the transparent conductive layer, the interfacial electrical characteristics are remarkably deteriorated, and there is a strong concern about a decrease in the fill factor of the photoelectric conversion layer. In Patent Document 1, the insertion of a p / i interface layer is shown in FIG. 2 of Patent Document 1, but there is no description or suggestion of what kind of material is used.

従って、本発明の目的は、シリコンオキサイドを含むp型導電型層と光電変換層との界面電気特性を著しく改善することである。   Accordingly, an object of the present invention is to remarkably improve the interfacial electrical characteristics between the p-type conductivity type layer containing silicon oxide and the photoelectric conversion layer.

また、本発明の目的は、透明導電膜/光電変換層界面の反射損失を低減し、かつこの界面の透光性、導電性、接合特性を阻害しないシリコンオキサイドを含むp型導電型層/光電変換層を有する光電変換装置及びその製造方法を提供することにある。   Another object of the present invention is to reduce the reflection loss at the transparent conductive film / photoelectric conversion layer interface, and the p-type conductivity layer / photoelectric layer containing silicon oxide that does not impair the translucency, conductivity, and bonding characteristics of the interface. It is providing the photoelectric conversion apparatus which has a conversion layer, and its manufacturing method.

本発明の第1は、光入射側から順に、透光性基板と、透明導電層と、シリコンオキサイドを含むp型導電型層と、微結晶シリコンを含むp型導電型層と、光電変換層と、裏面電極層と、を備える光電変換装置であって、シリコンオキサイドを含むp型導電型層は透明導電層上に形成されてなり、微結晶シリコンを含むp型導電型層はシリコンオキサイドを含むp型導電型層上に形成されてなり、光電変換層は微結晶シリコンを含むp型導電型層上に形成されてなる、光電変換装置、である。   In the first aspect of the present invention, in order from the light incident side, a translucent substrate, a transparent conductive layer, a p-type conductivity type layer containing silicon oxide, a p-type conductivity type layer containing microcrystalline silicon, and a photoelectric conversion layer And a back electrode layer, wherein the p-type conductivity type layer including silicon oxide is formed on the transparent conductive layer, and the p-type conductivity type layer including microcrystalline silicon is formed of silicon oxide. The photoelectric conversion device is formed on a p-type conductivity type layer including the photoelectric conversion layer, and the photoelectric conversion layer is formed on a p-type conductivity type layer including microcrystalline silicon.

本発明は、また、前記シリコンオキサイドを含むp型導電型層の屈折率の値は、透明導電層の屈折率より大きく光電変換層の屈折率より小さい、光電変換装置、である。   The present invention is also a photoelectric conversion device in which the refractive index value of the p-type conductivity type layer containing silicon oxide is larger than the refractive index of the transparent conductive layer and smaller than the refractive index of the photoelectric conversion layer.

本発明は、また、前記シリコンオキサイドを含むp型導電型層は、その導電率が10-7S/cm以上である、光電変換装置、である。 The present invention is also a photoelectric conversion device, wherein the p-type conductivity type layer containing silicon oxide has a conductivity of 10 −7 S / cm or more.

本発明は、また、前記微結晶シリコンを含むp型導電型層は、その導電率が10-2S/cm以上である、光電変換装置、である。 The present invention is also a photoelectric conversion device, wherein the p-type conductivity type layer containing microcrystalline silicon has a conductivity of 10 −2 S / cm or more.

本発明は、また、透光性基板上に透明導電層を形成する工程と、前記透明導電層上にシリコンオキサイドを含むp型導電型層を形成する工程と、前記シリコンオキサイドを含むp型導電型層上に微結晶シリコンを含むp型導電型層を形成する工程と、前記微結晶シリコンを含むp型導電型層上に光電変換層を形成する工程と、前記光電変換層上に裏面電極を形成する工程と、を具備する光電変換装置の製造方法、である。   The present invention also includes a step of forming a transparent conductive layer on a translucent substrate, a step of forming a p-type conductive type layer containing silicon oxide on the transparent conductive layer, and a p-type conductive containing the silicon oxide. A step of forming a p-type conductivity type layer containing microcrystalline silicon on the mold layer, a step of forming a photoelectric conversion layer on the p-type conductivity type layer containing microcrystalline silicon, and a back electrode on the photoelectric conversion layer And a process for forming a photoelectric conversion device.

本発明は、また、前記シリコンオキサイドを含むp型導電型層の屈折率の値は、透明導電層の屈折率より大きく光電変換層の屈折率より小さい、光電変換装置の製造方法、である。   The present invention is also a method for producing a photoelectric conversion device, wherein a refractive index value of the p-type conductivity type layer containing silicon oxide is larger than a refractive index of the transparent conductive layer and smaller than a refractive index of the photoelectric conversion layer.

本発明は、また、前記シリコンオキサイドを含むp型導電型層は、その導電率が10-7S/cm以上である、光電変換装置の製造方法、である。 The present invention is also a method for manufacturing a photoelectric conversion device, wherein the p-type conductivity type layer containing silicon oxide has a conductivity of 10 −7 S / cm or more.

本発明は、また、前記微結晶シリコンを含むp型導電型層は、その導電率が10-2S/cm以上である、光電変換装置の製造方法、である。 The present invention is also a method for producing a photoelectric conversion device, wherein the p-type conductivity type layer containing microcrystalline silicon has a conductivity of 10 −2 S / cm or more.

以下に、発明を実施するための最良の形態で使用される番号・符号を用いて、課題を解決するための手段を説明する。これらの番号・符号は、特許請求の範囲の記載と説明を実施するため最良の形態との対応関係を明らかにするために括弧付きで付加されたものである。ただし、それらの番号・符号を例示であって、特許請求の範囲に記載されている発明の技術的範囲の限定的な解釈に用いてはならない。   Hereinafter, means for solving the problem will be described using the numbers and symbols used in the best mode for carrying out the invention. These numbers and symbols are added in parentheses in order to clarify the correspondence with the best mode for carrying out the description and explanation of the claims. However, these numbers and symbols are exemplifications, and should not be used for a limited interpretation of the technical scope of the invention described in the claims.

本発明の光電変換装置1は、光入射側から順に、透光性基板2と、透明導電層3と、シリコンオキサイドを含むp型導電型層41と、微結晶シリコンを含むp型導電型層42と、光電変換層5と、n型導電型層6と、裏面電極層7と、を備える光電変換装置であって、シリコンオキサイドを含むp型導電型層41は透明導電層3上に形成されてなり、微結晶シリコンを含むp型導電型層42はシリコンオキサイドを含むp型導電型層41上に形成されてなり、光電変換層5は微結晶シリコンを含むp型導電型層42上に形成されてなる。   The photoelectric conversion device 1 of the present invention includes, in order from the light incident side, a translucent substrate 2, a transparent conductive layer 3, a p-type conductivity type layer 41 containing silicon oxide, and a p-type conductivity type layer containing microcrystalline silicon. 42, a photoelectric conversion layer 5, an n-type conductivity type layer 6, and a back electrode layer 7, wherein a p-type conductivity type layer 41 containing silicon oxide is formed on the transparent conductive layer 3. The p-type conductivity type layer 42 containing microcrystalline silicon is formed on the p-type conductivity type layer 41 containing silicon oxide, and the photoelectric conversion layer 5 is formed on the p-type conductivity type layer 42 containing microcrystalline silicon. Formed.

前記シリコンオキサイドを含むp型導電型層41の屈折率の値は、透明導電層3の屈折率より大きく光電変換層5の屈折率より小さいことが好ましい。   The refractive index value of the p-type conductivity layer 41 containing silicon oxide is preferably larger than the refractive index of the transparent conductive layer 3 and smaller than the refractive index of the photoelectric conversion layer 5.

前記光電変換装置1において、前記シリコンオキサイドを含むp型導電型層41は、導電率が10-7S/cm以上であることが好ましい。 In the photoelectric conversion device 1, the p-type conductivity layer 41 containing silicon oxide preferably has a conductivity of 10 −7 S / cm or more.

前記光電変換装置1において、前記微結晶シリコンを含むp型導電型層42は、導電率が10-2S/cm以上であることが好ましい。 In the photoelectric conversion device 1, the p-type conductivity layer 42 containing microcrystalline silicon preferably has a conductivity of 10 −2 S / cm or more.

また、本発明の光電変換装置1の製造方法は、透光性基板2上に透明導電層3を形成する工程と、前記透明導電層3上にシリコンオキサイドを含むp型導電型層41を形成する工程と、前記シリコンオキサイドを含むp型導電型層41上に微結晶シリコンを含むp型導電型層42を形成する工程と、前記微結晶シリコンを含むp型導電型層42上に光電変換層5を形成する工程と、前記光電変換層5上に裏面電極層7を形成する工程とを具備することが好ましい。   Moreover, the manufacturing method of the photoelectric conversion device 1 of the present invention includes the step of forming the transparent conductive layer 3 on the translucent substrate 2 and the formation of the p-type conductivity type layer 41 containing silicon oxide on the transparent conductive layer 3. A step of forming a p-type conductivity type layer 42 containing microcrystalline silicon on the p-type conductivity type layer 41 containing silicon oxide, and a photoelectric conversion on the p-type conductivity type layer 42 containing microcrystalline silicon. It is preferable to include a step of forming the layer 5 and a step of forming the back electrode layer 7 on the photoelectric conversion layer 5.

前記光電変換装置1の製造方法において、前記シリコンオキサイドを含むp型導電型層41の屈折率の値は、透明導電層3の屈折率より大きく光電変換層5の屈折率より小さいことが好ましい。   In the method for manufacturing the photoelectric conversion device 1, the refractive index value of the p-type conductivity type layer 41 containing silicon oxide is preferably larger than the refractive index of the transparent conductive layer 3 and smaller than the refractive index of the photoelectric conversion layer 5.

前記光電変換装置1の製造方法において、前記シリコンオキサイドを含むp型導電型層41は、導電率が10-7S/cm以上であることが好ましい。 In the method for manufacturing the photoelectric conversion device 1, the p-type conductivity layer 41 containing silicon oxide preferably has a conductivity of 10 −7 S / cm or more.

前記光電変換装置1の製造方法において、前記微結晶シリコンを含むp型導電型層42は、導電率が10-2S/cm以上であることが好ましい。 In the method for manufacturing the photoelectric conversion device 1, the p-type conductivity layer 42 containing microcrystalline silicon preferably has a conductivity of 10 −2 S / cm or more.

本発明では、シリコンオキサイドの低屈折率化をSiH4に対するCO2流量を調整することで実現しているが、一般に、CO2流量を増加させることで生じるポーラスなシリコンオキサイドは導電率に寄与しない空隙が存在するため、高い導電率を維持することが困難である傾向が有る。光電変換層の膜質が一定であるならば、低い導電率を有するポーラスなシリコンオキサイドは太陽電池のフィルファクターを低下させる傾向が有る。しかし、本発明のように、ポーラスなシリコンオキサイドに比べて高導電性である微結晶シリコンを含むp型導電型層を、シリコンオキサイドを含むp型導電型層と光電変換層との間に挿入することによって、界面電気特性を向上しフィルファクターを向上させることができる。 In the present invention, the low refractive index of silicon oxide is realized by adjusting the CO 2 flow rate with respect to SiH 4. In general, however, porous silicon oxide generated by increasing the CO 2 flow rate does not contribute to conductivity. Due to the presence of voids, it tends to be difficult to maintain high electrical conductivity. If the film quality of the photoelectric conversion layer is constant, porous silicon oxide having low conductivity tends to lower the fill factor of the solar cell. However, as in the present invention, a p-type conductivity type layer containing microcrystalline silicon, which has higher conductivity than porous silicon oxide, is inserted between the p-type conductivity type layer containing silicon oxide and the photoelectric conversion layer. By doing so, an interface electrical characteristic can be improved and a fill factor can be improved.

本発明により、シリコンオキサイドを含むp型導電型層と光電変換層との界面電気特性を著しく改善し、透明導電層/光電変換層界面の反射損失を低減し、かつこの界面の透光性、導電性、接合特性を阻害しないシリコンオキサイドを含むp型導電型層/光電変換層を有する光電変換装置及びその製造方法を得ることが出来る。   According to the present invention, the interface electrical characteristics between the p-type conductivity layer containing silicon oxide and the photoelectric conversion layer are remarkably improved, the reflection loss at the transparent conductive layer / photoelectric conversion layer interface is reduced, and the translucency of this interface is It is possible to obtain a photoelectric conversion device having a p-type conductivity type / photoelectric conversion layer containing silicon oxide that does not impair conductivity and bonding characteristics, and a method for manufacturing the photoelectric conversion device.

まず、本発明による光電変換装置の実施の形態構成について説明する。   First, a configuration of an embodiment of a photoelectric conversion device according to the present invention will be described.

図1は、本発明による光電変換装置の実施の形態構成を示す断面図である。光電変換装置1は、スーパーストレート型である。光電変換装置1は、透光性基板2、透明導電層3、シリコンオキサイドを含むp型導電型層41、微結晶シリコンを含むp型導電型層42、光電変換層5、n型導電型層6及び裏面反射電極層7を具備する。これらは、この順に積層されている。光hνは、光電変換装置1に対して透光性基板2側から入射し、光電変換装置1内で光電変換される。   FIG. 1 is a cross-sectional view showing a configuration of an embodiment of a photoelectric conversion device according to the present invention. The photoelectric conversion device 1 is a super straight type. The photoelectric conversion device 1 includes a translucent substrate 2, a transparent conductive layer 3, a p-type conductivity type layer 41 containing silicon oxide, a p-type conductivity type layer 42 containing microcrystalline silicon, a photoelectric conversion layer 5, and an n-type conductivity type layer. 6 and the back reflective electrode layer 7. These are laminated in this order. The light hν enters the photoelectric conversion device 1 from the translucent substrate 2 side, and is photoelectrically converted in the photoelectric conversion device 1.

(透光性基板)
透光性基板2は、光電変換装置用の透明な基板であり、ガラスまたはプラスチック材料の少なくとも一つが選ばれる。すなわち、透光性基板は、透光性絶縁基板であることが好ましい。透光性基板2の光入射面における反射損失(4〜5%)を低減するため、太陽光入射側には反射防止膜( 図示されず)をあらかじめ被覆しておくことが好ましい。
(Translucent substrate)
The translucent substrate 2 is a transparent substrate for a photoelectric conversion device, and at least one of glass or plastic material is selected. That is, the translucent substrate is preferably a translucent insulating substrate. In order to reduce the reflection loss (4 to 5%) on the light incident surface of the translucent substrate 2, it is preferable to previously coat an antireflection film (not shown) on the sunlight incident side.

(透明導電層)
透明導電層3は、透光性基板2上に形成されている。透明導電層3は、酸化インジウム、酸化亜鉛、酸化錫の中から選ばれる一つを主成分とする材料、またはそれらを二つ以上組み合わせた材料に例示される光透過性の高い導電性酸化物である。その透明導電層の屈折率は、通常およそ1.6〜2.0の範囲に有る。その透明導電層の膜厚は、1000 〜5000nmである。その透明導電層の表面は、光電変換装置1の十分な光閉じこめ効果(光散乱効果)が期待できる凹凸構造を持つことが好ましい。透明導電層3の表面凹凸の形状やサイズは材料の製膜条件や化学的処理により制御できる。凹凸スパイクによる光電変換層の短絡や結晶成長の衝突を防ぐため、その透明導電層の平均高低差は500nm以下であることが好ましい。透光性基板2と透明導電層3との界面には、反射防止層(図示されず)や透明導電層3の結晶核層(図示されず)、または不純物拡散防止層(図示されず)等を含んでも良い。
(Transparent conductive layer)
The transparent conductive layer 3 is formed on the translucent substrate 2. The transparent conductive layer 3 is a highly light-transmissive conductive oxide exemplified by a material mainly composed of one selected from indium oxide, zinc oxide and tin oxide, or a combination of two or more thereof. It is. The refractive index of the transparent conductive layer is usually in the range of about 1.6 to 2.0. The film thickness of the transparent conductive layer is 1000 to 5000 nm. The surface of the transparent conductive layer preferably has a concavo-convex structure from which a sufficient light confinement effect (light scattering effect) of the photoelectric conversion device 1 can be expected. The shape and size of the surface irregularities of the transparent conductive layer 3 can be controlled by the film forming conditions and chemical treatment of the material. In order to prevent the photoelectric conversion layer from being short-circuited due to the uneven spike or the collision of crystal growth, the average height difference of the transparent conductive layer is preferably 500 nm or less. At the interface between the translucent substrate 2 and the transparent conductive layer 3, an antireflection layer (not shown), a crystal nucleus layer (not shown) of the transparent conductive layer 3, or an impurity diffusion prevention layer (not shown), etc. May be included.

(シリコンオキサイドを含むp型導電型層)
シリコンオキサイドを含むp型導電層41は以下のように作製することができる。原料ガスとしては、SiH4、H2、CO2の混合ガスが適している。ドーピングガスはボロンなどのIII属元素を用いる。また、低屈折率化するためにシリコンオキサイド中に導電率に寄与しない空隙が存在していてもよい。反射防止効果から屈折率は透明導電層3の屈折率より大きく、光電変換層5の屈折率よりも小さい。特に、太陽光強度が最も高い波長600nmで上記条件を満たすことが好ましい。膜厚方向に屈折率が一定でもよく、途中で屈折率が変化していてもよい。さらに、屈折率が周期的に増減するようになっていてもよい。シリコンオキサイドの中には結晶質シリコン成分が含まれていてもよいし、含まれていなくてもよい。導電性を考慮すると結晶質を含むことがより好ましい。導電率は10-7S/cm以上であることが好ましい。特に、光電変換装置1のフィルファクター改善の点では、10-3S/cm以上であることが好ましい。その際のプラズマCVD法による製膜条件は、基板製膜面−電極間距離11mm 、基板温度190℃、圧力600〜900Pa、高周波パワー100〜500W、SiH4/CO2/B26/H2流量を各々(15〜24)/(15〜25)/200/15000sccmとした。このとき、製膜されたシリコンオキサイドを含むp型導電型層41の波長600nmにおける屈折率は、2.0から3.0の範囲にあり、導電率は10-7から10-2S/cmの範囲にあった。また、上記プラズマCVD法以外にも、加熱触媒体を用いたCVD法、熱CVD法、光CVDや反応性スパッタリング法の中から選ばれる少なくとも一つの手法で製膜される。
(P-type conductivity layer containing silicon oxide)
The p-type conductive layer 41 containing silicon oxide can be produced as follows. As the source gas, a mixed gas of SiH 4 , H 2 and CO 2 is suitable. As the doping gas, a group III element such as boron is used. In order to reduce the refractive index, voids that do not contribute to conductivity may exist in silicon oxide. From the antireflection effect, the refractive index is larger than the refractive index of the transparent conductive layer 3 and smaller than the refractive index of the photoelectric conversion layer 5. In particular, the above conditions are preferably satisfied at a wavelength of 600 nm where the sunlight intensity is the highest. The refractive index may be constant in the film thickness direction, or the refractive index may change midway. Furthermore, the refractive index may be increased or decreased periodically. The silicon oxide may or may not include a crystalline silicon component. In view of conductivity, it is more preferable to include a crystalline material. The conductivity is preferably 10 −7 S / cm or more. In particular, in terms of the photoelectric conversion device 1 of the fill factor improvement is preferably 10 -3 S / cm or more. The film forming conditions by the plasma CVD method at that time are as follows: substrate film forming surface-electrode distance 11 mm, substrate temperature 190 ° C., pressure 600 to 900 Pa, high frequency power 100 to 500 W, SiH 4 / CO 2 / B 2 H 6 / H. 2 The flow rates were (15-24) / (15-25) / 200/15000 sccm, respectively. At this time, the refractive index at a wavelength of 600 nm of the p-type conductivity type layer 41 containing silicon oxide formed is in the range of 2.0 to 3.0, and the conductivity is 10 −7 to 10 −2 S / cm. Was in the range. In addition to the plasma CVD method, the film is formed by at least one method selected from a CVD method using a heating catalyst, a thermal CVD method, a photo CVD method, and a reactive sputtering method.

(微結晶シリコンを含むp型導電型層)
原料ガスとしては、SiH4、H2混合ガスが適している。ボロンなどのIII属元素を不純物として含み、数ナノの微結晶シリコンからなる結晶相を含む。前記シリコンオキサイドを含むp型導電型層41と光電変換層5との界面の電気特性を改善するため、その導電率は、10-2S/cm以上であることが好ましく、入射光の吸収損失が生じないよう吸収係数は小さい方が好ましい。また、前述の吸収損失が生じないよう膜厚はできる限り薄くし、1nm以下程度であることが好ましい。上記微結晶シリコンは、プラズマCVD法、加熱触媒体を用いたCVD法、熱CVD法、光CVDや反応性スパッタリング法の中から選ばれる少なくとも一つの手法で製膜される。生産性を考慮すると、プラズマCVD法を用いることがより好ましい。
(P-type conductivity layer containing microcrystalline silicon)
As the source gas, SiH 4 and H 2 mixed gas are suitable. It contains a group III element such as boron as an impurity, and includes a crystal phase composed of several nanocrystalline silicon. In order to improve the electrical characteristics of the interface between the p-type conductivity type layer 41 containing silicon oxide and the photoelectric conversion layer 5, the conductivity is preferably 10 −2 S / cm or more, and the absorption loss of incident light It is preferable that the absorption coefficient is small so as not to occur. Further, the film thickness is made as thin as possible so that the above-described absorption loss does not occur, and is preferably about 1 nm or less. The microcrystalline silicon is formed by at least one method selected from a plasma CVD method, a CVD method using a heating catalyst, a thermal CVD method, a photo CVD method and a reactive sputtering method. In view of productivity, it is more preferable to use the plasma CVD method.

(光電変換層)
光電変換層5は、p型導電型層4上に形成されている。光電変換層5の材料としては、不純物を添加しないa−Si、微結晶シリコン、アモルファスシリコンゲルマニウム、微結晶シリコンゲルマニウムなどが挙げられる。光電変換層の屈折率は、成膜条件によって変わるが、通常およそ3.0から6.0の範囲に有ることが多い。微結晶シリコンを含む光電変換層の場合、その600nmでの屈折率はおよそ3.5から5.0の範囲に有ることが多い。光電変換層の膜厚は、100〜10000nmの範囲であることが好ましい。プラズマCVD法、加熱触媒体を用いたCVD法、熱CVD法や反応性スパッタリング法の中から選ばれる少なくとも一つの手法で製膜されることが好ましい。
(Photoelectric conversion layer)
The photoelectric conversion layer 5 is formed on the p-type conductivity type layer 4. Examples of the material of the photoelectric conversion layer 5 include a-Si, microcrystalline silicon, amorphous silicon germanium, microcrystalline silicon germanium, and the like to which no impurity is added. Although the refractive index of a photoelectric converting layer changes with film-forming conditions, it is usually in the range of about 3.0 to 6.0 in many cases. In the case of a photoelectric conversion layer containing microcrystalline silicon, the refractive index at 600 nm is often in the range of about 3.5 to 5.0. The film thickness of the photoelectric conversion layer is preferably in the range of 100 to 10,000 nm. The film is preferably formed by at least one method selected from the plasma CVD method, the CVD method using a heating catalyst, the thermal CVD method, and the reactive sputtering method.

(n型導電型層)
n型導電型層6は、光電変換層5上に形成されている。n型導電型層6の材料としては、リンなどのV属元素を不純物として含むa−Si、アモルファスシリコンカーバイド、微結晶シリコン、微結晶シリコンカーバイドなどがあげられる。その膜厚は、1〜500nmの範囲であることが好ましい。プラズマCVD法、加熱触媒体を用いたCVD法、熱CVD法や反応性スパッタリング法の中から選ばれる少なくとも一つの手法で製膜されることが好ましい。
(N-type conductivity layer)
The n-type conductivity type layer 6 is formed on the photoelectric conversion layer 5. Examples of the material of the n-type conductivity type layer 6 include a-Si, amorphous silicon carbide, microcrystalline silicon, and microcrystalline silicon carbide containing a group V element such as phosphorus as an impurity. The film thickness is preferably in the range of 1 to 500 nm. The film is preferably formed by at least one method selected from the plasma CVD method, the CVD method using a heating catalyst, the thermal CVD method, and the reactive sputtering method.

(裏面電極層)
裏面反射電極層7は、高い導電性と高い反射率を有し、透明導電層71、裏面金属電極72を備えることが好ましい。
(Back electrode layer)
The back surface reflective electrode layer 7 has high conductivity and high reflectance, and preferably includes a transparent conductive layer 71 and a back surface metal electrode 72.

透明導電層71は、光電変換層5の最表面のn型導電層6上に形成されている。赤外光の反射率の改善および裏面金属電極72の光電変換層5 への拡散を防ぐ。たとえば、酸化錫、酸化亜鉛、酸化インジウムなどを主成分とすることが好ましい。   The transparent conductive layer 71 is formed on the n-type conductive layer 6 on the outermost surface of the photoelectric conversion layer 5. Improvement of the reflectance of infrared light and diffusion of the back surface metal electrode 72 to the photoelectric conversion layer 5 are prevented. For example, it is preferable to use tin oxide, zinc oxide, indium oxide, or the like as a main component.

裏面金属電極72は、透明導電層71の上に形成されている。可視から赤外域で高い反射率を有し、高い導電性を有する。Ag、Au、Al、CuおよびPtから選択される1種の金属、またはこれらを含む合金で形成されることが好ましい。   The back metal electrode 72 is formed on the transparent conductive layer 71. It has high reflectivity in the visible to infrared region and has high conductivity. It is preferably formed of one metal selected from Ag, Au, Al, Cu and Pt, or an alloy containing these metals.

さらに、透明導電層3を残して上記シリコンオキサイドを含むp型導電型層41、及び微結晶シリコンを含むp型導電型層42、及び光電変換層5、及びn型導電型層6、及び裏面電極層7を島状に分離するために、YAG第2高調波パルスレーザーを透光性基板1 に照射することにより複数の裏面電極層分離溝(図示されず)を形成した。さらに、1本の裏面電極層分離溝に隣接して島状の分離領域の外側にさらに裏面電極層分離溝(図示されず)を形成し、その内部に半田を浸透させて透明導電層3とのコンタクト領域(図示されず)を形成することにより、光電変換装置を作製した。前記光電変換装置は有効面積を1cm2とした。 Furthermore, the p-type conductivity type layer 41 containing the silicon oxide, the p-type conductivity type layer 42 containing microcrystalline silicon, the photoelectric conversion layer 5, the n-type conductivity type layer 6, and the back surface leaving the transparent conductive layer 3 In order to separate the electrode layer 7 into island shapes, a plurality of back surface electrode layer separation grooves (not shown) were formed by irradiating the translucent substrate 1 with a YAG second harmonic pulse laser. Further, a back electrode layer separation groove (not shown) is further formed outside the island-shaped separation region adjacent to one back electrode layer separation groove, and solder is infiltrated into the transparent conductive layer 3. A photoelectric conversion device was manufactured by forming a contact region (not shown). The photoelectric conversion device has an effective area of 1 cm 2 .

また、前記光電変換装置は、異なる光学バンドギャップを有する光電変換層を複数用いた多接合型光電変換層を含んでもよい。例えば、光入射側からみて、第一光電変換層がアモルファスシリコン、第二光電変換層が微結晶シリコンである二接合型光電変換装置、あるいは、第一光電変換層がアモルファスシリコンゲルマニウム、第二光電変換層がアモルファスシリコンである二接合型光電変換装置、あるいは、第一、第二光電変換層がアモルファスシリコン、第三光電変換層が微結晶シリコンである三接合型光電変換装置、あるいは、第一光電変換層がアモルファスシリコン、第二、第三光電変換層が微結晶シリコンである三接合型光電変換装置などがある。   The photoelectric conversion device may include a multi-junction photoelectric conversion layer using a plurality of photoelectric conversion layers having different optical band gaps. For example, when viewed from the light incident side, a two-junction photoelectric conversion device in which the first photoelectric conversion layer is amorphous silicon and the second photoelectric conversion layer is microcrystalline silicon, or the first photoelectric conversion layer is amorphous silicon germanium, A two-junction photoelectric conversion device in which the conversion layer is amorphous silicon, or a three-junction photoelectric conversion device in which the first and second photoelectric conversion layers are amorphous silicon and the third photoelectric conversion layer is microcrystalline silicon, or the first There are three-junction photoelectric conversion devices in which the photoelectric conversion layer is amorphous silicon and the second and third photoelectric conversion layers are microcrystalline silicon.

以下、本発明の実施例を示す。   Examples of the present invention will be described below.

(比較例1)
本発明の比較例として、導電率が5.32×10-1S/cm、分光エリプソメトリーにより測定された波長600nmにおける屈折率が4.60、膜厚20nmであるp型微結晶シリコン層上に、光電変換層として微結晶シリコンを製膜した光電変換装置を作製した。上記微結晶シリコン層の製膜条件は、基板製膜面−電極間距離11mm 、基板温度190℃、圧力950Pa、高周波パワー400W、SiH4/B26/H2流量を各々15/40/6000sccmとした。上記光電変換装置に、スペクトル分布AM1.5、エネルギー密度100mW/cm2の擬似太陽光を、測定雰囲気及び太陽電池の温度が25±1℃の下で照射し、透明導電層3 にコンタクト領域を通じて接触させた正極プローブと裏面電極層7に接触させた負極プローブの間の電圧及び電流を測定することで、薄膜太陽電池の出力特性を測定した。上記光電変換装置の短絡電流22.9mA/cm2、開放電圧0.506V、フィルファクター0.696、変換効率8.08%であった。
(Comparative Example 1)
As a comparative example of the present invention, on a p-type microcrystalline silicon layer having a conductivity of 5.32 × 10 −1 S / cm, a refractive index at a wavelength of 600 nm measured by spectroscopic ellipsometry of 4.60, and a film thickness of 20 nm. In addition, a photoelectric conversion device in which microcrystalline silicon was formed as a photoelectric conversion layer was manufactured. The film formation conditions for the microcrystalline silicon layer were as follows: substrate deposition surface-electrode distance 11 mm, substrate temperature 190 ° C., pressure 950 Pa, high frequency power 400 W, SiH 4 / B 2 H 6 / H 2 flow rate 15/40 / It was set to 6000 sccm. The photoelectric conversion device is irradiated with simulated sunlight having a spectral distribution of AM1.5 and an energy density of 100 mW / cm 2 under a measurement atmosphere and a solar cell temperature of 25 ± 1 ° C., and the transparent conductive layer 3 is contacted through the contact region. The output characteristics of the thin film solar cell were measured by measuring the voltage and current between the contacted positive electrode probe and the negative electrode probe brought into contact with the back electrode layer 7. The photoelectric conversion device had a short-circuit current of 22.9 mA / cm 2 , an open-circuit voltage of 0.506 V, a fill factor of 0.696, and a conversion efficiency of 8.08%.

(実施例1)
本発明の実施例1として、導電率が2.76×10-7S/cm、分光エリプソメトリーにより測定された波長600nmにおける屈折率が2.19、膜厚20nm程度のシリコンオキサイドを含むp型導電型層上に、比較例1と同様に光電変換層として微結晶シリコンを製膜した光電変換装置を作製した。上記シリコンオキサイドを含むp型導電型層の製膜条件は、基板製膜面−電極間距離11mm 、基板温度190℃、圧力600Pa、高周波パワー400W、SiH4/CO2/B26/H2流量を各々15/25/200/15000sccmとした。比較例1と同様にして上記光電変換装置の出力特性を測定した。上記光電変換装置の短絡電流23.4mA/cm2、開放電圧0.516V、フィルファクター0.639、変換効率7.72%であった。
Example 1
As Example 1 of the present invention, p-type containing silicon oxide having a conductivity of 2.76 × 10 −7 S / cm, a refractive index of 2.19 at a wavelength of 600 nm measured by spectroscopic ellipsometry, and a thickness of about 20 nm. A photoelectric conversion device in which microcrystalline silicon was formed as a photoelectric conversion layer on the conductive type layer in the same manner as in Comparative Example 1 was produced. The film forming conditions of the p-type conductivity type layer containing silicon oxide are as follows: the distance between the substrate film forming surface and the electrode is 11 mm, the substrate temperature is 190 ° C., the pressure is 600 Pa, the high frequency power is 400 W, SiH 4 / CO 2 / B 2 H 6 / H 2 The flow rates were 15/25/200/15000 sccm, respectively. The output characteristics of the photoelectric conversion device were measured in the same manner as in Comparative Example 1. The photoelectric conversion device had a short-circuit current of 23.4 mA / cm 2 , an open-circuit voltage of 0.516 V, a fill factor of 0.639, and a conversion efficiency of 7.72%.

(実施例2)
本発明の実施例2として、導電率3.55×10-6S/cm、分光エリプソメトリーにより測定された波長600nmにおける屈折率が2.74、膜厚20nm程度のシリコンオキサイドを含むp型導電型層上に、比較例1と同様に光電変換層として微結晶シリコンを製膜した光電変換装置を作製した。上記シリコンオキサイドを含むp型導電型層の製膜条件は、基板製膜面−電極間距離11mm 、基板温度190℃、圧力600Pa、高周波パワー400W、SiH4/CO2/B26/H2流量を各々24/25/200/15000sccmとした。比較例1と同様にして上記光電変換装置の出力特性を測定した。上記光電変換装置の短絡電流23.0mA/cm2、開放電圧0.509V、フィルファクター0.694、変換効率8.16%であった。
(Example 2)
As Example 2 of the present invention, p-type conductivity containing silicon oxide having a conductivity of 3.55 × 10 −6 S / cm, a refractive index at a wavelength of 600 nm measured by spectroscopic ellipsometry of 2.74, and a film thickness of about 20 nm. A photoelectric conversion device in which microcrystalline silicon was formed as a photoelectric conversion layer on the mold layer in the same manner as in Comparative Example 1 was produced. The film forming conditions of the p-type conductivity type layer containing silicon oxide are as follows: the distance between the substrate film forming surface and the electrode is 11 mm, the substrate temperature is 190 ° C., the pressure is 600 Pa, the high frequency power is 400 W, SiH 4 / CO 2 / B 2 H 6 / H 2 The flow rates were 24/25/200/15000 sccm, respectively. The output characteristics of the photoelectric conversion device were measured in the same manner as in Comparative Example 1. The photoelectric conversion device had a short-circuit current of 23.0 mA / cm 2 , an open-circuit voltage of 0.509 V, a fill factor of 0.694, and a conversion efficiency of 8.16%.

(実施例3)
本発明の実施例3として、導電率が5.81×10-3S/cm、分光エリプソメトリーにより測定された波長600nmにおける屈折率が2.97、膜厚20nm程度のシリコンオキサイドを含むp型導電型層上に、比較例1と同様に光電変換層として微結晶シリコンを製膜した光電変換装置を作製した。上記シリコンオキサイドを含むp型導電型層の製膜条件は、基板製膜面−電極間距離11mm 、基板温度190℃、圧力600〜900Pa、高周波パワー100〜500W、SiH4/CO2/B26/H2流量を各々24/15/200/15000sccmとした。比較例1と同様にして上記光電変換装置の出力特性を測定した。上記光電変換装置の短絡電流21.9mA/cm2、開放電圧0.514V、フィルファクター0.719、変換効率8.12%であった。
(Example 3)
As Example 3 of the present invention, p-type containing silicon oxide having a conductivity of 5.81 × 10 −3 S / cm, a refractive index at a wavelength of 600 nm measured by spectroscopic ellipsometry of 2.97, and a film thickness of about 20 nm. A photoelectric conversion device in which microcrystalline silicon was formed as a photoelectric conversion layer on the conductive type layer in the same manner as in Comparative Example 1 was produced. The film forming conditions of the p-type conductivity type layer containing silicon oxide are as follows: substrate forming surface-electrode distance 11 mm, substrate temperature 190 ° C., pressure 600-900 Pa, high frequency power 100-500 W, SiH 4 / CO 2 / B 2 The H 6 / H 2 flow rates were 24/15/200/15000 sccm, respectively. The output characteristics of the photoelectric conversion device were measured in the same manner as in Comparative Example 1. The photoelectric conversion device had a short-circuit current of 21.9 mA / cm 2 , an open-circuit voltage of 0.514 V, a fill factor of 0.719, and a conversion efficiency of 8.12%.

(実施例4)
本発明の実施例4として、実施例1で用いた導電率が2.76×10-7S/cm、分光エリプソメトリーにより測定された波長600nmにおける屈折率が2.19、膜厚20nm程度のシリコンオキサイドを含むp型導電型層の上に、導電率が5.32×10-1である膜厚1nm以下の微結晶シリコンを含むp型導電型層を積層し、比較例1と同様に光電変換層に微結晶シリコンを用いた光電変換層を用いた光電変換装置を作製した。比較例1と同様にして上記光電変換装置の出力特性を測定した。上記光電変換装置の短絡電流は23.1mA/cm2、開放電圧は0.510V、フィルファクターは0.696、変換効率は8.19%であった。
Example 4
As Example 4 of the present invention, the conductivity used in Example 1 is 2.76 × 10 −7 S / cm, the refractive index at a wavelength of 600 nm measured by spectroscopic ellipsometry is 2.19, and the film thickness is about 20 nm. On the p-type conductivity type layer containing silicon oxide, a p-type conductivity type layer containing microcrystalline silicon with a conductivity of 5.32 × 10 −1 and having a thickness of 1 nm or less is laminated. A photoelectric conversion device using a photoelectric conversion layer using microcrystalline silicon as a photoelectric conversion layer was manufactured. The output characteristics of the photoelectric conversion device were measured in the same manner as in Comparative Example 1. The photoelectric conversion device had a short-circuit current of 23.1 mA / cm 2 , an open-circuit voltage of 0.510 V, a fill factor of 0.696, and a conversion efficiency of 8.19%.

以下に、比較例及び、実施例1から4で作製された光電変換装置の短絡電流(Jsc)、開放電圧(Voc)、フィルファクター(FF)、変換効率(Eff)をまとめた表(表1)を示す。   The table which put together the short circuit current (Jsc), the open circuit voltage (Voc), the fill factor (FF), and the conversion efficiency (Eff) of the photoelectric conversion apparatus produced in the comparative example and Examples 1 to 4 below (Table 1) ).

実施例1から3より、短絡電流を向上させるためには、シリコンオキサイドを含むp型導電型層の屈折率は透明導電層の屈折率より大きく光電変換層の屈折率より小さいであることが好ましい。特に、反射防止効果の点では、屈折率2.0〜3.0の範囲にあることがより好ましい。また、フィルファクターの著しい低下を引き起こさないためには、シリコンオキサイドを含むp型導電型層の導電率が10-7S/cm以上であることが好ましい。特に、フィルファクター改善の点では、10-3S/cm以上であることがより好ましい。 From Examples 1 to 3, in order to improve the short-circuit current, the refractive index of the p-type conductive layer containing silicon oxide is preferably larger than the refractive index of the transparent conductive layer and smaller than the refractive index of the photoelectric conversion layer. . In particular, in terms of the antireflection effect, the refractive index is more preferably in the range of 2.0 to 3.0. In order not to cause a significant decrease in fill factor, the conductivity of the p-type conductivity layer containing silicon oxide is preferably 10 −7 S / cm or more. In particular, it is more preferably 10 −3 S / cm or more in terms of improving the fill factor.

さらに、実施例4は、実施例1と同様に製膜されたシリコンオキサイドを含むp型導電型層上に、導電率が5.32×10-1である微結晶シリコンを含むp型導電型層を製膜することで、実施例1に比べフィルファクターの低下を引き起こさずに短絡電流が改善し、変換効率の向上が可能となった。したがって、前記の微結晶シリコンを含むp型導電型層の導電率は10-2S/cm以上であることが好ましい。 Further, Example 4 is a p-type conductivity type containing microcrystalline silicon having a conductivity of 5.32 × 10 −1 on a p-type conductivity type layer containing silicon oxide formed as in Example 1. By forming the layer, the short-circuit current was improved without causing a decrease in fill factor compared to Example 1, and the conversion efficiency was improved. Therefore, the conductivity of the p-type conductivity layer containing microcrystalline silicon is preferably 10 −2 S / cm or more.

本発明の一実施形態の光電変換装置断面図。1 is a cross-sectional view of a photoelectric conversion device according to an embodiment of the present invention.

符号の説明Explanation of symbols

1 光電変換装置
2 透光性基板
3 透明導電層
4 p型導電型層
41 シリコンオキサイドを含むp型導電型層
42 微結晶シリコンを含むp型導電型層
5 光電変換層
6 n型導電型層
7 裏面反射電極層
71 透明導電層
72 裏面金属電極
DESCRIPTION OF SYMBOLS 1 Photoelectric conversion apparatus 2 Translucent substrate 3 Transparent conductive layer 4 P-type conductive layer 41 P-type conductive layer 42 containing silicon oxide p-type conductive layer 5 containing microcrystalline silicon Photoelectric conversion layer 6 N-type conductive layer 7 Back surface reflective electrode layer 71 Transparent conductive layer 72 Back surface metal electrode

Claims (8)

光入射側から順に、透光性基板と、透明導電層と、シリコンオキサイドを含むp型導電型層と、微結晶シリコンを含むp型導電型層と、光電変換層と、裏面電極層と、を備える光電変換装置であって、シリコンオキサイドを含むp型導電型層は透明導電層上に形成されてなり、微結晶シリコンを含むp型導電型層はシリコンオキサイドを含むp型導電型層上に形成されてなり、光電変換層は微結晶シリコンを含むp型導電型層上に形成されてなる、光電変換装置。   In order from the light incident side, a translucent substrate, a transparent conductive layer, a p-type conductivity type layer containing silicon oxide, a p-type conductivity type layer containing microcrystalline silicon, a photoelectric conversion layer, a back electrode layer, The p-type conductivity type layer containing silicon oxide is formed on the transparent conductive layer, and the p-type conductivity type layer containing microcrystalline silicon is on the p-type conductivity type layer containing silicon oxide. A photoelectric conversion device, wherein the photoelectric conversion layer is formed on a p-type conductivity layer containing microcrystalline silicon. 請求項1に記載の光電変換装置であって、前記シリコンオキサイドを含むp型導電型層の屈折率の値は、透明導電層の屈折率より大きく光電変換層の屈折率より小さい、光電変換装置。   2. The photoelectric conversion device according to claim 1, wherein a refractive index value of the p-type conductivity type layer containing silicon oxide is larger than a refractive index of the transparent conductive layer and smaller than a refractive index of the photoelectric conversion layer. . 請求項1に記載の光電変換装置であって、前記シリコンオキサイドを含むp型導電型層は、その導電率が10-7S/cm以上である、光電変換装置。 2. The photoelectric conversion device according to claim 1, wherein the conductivity of the p-type conductivity type layer containing silicon oxide is 10 −7 S / cm or more. 請求項1に記載の光電変換装置であって、前記微結晶シリコンを含むp型導電型層は、その導電率が10-2S/cm以上である、光電変換装置。 2. The photoelectric conversion device according to claim 1, wherein the p-type conductivity type layer containing microcrystalline silicon has a conductivity of 10 −2 S / cm or more. 透光性基板上に透明導電層を形成する工程と、前記透明導電層上にシリコンオキサイドを含むp型導電型層を形成する工程と、前記シリコンオキサイドを含むp型導電型層上に微結晶シリコンを含むp型導電型層を形成する工程と、前記微結晶シリコンを含むp型導電型層上に光電変換層を形成する工程と、前記光電変換層上に裏面電極を形成する工程と、を具備する光電変換装置の製造方法。   Forming a transparent conductive layer on the translucent substrate; forming a p-type conductivity type layer containing silicon oxide on the transparent conductive layer; and microcrystals on the p-type conductivity type layer containing silicon oxide. Forming a p-type conductivity type layer containing silicon, forming a photoelectric conversion layer on the p-type conductivity type layer containing microcrystalline silicon, forming a back electrode on the photoelectric conversion layer, and The manufacturing method of the photoelectric conversion apparatus which comprises this. 請求項5に記載の光電変換装置の製造方法であって、前記シリコンオキサイドを含むp型導電型層の屈折率の値は、透明導電層の屈折率より大きく光電変換層の屈折率より小さい、光電変換装置の製造方法。   6. The method for manufacturing a photoelectric conversion device according to claim 5, wherein the refractive index value of the p-type conductivity type layer containing silicon oxide is larger than the refractive index of the transparent conductive layer and smaller than the refractive index of the photoelectric conversion layer. A method for manufacturing a photoelectric conversion device. 請求項5に記載の光電変換装置の製造方法であって、前記シリコンオキサイドを含むp型導電型層は、その導電率が10-7S/cm以上である、光電変換装置の製造方法。 It is a manufacturing method of the photoelectric conversion apparatus of Claim 5, Comprising: The p-type conductivity type layer containing the said silicon oxide is a manufacturing method of the photoelectric conversion apparatus whose electrical conductivity is 10 <-7 > S / cm or more. 請求項5に記載の光電変換装置の製造方法であって、前記微結晶シリコンを含むp型導電型層は、その導電率が10-2S/cm以上である、光電変換装置の製造方法。 A manufacturing method of a photoelectric conversion device according to claim 5, p-type conductivity type layer including the microcrystalline silicon, the conductivity is 10 -2 S / cm or higher, a method for manufacturing a photoelectric conversion device.
JP2008247289A 2008-09-26 2008-09-26 Photoelectric conversion device and method for manufacturing photoelectric conversion device Pending JP2010080672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008247289A JP2010080672A (en) 2008-09-26 2008-09-26 Photoelectric conversion device and method for manufacturing photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008247289A JP2010080672A (en) 2008-09-26 2008-09-26 Photoelectric conversion device and method for manufacturing photoelectric conversion device

Publications (1)

Publication Number Publication Date
JP2010080672A true JP2010080672A (en) 2010-04-08

Family

ID=42210787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008247289A Pending JP2010080672A (en) 2008-09-26 2008-09-26 Photoelectric conversion device and method for manufacturing photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2010080672A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013084721A (en) * 2011-10-07 2013-05-09 Sharp Corp Photoelectric conversion element, and method for manufacturing photoelectric conversion element
WO2014132516A1 (en) * 2013-02-26 2014-09-04 三洋電機株式会社 Solar cell, solar cell module, and production method for solar cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60207319A (en) * 1984-03-31 1985-10-18 Toa Nenryo Kogyo Kk Amorphous semiconductor solar cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60207319A (en) * 1984-03-31 1985-10-18 Toa Nenryo Kogyo Kk Amorphous semiconductor solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013084721A (en) * 2011-10-07 2013-05-09 Sharp Corp Photoelectric conversion element, and method for manufacturing photoelectric conversion element
WO2014132516A1 (en) * 2013-02-26 2014-09-04 三洋電機株式会社 Solar cell, solar cell module, and production method for solar cell
JPWO2014132516A1 (en) * 2013-02-26 2017-02-02 パナソニックIpマネジメント株式会社 SOLAR CELL, SOLAR CELL MODULE, AND SOLAR CELL MANUFACTURING METHOD

Similar Documents

Publication Publication Date Title
JP4257332B2 (en) Silicon-based thin film solar cell
JP4811945B2 (en) Thin film photoelectric converter
JP2006319068A (en) Multi-junction silicone thin film photoelectric converter and its manufacturing method
JPWO2012020682A1 (en) Crystalline silicon solar cell
JP4928337B2 (en) Method for manufacturing photoelectric conversion device
JPWO2013161668A1 (en) Solar cell and manufacturing method thereof
JP5222434B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
JP2008270562A (en) Multi-junction type solar cell
JP5400322B2 (en) Silicon-based thin film solar cell and method for manufacturing the same
JP2007305826A (en) Silicon-based thin film solar cell
JP5291633B2 (en) Silicon-based thin film photoelectric conversion device and manufacturing method thereof
JP5180574B2 (en) Multi-junction silicon-based thin film photoelectric conversion device
JP2010080672A (en) Photoelectric conversion device and method for manufacturing photoelectric conversion device
JP5469298B2 (en) Transparent conductive film for photoelectric conversion device and method for producing the same
JP4565912B2 (en) Multi-junction semiconductor element and solar cell element using the same
JP2011171384A (en) Thin-film photoelectric conversion device
JP6143520B2 (en) Crystalline silicon solar cell and manufacturing method thereof
WO2013121817A1 (en) Integrated photoelectric conversion apparatus, method for manufacturing same, and solar cell
JPWO2006049003A1 (en) Method for manufacturing thin film photoelectric conversion device
JP4441298B2 (en) Photoelectric conversion device and manufacturing method thereof
JP4971755B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
JP5763411B2 (en) Stacked photoelectric conversion device
JP5613296B2 (en) Transparent conductive film for photoelectric conversion device, photoelectric conversion device, and manufacturing method thereof
JP2011014736A (en) Thin film photoelectric conversion device and method of manufacturing the same
JP2009277892A (en) Thin film photoelectric converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121127